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Abstract

Background: Influenza is a public health issue that needs to be addressed strategically. The assessment of detailed infectious
profiles is an important part of this effort. Household transmission data play a key role in estimating such profiles. We used
diagnostic and questionnaire-based data on influenza patients at a Japanese clinic to estimate the detailed infectious period (as
well as incubation period, symptomatic and infectious periods, and extended infectious period after recovery) and the
secondary attack ratio (SAR) of influenza for households of various sizes based on a modified Cauchemez-type model.

Results: The data were from enrolled patients with confirmed influenza who were treated at the Hirotsu Clinic (Kawasaki,
Japan) with a neuraminidase inhibitor (NAI) during six northern hemisphere influenza seasons between 2010 and 2016. A total
of 2342 outpatients, representing 1807 households, were included. For influenza type A, the average incubation period was
1.43 days (95% probability interval, 0.03–5.32 days). The estimated average symptomatic and infective period was 1.76 days
(0.33–4.62 days); the extended infective period after recovery was 0.25 days. The estimated SAR rose from 20 to 32% as
household size increased from 3 to 5. For influenza type B, the average incubation period, average symptomatic and infective
period, and extended infective period were estimated as 1.66 days (0.21–4.61), 2.62 days (0.54–5.75) and 1.00 days, respectively.
The SAR increased from 12 to 21% as household size increased from 3 to 5.

Conclusion: All estimated periods of influenza type B were longer than the corresponding periods for type A. However,
the SAR for type B was less than that for type A. These results may reflect Japanese demographics and treatment
policy. Understanding the infectious profiles of influenza is necessary for assessing public health measures.

Keywords: Influenza, Household transmission, Mathematical model, Stochastic simulation, Infectious period, Secondary
attack ratio

Background
Simulation-based studies [1, 2] have been effectively used to
assess the burden of influenza on society and the reaction of
public health, as well as to help understand the dynamical
nature of an epidemic [3]. The household is considered a
particularly useful artificial experimental environment in

which all members of the family are expected to experience
intense contact [4, 5]. The risk of infection attributed to in-
fective individuals is directly reflected in the data as a series
of infection events in a particular household, which is largely
independent of other households based on the intense con-
tact. Accordingly, household data have played a key role in
addressing estimation problems and have received particular
attention in the analysis of influenza infection. In a number
of previous studies, a Reed & Frost-type model has been
used to estimate the probability that one susceptible subject
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will experience at least one contact with one infected house-
hold subject per unit time [6, 7] using a chain binomial
model. In this type of model, the parameters are essentially
estimated based on the number of infected subjects at each
point in time. As an alternative, Longini et al. [8] proposed
a constructive way to estimate the probability of being in-
fected by an infective household member or community
from the final numbers at the end of the epidemic. Carrat
et al. [9] conducted a longitudinal study of the household
transmission of influenza in the 1999/2000 season that in-
cluded the start and end times of the illness for 946 house-
holds. Cauchemez et al. [4] applied a Bayesian Markov
chain Monte Carlo (MCMC) to the outcome of the study
to estimate the force of infection and the distribution of
the infectious period simultaneously.
Although the infective period is one of the most clinic-

ally important parameters to describe natural history, it
alone is not sufficient to describe influenza epidemics.
There have been numerous attempts to identify other
parameters, both in Japan and elsewhere. Frequency of so-
cial contacts and the secondary attack ratio (SAR), which is
the probability of any member (of n - 1) being infected by the
primary source, in household contacts are also essential factors
for describing epidemics, in addition to the infectious and la-
tent periods. Wallinga et al. [10] quantified the concept of so-
cial contacts in an age-specific contact matrix, which was then
applied by Mossong et al. [11] in an investigation in Europe.
Carcione et al. [12] estimated the SAR in households during
the first circulation of the pandemic influenza A(H1N1) 2009.
In Japan, Uchida et al. [13–15] conducted questionnaire-based
studies of school outbreaks. Takeuchi et al. [16] and Ibuka
et al. [17] investigated social contacts in a village in Miyazaki
prefecture and among age-stratified responders recruited on-
line, respectively. Nishiura & Oshitani [5] estimated the SAR
in households for the pandemic influenza A(H1N1) 2009.
Hirotsu et al. [6] used data from the Hirotsu Clinic in Kawasaki

City, a major city in the greater Tokyo area, to conduct a single-
center, prospective, observational study (UMIN-CTR:
UMIN000024650) involving the transmission of influenza during six
influenza seasons (2010–2016). The data were taken from the records
of 2342 outpatients, representing 1807 households, who were diag-
nosed with influenza A or B. Each household record consisted of the
diagnosis as well as the infection history of other household members
who were tracked via a questionnaire provided to the outpatients.
These records serve as the basis for the current study.
Given the underlying information available in the diag-

nostic records of the Hirotsu Clinic, we sought to esti-
mate the latent and infectious periods and to
reconstruct household transmission in a pair of simula-
tions. The latent period of influenza is hardly identifiable
via routinely corrected epidemic data except when a
small outbreak occurs, one induced by clearly identified
primary cases [6]. Moreover, asymptomatic agents may
have a non-negligible influence on the epidemic [18, 19].

We employ a modified Cauchemez-type household
transmission model. After conducting two simulation tri-
als to produce a detailed infection profile, we explore the
information extracted from the Hirotsu Clinic’s influenza
diagnosis records. In the first step, estimates of the infec-
tious period are produced by combining the available re-
cords and the simulation model. In the second step, we
simulated inter-household transmission assuming a par-
ticular force of infection between households and calibrate
the assumed value so that the number of simulated in-
fected households for each household size agrees with the
reality represented in the data. It is expected that the new
and more detailed infectious profile developed here for in-
fluenza will contribute to public health globally.
The remainder of the paper is organized as follows: In

the Methods section, the dataset is introduced and the
methods applied to the dataset are described mathemat-
ically. In the Results section, parameter estimates related
to the natural history of influenza are presented. In the
Discussion section, we summarize the outcomes of our
trials and discuss the study’s strengths and limitations.
Finally, we offer concluding remarks and indicate future
research directions in the Conclusion section.

Methods
Data source
The data were derived from enrolled patients with con-
firmed influenza who were treated at the Hirotsu Clinic
(Kawasaki, Japan) with a neuraminidase inhibitor (NAI)
during the six northern hemisphere influenza seasons
between 2010 and 2016. A total of 2342 outpatients,
representing 1807 households, were included (Table 1).
A majority of the households have 3–5 members (par-
ents and their children), as summarized in Table 1b.
This is reflected in the age-specific distribution of the
total infected cases over the six-year period shown in
Fig. 1, where the 0–11 age group (preschool and elemen-
tary school children) and the 30–49 age group are pre-
dominant. The dataset includes individuals based on
infection, either diagnosed or indicated by the family.
For this reason, the corresponding ‘divisor’ necessary to
obtain a crude estimate of the infection probability is
not clearly defined. The divisors are calculated by count-
ing all members of the household once a year if the
household experiences the disease. The jagged lines in
Fig. 1 show the crude infection probability for influenza
A or B. While a general downward trend (see Ref [20])
is apparent in the case of type B, there is no clear trend
for type A. Patients of any age who were diagnosed with
influenza A or B using rapid influenza diagnostic tests
(RIDTs) were eligible for inclusion in the study. Immu-
noAce® Flu (Tauns Laboratories, Inc., Shizuoka, Japan)
was used for the differential diagnosis of influenza A and
B. In order to share the data among members of the
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research team, the original Hirotsu Clinic data were first
anonymized by keeping only assigned identifiers, along
with the times of infection-related events and the rela-
tionship between identifiers in order to reconstruct
households. This anonymization did not affect the ana-
lysis. The infection events consisted of the onset (based
on questionnaire responses), diagnosis at the clinic, and
recovery (occasionally N/A was entered to indicate the
disappearance of constitutional symptoms, specifically
antipyresis < 37.5 °C). The dosage and administration of

the NAIs were as per the package insert for each product.
Secondary infection patients were defined as household
members who were diagnosed with the same influenza
type as the index patient within 8 days after the onset of
symptoms in the index patient. Occasionally, two or more
members of a household may be simultaneously (or nearly
so) infected outside the household and be introduced into
the household as primaries. Figure 1 shows that the serial
interval frequency decreases monotonically up to 0.5 days
for influenza type A and up to 1.25 days for influenza type
B. This downward trend may be at least partially attribut-
able to the introduction of multiple primaries, as discussed
in more detail later.

Transmission model in a household
Cauchemez et al. [4] conducted a longitudinal investiga-
tion of 334 households over a 15-day period in winter
1999–2000 and applied their novel household transmis-
sion model to estimate parameters describing the natural
history of (seasonal) influenza infection. The approach
we propose is similar to this in concept. In the model, the
time variation of the infectivity attributed to an individual
is modeled as a piecewise constant function (Fig. 2) that
includes four period parameters: pre-symptomatic and
non-infective (a), pre-symptomatic and infective (b),
symptomatic and infective (d), and extended infective after
recovery (e). By definition, infectivity sustains for period
b + d + e. Period d was observed from the data; period b +
e, on the other hand, was estimated via maximum likeli-
hood estimation. Because the individual values of b and e
could not be broken out from the combined b + e value,
we set b = 0 only for conceptual completeness.
We employ a parametric model (which will be ex-

plained in the next subsection) to describe a and d as
random variables and obtain their point estimates via
maximum likelihood estimation. The subscripted version
(e.g., ai for a) denotes the values for an individual i. We

Table 1 Summary of diagnosed influenza cases covered by our
questionnaire investigation

Year Type Cases Households Total Cases

a. Number of cases in each year

1 A 243 189

B 104 86

2 A 263 204

B 222 177

3 A 259 189

B 11 8 270

4 A 175 147

B 289 227 464

5 A 339 249

B 18 13 357

6 A 237 168

B 182 150 419

Total 2342 1807

b Number of households of each household size

Household size 1 2 3 4 5 6 7 Total

A 37 62 318 544 149 30 6 1146

B 16 15 182 340 85 18 5 661

Total 53 77 500 884 234 48 11 1807

Fig. 1 Age-specific distributions of the total infected cases over six years (black portion of the histograms) and the corresponding age-specific
population (black+white) for influenza A and B. The lines show a crude estimate of the infection probability, calculated as the number of
infectious individuals divided by the population
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assume that a given individual may be infected per unit
time according to the probability of the sum of the in-
fectivity attributed to the rest of the family members.
Specifically, if family member i acquires infectivity at
time ti – bi (ti is the time of the illness onset informed
by the data) and loses it at t

0
i þ ei (t

0
i is the time of the

disappearance of constitutional symptoms, which may
be unavailable in the data), then the infection probability
per unit time (i.e., the force of infection, FOI) that mem-
ber j is infected at time t is given by

λ jðtÞ ¼ λ0
ðn − 1Þα

X
i≠ j
11ðti − bi≤t≤ t

′
i þ eiÞ; ð1Þ

where n is the number of members in the household
(i.e., the household size), λ0 is a constant controlling the
FOI, and 11ð�Þ is an indicator function: 11ðTrueÞ ¼ 1an
d11ðFalseÞ ¼ 0. Cauchemez et al. [4] employed this type
of power-law risk (assuming λj(t) ∝ n−a) to check the ef-
fect of the density of infectives and obtained an estimate
of α = 0.84 (95% CrI: 0.46–1.21). Later, Ferguson et al.
used α = 0.8, a value close to the mean determined by
Cauchemez et al., in their pandemic simulation study
[1]. Division by the number of other family members
(the case of α = 1) assumes that infective contacts occur
in an exclusive time-sharing manner; the absence of the
division (α = 0) implies that the FOIs exert influence
equally on the population of concern, irrespective of
family size. The former setting is appropriate for diseases
that require close contact for infection, including influenza,
while the latter well matches, for example, diseases where
the infection is induced by polluted agents [21]. However, as

we will see, because the SAR is non-negligibly large in large
families, setting α= 1 appears to over-reduce the FOI: an in-
fective agent may have a conversation with two or more fam-
ily members. For this reason, we introduced an empirically
determined power for scaling.

Estimation of parameters
We employ a rather descriptive statistical approach to
estimating a, d, and e. Setting b = 0, the symptomatic
period d(h, i) of the i-th infected member in household h
is informed by data as t′(i) − t(i); summing such realiza-
tions over all households and members therein, we have
the empirical distribution (i.e., histogram) of period d,
along with its mean E[d]. Similarly, in principle, collect-

ing the serial interval instance tðhÞint≔t
ðh;2Þ − tðh;1Þ over

households h, we have the empirical distribution for tint.
As mentioned in the data source subsection, however, cases
in which two family members who were simultaneously in-
fected (or nearly so) outside the home may occasionally ap-
pear. In the expert opinion of one of the authors, an infected
agent barely develops sufficient infectiousness within 24 h. In
our study, a serial interval within 24 h was observed in 54 of
290 influenza A pairs (18%) and in 14 of 135 influenza B
pairs (18%). It may be that these simultaneous pairs in-
creased the proportion of short serial intervals in the distri-
bution. Fig. 3 shows the left ends of the histograms of the
crude distributions of tint for influenza A and B, respectively.
As is apparent in figure, for influenza B, there is a persistent
downward trend up to 1.25 days, followed by an upward
trend that forms the left side of an approximately bell-
shaped distribution (the full histogram is shown in Fig. 4).

Fig. 2 Natural history of infective people and the variation of infectivity. In an actual situation, a person may be infected at some unknown point
in time (Infection) and the infectivity to other people gradually increases up to its maximum around the time when the illness is well developed
and recognized (Illness onset). It then is drained as the process of recovery from infection proceeds, which may be clinically observed by
antipyresis (Antipyresis), though weak infectivity may remain. For simplicity, such time variation of infectivity is modeled using a piecewise
constant function that takes a non-zero constant value λ0 only from one point in time (labeled as Infectious) to another point near Antipyresis.
The modeled infectivity function is temporally controlled by four period parameters: a (pre-symptomatic and non-infectious), b (pre-symptomatic
and infectious), d (symptomatic and infectious) and e (extended infective after recovery)
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Though there is a possibility that a relatively large infectious
incubation period of a primary can yield a small (occasionally
negative) serial interval, our dataset is not sufficient to deal
separately with the infectious incubation period (as noted
above). As a consequence, we empirically adjusted the con-
tribution from simultaneous primary cases in the crude serial
interval distribution under the assumption that this down-
ward trend is mainly attributed to simultaneous infections,
in particular where tint is close to zero. Given that this trend
is almost linear, we assumed that the count between tint and
tint +Δt is attributable to true household transmission with
probability ∝tintΔt and discarded stochastically the data
of tint < 1.25 days accordingly. The same procedure was ap-
plied to influenza A, with a different cut-off of tint < 0.5 days,
although the downward trend here is not as apparent as in
the case of influenza B. After these adjustments, the “ob-
served” serial interval tint can be modeled as the summation
of the interval τint between the infection times of the primary
and secondary infections (i.e., the “intrinsic” serial interval)
and the incubation period a of the secondary subject. For
ease of computation of the a distribution, we introduce two
simplifications. First, the interval of the two cases is assumed
to follow a uniform distribution truncated at the mean in-
fective period τifv: pðτintÞ ¼ 11ð0≤τint≤τi fvÞ=τi fv . Second,
the incubation period follows a gamma distribution: a ∼
Gam (shape = ka, scale = θa). The distribution form of tint is
then written as

pðtintjka; θa; τi fvÞ ¼ d
dtint

Z minðtint;τi fvÞ

0

1
τi fv

Z tint

τint

Gamðt′int − τintjka; θaÞdt′intdτint

¼ 1
τi fv

Z minðtint;τi fvÞ

0
Gamðtint − τjka; θa dτÞ

By maximizing the likelihood
Q

hpðtint ¼ tðhÞint j ka; θa;
τifvÞ , we have the distribution of incubation period a.
Technically, the simultaneous optimization of (ka, θa,
τifv) is sensitive to the initial conditions. Hence, given τifv
in a certain range, we optimize for (ka, θa). Since a point
estimate of the infective period τifv can be equated to
E [d + e], τifv − E[d] serves as a point estimate of e. Scal-
ing power α is determined as follows. The SAR is 1 −
e − λτifv ≈ λτifv with λ = (n − 1) · λ0/(n − 1)α, from Eq. (1).
Our dataset allows us to compute the SAR for house-
hold sizes n = 3, 4, and 5 which together comprise ap-
proximately 90% of all households (a small number of
households were of size 6 and 7). Therefore, the value of
α with λ0τifv is determined by the regression

logSARn ¼ logλ0τifv þ 1 − αð Þ log n − 1ð Þ:

The value of λ0 is determined as an MLE via a com-
parison of the number of secondary cases in the data
and in the simulation. Suppose that i secondary cases
appear in a simulated household of size n with probabil-

ity pi/n and that ðpi=nÞn − 1
i¼0

is obtained through multiple

simulation runs with different seeds. Then the likelihood

for the comparison is Lðλ0Þ ¼
Q

n¼3;4;5

Qn − 1
i¼0 ðpi=nÞmi=n ,

given mi/n real households yielded i secondary cases. In
other words, λ0 is chosen so that the KL divergence is
minimized.

Results
Estimation of duration parameters
To estimate the duration parameters, we first summarized
the dataset in the form of histograms for the symptomatic
period and the serial interval. The dataset histograms for
influenza A, along with the related estimation results, are
shown in Fig. 4a. We identified 1389 cases in which the
patient exhibited symptoms and 290 transmissions from

Fig. 3 Partial serial interval histograms of the crude number of secondary cases. Only the left side of the histograms (≤ 2 days) is shown. In the
type A histogram, there is a downward trend up to 0.5 days; in the type B histogram, there is a downward trend up to 1.25 days (type B). These
may be attributable to simultaneous infections outside the household
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the primary to the secondary subject. The symptomatic
period distribution is well approximated by a gamma dis-
tribution with shape = 2.97 and scale = 0.59 days; that is,
period d is 1.76 days on average, with a 95% probability
interval (hereafter 95% I) of 0.33–4.62. The point estimate
of the infective period as the MLE is 2.01 (left-panel in Fig.
4a). The difference between the infective and symptomatic
periods is the extended infective period after recovery, e;
here, e= 2.01–1.76 = 0.25 days. The incubation period is ex-
tracted as a gamma distribution with shape = 0.99 and
scale = 1.46 days (mean: 1.43 days; 95% I: 0.03–5.32 days).
The results for influenza B are shown in Fig. 4. For the

analysis here, we identified 760 cases where the patient
exhibited symptoms and 135 transmissions from the pri-
mary to the secondary subject. A gamma distribution
with shape = 3.05 and scale = 0.86 days (mean: 2.62 days;
95% I: 0.54–5.75 days) was fitted to the symptomatic
period data; notably, the period here is longer than in
the case of influenza A. The serial interval was also lon-
ger and cut off at approximately 6 days, while the infect-
ive period was estimated to be 3.62 days, which yields an

incubation period of 1.66 days (95% I: 0.21–4.61 days), as
well as a relatively long extended infective period after
recovery, e = 3.62–2.62 = 1.00 days.

Estimation of FOI
We then produced a point estimate of the FOI coefficient λ0
after fixing scaling power α. In the case of influenza A, the
SAR increased from 20 to 32% as household size increased
from 3 to 5, for which α= 0.32 is optimal. This is a much
smaller value than that used in a previous study, where Fer-
guson et al. [1], who carried out agent simulations and
employed a Cauchemez-type model as an internal process,
used α= 0.8. With α= 0.32 and an infective period of 3.73
days, we ran 1024 simulations to obtain the ML estimate of
λ0. The likelihood as a function of λ0 is shown in Fig. 5a; the
optimal value was found to be λ0 = 0.065. The corresponding
SAR distribution is shown in Fig. 6a. As shown, the simu-
lated distribution well reproduces the data.
The same procedure was applied to influenza B. Com-

pared to type A, type B exhibited a smaller SAR (range: 12–
21%) and a much longer infective period (5.73 days). The

Fig. 4 Summary of household infection data and estimates of the parameters for influenza types. a. Type A and b. type B (bottom row). The left
column shows the histogram of the symptomatic period and its fitting to a gamma distribution. The middle column shows the histogram of the
serial interval, its fitting to the distribution constructed as a convoluted gamma distribution (blue curve), and the extracted infectious period
(annotation) and incubation period (red curve) via the fitting (see the Methods section for detail). The right column shows the negative likelihood
against the assumed infective period
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Fig. 5 Likelihood curves for the two influenza types. a. Type A and b. type B are shown with respect to the number of secondary cases in a
household as a function of the force of infection (FOI) coefficient λ0. The likelihood values are determined by simulation runs with different values
of λ0 and Δλ0 = 0.005; optimal values of λ0 are 0.065 for A and 0.015 for B

Fig. 6 Comparison of the number of secondary cases in a household. Households have 3, 4, or 5 members in the actual data (white) and the
simulation (black) for the two influenza types: a. type A and b. type B. The simulation run is mainly controlled by the force of infection (FOI)
coefficient λ0 and the household size scaling power a; their ML estimates are shown
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resulting estimates are also different: α= 0.17 and λ0 = 0.015.
The likelihood function is shown in Fig. 5b. The SAR distri-
bution in Fig. 6b is similarly reproduced, and two or more
secondary cases appear less frequently than for type A.

Discussion
We estimated parameters to describe an influenza natural
history, the incubation and infective periods, and the FOI co-
efficient, using both diagnostic and questionnaire-based data
obtained in a clinic located in the suburbs of Tokyo. While
the study produced several useful insights, it is not without
limitations. Although the estimated incubation period is ra-
ther inescapably obscure because it is hidden by the different
symptomatic periods for individuals and was reflected in a
quite skewed distribution with shape less than unity, it was
estimated to be roughly 1.5 days, both for type A and type B.
For the latter, a uniform infective period distribution with bi-
level infectivity (non-infective or infective) does not fully cap-
ture the nature of the influenza (e.g., virus titer over time).
The difference between the infective period and the symp-
tomatic period, for which we produced point estimates, was
0.25 days for influenza type A and 1.00 days for type B. While
the estimate for type B would seem to be consistent with
what is commonly known about this disease, the estimate

for type A appears excessively short. According to the En-
forcement Regulations for School Health and Safety Act in
Japan [22], patients with an influenza virus infection are
banned from attending school for 2 days (or 3 days for infant
children) after the resolution of fever. Our estimates of the
mean of the extended infective period after the resolution of
fever were less than 2 or 3 days and were thus consistent
with the enforcement regulation. In this respect, our con-
structed models would appear to be realistic. However, it
should be noted that the choice of cut-off points to split sim-
ultaneous infection from true household transmission is in-
fluential in the estimation and, although the choice in the
case of type B is rather clear, it is less obvious for type A.
The scaling power was estimated to be quite small (α =

0.2 to 0.3) relative to that reported by Cauchemez et al.
However, it should be noted that Cauchemez’s α = 0.84
estimate involved substantial uncertainty (95% CrI: 0.46–
1.21), and that the best fit power is different for 1/nα ver-
sus 1/(n − 1)α (for example, 1/(n − 1)0.3 well fits to 1/n0.42).
A straightforward explanation for this might be that the
dataset covered households in which family members
tended to spend most of their time with one another.
However, two (or more) primary cases introduced almost
simultaneously can elevate the apparent SAR in large

Fig. 7 Comparison of the number of secondary cases in households with c1 ≤ 1 (early-diagnosed primary) and those with c1 > 1 (late-diagnosed
primary): a. type A and b. type B
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families. Our analysis assumed that the first reported case
infected the second, and so on. The fraction of the ignored
tail (> 8 days) should be available to model the probability
that multiple members were infected simultaneously, refer-
ring to epidemic surveillance in Tokyo. It should also be
noted that the SAR may be underestimated due to vaccin-
ation and the basic strategy of early diagnosis followed by
early treatment. While our dataset does not inform the vac-
cine effect separately since vaccination records are available
only for infected household members, we can compare the
SAR values between all households and those with a late-
diagnosed primary case. Here, we identify a primary to be
late-diagnosed if the waiting time c from the onset to the
diagnosis is greater than 1 day, which is the case for 25% of
households with type A and 33% of those with type B. Fig-
ure 7 shows the number of secondary cases according to
household size. The uncertainties at the various points on
the distributions are 95% CIs based on binomial sampling.
Considering only the mean (crude proportion), the weights
shift to a larger number of secondary cases, particularly for
type A in four-member households. Late diagnosis and re-
duced awareness may raise the probability of household
outbreaks. However, the uncertainties of the stratified and
unstratified distributions overlap one another and we did
not find a significant difference.

Conclusion
As this study was conducted in Japan, the results are
likely to reflect Japanese demographics and treatment
policy. Although it is important to assess infectious pro-
files in various countries, the number of studies that
have estimated the infectious duration and FOI of influ-
enza in Japan is quite limited. In general, it is useful to
understand the infectious profiles of influenza for exam-
ining public health measures.
We expect that our estimates of the infective period

based on the present situation in an urban area in
Japan will be informative to school health officials
and helpful in determining the span of school clo-
sures and attendance suspensions. However, more re-
search will be needed to improve the accuracy and
applicability of our results.
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