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Abstract

Background: Understanding the dynamical behavior of dengue transmission is essential in designing control
strategies. Mathematical models have become an important tool in describing the dynamics of a vector borne
disease. Classical compartmental models are well–known method used to identify the dynamical behavior of spread
of a vector borne disease. Due to use of fixed model parameters, the results of classical compartmental models do not
match realistic nature. The aim of this study is to introduce time in varying model parameters, modify the classical
compartmental model by improving its predictability power.

Results: In this study, per–capita vector density has been chosen as the time in varying model parameter. The dengue
incidences, rainfall and temperature data in urban Colombo are analyzed using Fourier mathematical analysis tool.
Further, periodic pattern of the reported dengue incidences and meteorological data and correlation of dengue
incidences with meteorological data are identified to determine climate data–driven per–capita vector density
parameter function. By considering that the vector dynamics occurs in faster time scale compares to host dynamics, a
two dimensional data–driven compartmental model is derived with aid of classical compartmental models. Moreover,
a function for per–capita vector density is introduced to capture the seasonal pattern of the disease according to the
effect of climate factors in urban Colombo.

Conclusions: The two dimensional data–driven compartmental model can be used to predict weekly dengue
incidences upto 4 weeks. Accuracy of the model is evaluated using relative error function and the model can be used
to predict more than 75% accurate data.
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Introduction
Dengue is a mosquito–borne tropical viral disease that
has rapidly spread during the past few decades and has
become one of the major public health issues. Within the
past five decades, the magnitude of reported number of
incidents has increased by thirty fold and mainly reported
from tropical and subtropical regions [1, 2]. According
to World Health Organization (WHO), 0.4 to 1.3 million
dengue cases are reported annually [2].
Sri Lanka is a tropical country which has been affected

by dengue for over two decades and the infection has
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now gained the status of an endemic disease. Dengue was
serologically confirmed in 1962 and the country experi-
enced its first outbreak during 1965–1966 [3, 4]. Since
then, several dengue outbreaks occurred and the worst
was reported in 2017 with 186,101 cases [5, 6]. Approx-
imately 25% of the dengue cases of the country were
reported from the Colombo Municipal Council (CMC)
area in every year [6]. CMC area is the most urbanized
area in the country [7]. Figure 1 illustrates the trend of
weekly dengue infection in CMC area from 2006 to 2017.
Though the first dengue vaccine was licensed in 2015,

vaccine performance is dependent on serostatus [8]. That
is, the efficacy of the vaccine is high and the vaccine is
safe for those who have had a previous dengue infection
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Fig. 1 Reported weekly dengue incidence from 2006 January to 2017 December, Colombo Municipal Council area (Sources: Epidemiology Unit,
Ministry of Health, Sri Lanka)

(seropositive). Moreover, the vaccine increases the risk
of developing severe dengue for seronegative vaccinees
when they experience a natural dengue infection approx-
imately 3 years after vaccination. Hence, still the main
prevention strategy is vector control [2]. For countries
with limited resources like Sri Lanka, it is necessary to
identify the dynamics of the dengue spread thoroughly to
determine more efficient control strategies. Accordingly,
understanding the trend of spread of the disease is vital in
prevention of dengue in Sri Lanka.
One of the key factor which affects the trend of spread of

dengue is per–capita vector density, which is the number
of adult mosquitoes per human. Considering a pragmatic
situation, calculating per capita–vector density is an infea-
sible task, in particular when there is no method avail-
able to distinguish infected vectors from the uninfected.
Having said that, there are certain measurable factors
on which the per–capita vector density depends. For an
example, air temperature effects water temperature at the
breeding place of mosquitoes and consequently speedup
the egg hatching process [9–11]. Moreover, vectors per-
form two–fold survival and produce more eggs under a
proper combination of temperature and rainfall [11]. Fur-
ther, a number of studies have been conducted to study the
effects of meteorological factors on vector density in dif-
ferent countries including China, Taiwan, Indonesia and
Brazil [12–17]. In addition, several previous works have
examined the influence of weather–related parameters
on dengue distribution in different regions of Sri Lanka
[7, 18–22]. Accordingly, reported dengue incidents show a
strong correlation with rainfall in Colombo with different
time lags [21, 22]. Moreover, the disease occurs every year
within or soon after monsoon seasons and the country is
influenced by two monsoon seasons, Northeast monsoon
season from December to February and Southwest mon-
soon season fromMay to September [23]. Further, average
temperature of Sri Lanka varies from 17◦C to 35◦C which

is ideal for dengue transmission. Motivated from all these,
it is an essential task to quantify the impact of climate
factors for spread of dengue disease in particular and
per–capita vector density in general.
In order to capture the transmission pattern of the

dengue virus which obviously correlates with the above–
mentioned climate factors, it is natural to look into the
well–known mathematical models of disease transmis-
sion based on the classical compartmental model. Most
prominent is the model known as the SIR (susceptible,
infected and recovered) compartmental model [24]. One
of the main challenges with the derived SIR model for
dengue transmission is estimating per–capita vector den-
sity. To overcome this problem, we design a simple data
driven quasi–equilibrium IRmodel to capture the dynam-
ical behavior of dengue transmission, which enables us to
determine realistic control strategies. Further, we compare
the dynamical behavior of infected host population in data
driven quasi–equilibrium model with classical SIR model.
Then we use reported dengue incidences and climate
data in Colombo to determine climate dependent param-
eters in data driven quasi–equilibrium model. Finally, we
discuss the accuracy of the model.
This paper is organized as follows. First we derive a two

dimensional quasi–equilibrium IR model by adopting the
classical SIR model as the basis in “Model development”
section. Then we develop the data–driven compartmen-
tal model in “Development of a data-driven mathemati-
cal model” section. In the same section, we analyze the
recorded climate data and reported dengue incidences.
Consequently, we derive some results on the periodic
pattern of dengue in urban Colombo. Then we present
numerical results and discuss the accuracy of themodel by
defining the interval map in “Numerical results” section.
Finally, we discuss our findings within the context of the
literature in “Discussion” and conclude our remarks in
“Conclusion” sections.
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Methodology
Model development
Classical SIRmodel
The classical SIR model was introduced by Kermack and
McKendrick [24], depending on the fact that any pop-
ulation can be divided into three compartments suscep-
tible, infected and recovered, each containing individuals
that are identical in terms of their status with respect to
the disease. The classical SIR model can be modified to
describe the interaction between susceptible human and
infected vector populations using system of non–linear
ordinary differential equations.
In the modified model, the host population (Nh) is

divided into three compartments, susceptible humans
(Sh), infected humans (Ih) and recovered humans (Rh).
Since vectors’ life cycle is 1–2 weeks and the infected
period ends with their death, the vector population (Nv) is
divided into two compartments, susceptible vectors (Sv)
and infected vectors (Iv). Moreover, the dynamics of the
vectors occur at a faster rate compared to the host dynam-
ics. Hence, we assume the host population (Nh) and repro-
duction and mortality rate of the host (μh) are constant.
Further, we assume the vectors reproduce at a constant
rate. Hence, the recruitment rate (D) and the mortality
rate of vectors (μv) are constant, while the total vector
population too remains constant. Now, a schematic repre-
sentation of the five compartmentmodel is shown in Fig. 2
and the dynamical behavior of these five compartments
can be explained as in system (1a) to (1e).

dSh
dt

= μh (Nh − Sh) − βh
Nh

IvSh, (1a)

dIh
dt

= βh
Nh

IvSh − (μh + γh)Ih, (1b)

dRh
dt

= γhIh − μhRh, (1c)

dSv
dt

= DNv − μvSv − βv
Nh

SvIh, (1d)

dIv
dt

= βv
Nh

SvIh − μvIv. (1e)

with

Sh + Ih + Rh = Nh, (2a)
Sv + Iv = Nv. (2b)

The model assume all new–born are susceptible for
both populations and populations are removed from each
compartment due to natural death. The main assumption
of this model is, dengue virus can be transmitted to sus-
ceptible human through infected vectors and transmitted
to susceptible vectors through infected humans only. New
infections occur as a result of contact between infected
and susceptible individuals. Once the susceptible individ-
uals become infected with the disease, they move to the
relevant infected compartment. Once the infected hosts
recovered from the disease, they move to the recovered
compartment. Parameters βv, βh and γh denote the trans-

Fig. 2 Schematic of the five compartments dengue transmission model. The arrows represent transitions between epidemiological classes, whereas
the lines represent interactions between humans and vectors
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mission rate for host to vector, transmission rate for vector
to host and host recovery rate, respectively.
We normalize the SIR model by taking S = Sh

Nh
, I = Ih

Nh
,

R = Rh
Nh

,U = Sv
Nv

and V = Iv
Nv
. Then S+ I +R = 1 for host

and U + V = 1 for vector.
dS
dt

= μh(1 − S) − βh
Nv
Nh

VS, (3a)

dI
dt

= βh
Nv
Nh

VS − (μh + γh)I, (3b)

dR
dt

= γhI − μhR, (3c)

dU
dt

= D
Nv

− μvU − βvUI, (3d)

dV
dt

= βvUI − μvV . (3e)

Ratio Nv
Nh

is the per–capita vector density and denoted by
n. Since S = 1 − I − R and V = 1 − U , the system can be
reduced to a three dimensional system:

dI
dt

= βhnV (1 − I − R) − (μh + γh)I, (4a)

dR
dt

= γhI − μhR, (4b)

dV
dt

= βv(1 − V )I − μvV . (4c)

Recall the estimation of infected vector population is
practically an infeasible task. Moreover, simulation of
three dimensional system in Eq. (4) with certain assump-
tions provides infected vector population which cannot be
validated. Therefore, three dimensional system further be
simplified by considering quasi–equilibrium for infected
vector population.

Quasi–equilibrium IRmodel
Since the time–scale of the vector population is much
faster than the host [25], it is the vector dynamics which
achieve the first equilibrium. Hence, we consider the

infected vector population to be in its quasi–equilibrium
[26]. Let β = βv

μv
. Then the quasi–equilibrium values for

vector population be given by U∗ and V ∗.

U∗ = 1
βI + 1

, V ∗ = βI
βI + 1

. (5)

Substituting the quasi–equilibrium value V ∗ for the
infected vectors into Eq. (4a), it is possible to obtain the
reduced two–dimensional quasi–equilibrium IR model as
in Eq. (6).

dI
dt

= βhn
βI

βI + 1
(1 − I − R) − (μh + γh)I, (6a)

dR
dt

= γhI − μhR. (6b)

Before using this two–dimensional dynamical quasi–
equilibrium IR model, it is important to compare and
verify there is no significant difference between two mod-
els in both qualitative and quantitative point of view under
the same theoretical framework.

Comparison of quasi–equilibrium IR model and classical
SIR model
Comparison by simulation
In order to illustrate the dynamical behavior of both mod-
els described in system (4) and (6), numerical simulation
was performed using MATLAB ode45. For this study we
assume that parameters μh, μv and D are constant for
given time period. Sensitivity analysis with respect to
parameters βh, βv and γ are carried out numerically to
determine the difference of the dynamical behavior of
the infected host population in the quasi–equilibrium IR
model with the reduced three dimensional SIR system.
Figure 3 exhibits the comparison of the dynamical behav-
ior of the infected host population in both models for
different βh values.
From Fig. 3, it can be observed that there is no signifi-

cant difference between qualitative behaviour of infected

Fig. 3 Comparison of the dynamical behaviour of the infected host population for a βh = 0.05, b βh = 0.1, c βh = 0.15, d βh = 0.2, e βh = 0.25, f
βh = 0.3, g βh = 0.35 and h βh = 0.4. (I is Infected vector population, C is classical SIR model and Q is Quasi–equilibrium model)
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host population. Moreover, we found that the difference
between infected host populations is less than 5 per 1000
inhabitants. In other words, it illustrates that there is no
significant difference between qualitative and quantitative
behavior of infected host population under both models.

Comparison by stability
Now, we compare the equilibrium points and the stabil-
ity statues of both models. First, we consider the reduced
classical SIR model represented by system (4). The sys-
tem admits two equilibrium points and for the simplicity
we use R0 = βhβn

μh+γh
, P = γh

μh
, Q = βh

μh
and M = μh+γh

μh
.

We assume that R0, P and M are constants. Here R0 is
the basic reproduction number and R0 representing how
many secondary infectious result from the introduction
of one infected individual into a susceptible population.
Trivial equilibrium of the system is given by (I∗,R∗,V ∗) =
(0, 0, 0) while non trivial equilibrium is given by I∗, R∗
and V ∗.

I∗ = R0 − 1
β(1 + Qn)

, R∗ = P(R0 − 1)
β(1 + Qn)

, V ∗ = R0 − 1
R0 + Qn

.

(7)

Let us show that if the basic reproduction number R0
is less than unity, the disease free equilibrium is locally
asymptotically stable. In order to analyze the stability of
the equilibrium states, we look at the Jacobian matrix
and its eigenvalues. The Jacobian at trivial equilibrium is
given by,

J(0,0,0) =
⎛
⎝

−(μh + γh) 0 βhn
γh −μh 0
βv 0 −μv

⎞
⎠ . (8)

Then the characteristic polynomial of the J(0,0,0) is,

X1(λ) = (λ + μh)
(
λ2 + λ(μh + μv + γh) + μv(μh + γh)(1 − R0)

)
.

(9)

From Eq. (9), it can be observed that one eigen value of
J(0,0,0) is negative. In order to investigate the local stability
of the equilibrium state we consider the Routh–Hurwitz
criterion for a second degree polynomial [27]. According
to the Routh–Hurwitz criterion, polynomial X1 is locally
asymptotically stable, if (μh + μv + γh) > 0 and μv(μh +
γh)(1 − R0) > 0. Clearly, μv(μh + γh)(1 − R0) > 0 if
R0 < 1. Hence, the trivial equilibrium (0, 0, 0) is locally
asymptotically stable whenever R0 < 1.
Now consider the endemic equilibrium (I∗,R∗,V ∗). The

Jacobian matrix at (I∗,R∗,V ∗) is given by,

J(I∗ ,R∗ ,V ∗) =
⎛
⎜⎝

− (βhv∗n + μh + γh) −βhv∗n βhn(1 − I∗ − R∗)
γh −μh 0

βv(1 − v∗) 0 −(βvI∗ + μv)

⎞
⎟⎠ .

(10)

Then the characteristic polynomial corresponding to
J(I∗,R∗,V ∗) is given by,

X(λ) = λ3 + a1λ2 + a2λ + a3, (11)

where,

a1 = (μh+ γh)(R0 + β + P)

(β + P + 1)
+ μh+ μv+ βv(R0 − 1)

(β + R0 + R0P)
,

(12a)

a2 = (μh + γh)

(β + P + 1)

(
μh(R0 + β + P) + (R0 − 1)γh

+βv(R0 + β + P)(R0 − 1)
(β + R0 + R0P)

)
− μhβvP

+ μhβv(R0 − 1)
(β + R0 + R0P)

, (12b)

a3 = (μh + γh)

(β + P + 1)

(
μhβv(R0 + β + P)(R0 − 1)

(β + R0 + R0P

+(R0 + β + P)μv

)
+ (μh + γh)

(β + P + 1)

(
γhβv(R0 − 1)2

(β + R0 + R0P)

+μv(R0 − 1) − μhβv(β + P + 1)
)
. (12c)

According to Routh–Hurwitz criterion for third order
polynomial, the equilibrium point (I∗,R∗,V ∗) is locally
asymptotically stable if the polynomial satisfies the condi-
tion given in (13).

a1 > 0, a2 > 0 and a1a2 > a3. (13)

From Eqs. (12a) and (12b), it can be observed that a1 >

0 and a2 > 0 whenever R0 > 1. Furthermore, a1a2 > a3
if R0 > 1. Therefore, the equilibrium (I∗,R∗,V ∗) locally
asymptotically stable if R0 > 1.
Now let us consider the reduced quasi–equilibrium IR

model in (6). The system admits two equilibrium points.
Virus free state of the system is given by

(
Î, R̂

)
= (0, 0)

while non trivial equilibrium is given by
(
Î, R̂

)
where,

Î = R0 − 1
β + R0M

, R̂ = P(R0 − 1)
β + R0M

. (14)

Let us show if the basic reproduction number (R0) less
than unity, the disease–free equilibrium is locally asymp-
totically stable and if R0 > 1, the endemic equilibrium
is locally asymptotically stable. The Jacobian at trivial
equilibrium is given by,

J(0,0) =
(

βhβn − (μh + γh) 0
γh −μh

)
. (15)

Notice that eigenvalues of J(0,0) are (R0 − 1)(μh + γh)
and−μh. If R0 < 1, then both eigenvalues are negative. So
the trivial equilibrium state is stable for R0 < 1. If R0 > 1,
(R0 − 1)(μh + γh) is positive. Then J(0,0) has one positive
and one negative eigenvalue. So the system is unstable for
R0 > 1.
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Now consider the Jacobian at non–trivial
(
Î, R̂

)
given

by,

J(Î,R̂
) =

(
−βhn(R0−1)(R0+β)

R0(R0+Mn)
−βhn(R0−1)

(R0+Mn)

γh −μh

)
. (16)

Then the characteristic polynomial of J(Î,R̂
) is,

Y (λ) = λ2 + b1λ + b2, (17)

where, b1 = 1 + R0M(R0−1)
β(R0+Pn)+ (R0−1)M

(Pn+1)
and b2 = M(R0−1)

(R0+Pn)
.

Due to the Routh–Hurwitz criterion for a second degree
polynomial, the polynomial Y is locally asymptotically sta-
ble if b1 > 0 and b2 > 0. Therefore,

(
Î, R̂

)
is locally

asymptotically stable if and only if R0 > 1.
It is important to note that both models have the same

basic reproduction number (R0). However, the dimen-
sion of the quasi–equilibrium IR model is less than the
reduced SIR compartmental model. Thus, computational
cost can be reduced by using quasi–equilibrium IRmodel.
Moreover, parameter estimation can be done efficiently
using the derived simple model. Hence, for this study we
use quasi–equilibrium IR model instead of reduced SIR
compartmental model.

Development of a data-drivenmathematical model
As mentioned in the introduction, per–capita vector den-
sity (n) depends upon climate factors. Since climate fac-
tors change with time, n is a time dependent parameter.
Hence, we have to analyze reported dengue data and
meteorological data in CMC area to define a function for
n to capture the seasonal effect of the disease.

Data analysis
In literature many studies mentioned that temperature
and precipitation cause prominent effects on periodic pat-
tern of dengue dynamics [3, 11, 12, 28, 29]. Hence, we
use rainfall data, maximum temperature and minimum
temperature to capture the periodic pattern of dengue
dynamics. Notice that dengue incidences and meteoro-
logical data have been recorded in time domain, and, for
the pattern identification, we need to extract frequency
domain features. Hence, fast Fourier transformations has
been used to convert time domain data into frequency
domain.
To determine lag times, the cross correlation between

dengue incidences and climate data are computed. For
that purpose we use Pearson cross–correlation formula.
For our study we have considered weekly reported

dengue incidents gained from Epidemiology unit, Depart-
ment of Health, Sri Lanka, weekly rainfall, maximum
temperature and minimum temperature data from Mete-
orological Department, Sri Lanka from 2009 to 2015 for
CMC area.

Fourier analysis
Fourier analysis has been used in many fields for pat-
tern identification [30]. Fast Fourier transform extracts
the frequency information of a time series. The discrete
Fast Fourier transform for the time series {xn} represented
by Eq. (18) is obtained by decomposing a sequence of
values into components of different frequencies. In our
context, frequencies are reciprocal of number of weeks.
In this section we discuss the pattern of dengue data,
rainfall data, maximum temperature and minimum tem-
perature data reported on CMC area from 2009 to 2015
using Fourier spectrum A(k) at kth frequency,

A(k) =
N−1∑
n=0

exp
(

−i
2π
N

kn
)
xn, (18)

where, N is number of data points in time series {xn} .
For the purpose of comparison we compute the relative
Fourier transform by dividing all the spectrum by highest
Fourier amplitude in the spectrum. In order to examine
the periodic pattern of the reported dengue incidences,
relative Fourier spectrum for CMC weekly dengue data
from 2009 to 2015 has been computed, which is depicted
in Fig. 4.
According to Fig. 4, reported data from urban Colombo

exhibit a 26–week periodic pattern. In other words, it
illustrates that dengue cases increase in every six and half
months. In addition, a Fourier amplitude related to two
and half year periodic pattern can be observed with 0.7
relative amplitude. It should be noted that dengue out-
break has a 2–3 year cycle [3] and the serotype shift may
have contributed the cycling of outbreaks. Then we com-
puted the relative Fourier spectrum for rainfall data for the
same time period, which is depicted in Fig. 5.
From Fig. 5, it can be noticed that rainfall data from

urban Colombo show a 26–week periodic pattern. As we
mentioned in the introduction, Colombo is influenced by
two monsoon seasons and there are two friendly climate
seasons for mosquitoes within a year. Thus, the 26–week
period of rainfall underscores its correlation with dengue
incidences.
Similarly, we examined periodic pattern of maximum

temperature data and minimum temperature from 2009
to 2015, which are depicted in Figs. 6 and 7.
According to Figs. 6 and 7 it can be observed that, tem-

perature data exhibit a 52–week periodic pattern. In other
words, results indicate that maximum temperature and
minimum temperature in urban Colombo have annual
pattern. In addition, it can be observed from Fig. 6, a
Fourier amplitude related to 26–week with 0.5 relative
amplitude. It should be noted that temperature differs
depends on rainfall [31] and the rainfall pattern may have
contributed the maximum temperature pattern.



Erandi et al. Theoretical Biology andMedical Modelling            (2021) 18:3 Page 7 of 19

Fig. 4 Relative Fourier spectrum value of reported dengue incidence in CMC area

Fig. 5 Relative Fourier spectrum value of rainfall data in CMC area

Fig. 6 Relative Fourier spectrum value of maximum temperature in CMC area
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Fig. 7 Relative Fourier spectrum value of minimum temperature in CMC area

After the pattern analysis, our next task is to deter-
mine the time lags between dengue incidence and climate
factors.

Correlation analysis
Notice that Aedesmosquitoes proceed life cycle from eggs
to adult through larvae and pupae and the life cycle takes
approximately 1–2 weeks or longer depending on tem-
perature, availability of water and nutrients [28]. Another
interesting fact about dengue transmission is that the
dengue mosquito eggs can withstand without desiccating
for several months until it receives favorable conditions
[32]. Also for infected humans, the incubation period
ranges from 3 to 14 days. Those factors motivated and
thrived us to measure the time delay of dengue infection
with rainfall.
Moreover,Aedesmosquitoes emerge from eggs to adults

in a shorter period at higher temperature and the mortal-
ity rates of adult mosquitoes increase with increasing tem-
perature above 30◦C [29]. Furthermore, infected human
experience a shorter incubation period for dengue viruses
with high temperature [28]. Those factors motivated us

to calculate the time delay of reported dengue incidences
with maximum temperature.
In order to calculate the time delay, the Pearson cor-

relation formula has been used. The Pearson correlation
formula for two time series Z1 and Z2 can be represented
by (19).

ρ(Z1,Z2) = cov(Z1,Z2)

σ (Z1)σ (Z2)
. (19)

Here, cov(Z1,Z2) denotes the covariance of the variables
Z1 and Z2. Standard deviation of Z1 and Z2 denoted by
σ(Z1) and σ(Z2).
The correlation measure between dengue infection and

rainfall was plotted with time lags from 0 to 20 weeks.
Here we assume that the disease occurs within or after
rainy seasons. Figure 8 represents the correlation mea-
sures betweenweekly rainfall data and weekly dengue data
for the period of 2009 to 2015 in CMC area with time
delay.
By Fig. 8, it can be observed that the highest correlation

occurs with a 10–week delay. Since the highest correlation
value is less than 0.5, correlation measures against time

Fig. 8 Pearson’s cross–correlation of dengue data with rainfall data in CMC area
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lags from 0 to 20 weeks were plotted for each year from
2009 to 2015 to calculate the annual time lag.
According to correlation values between dengue and

precipitation, it can be observed by Fig. 9 that precipita-
tion has a delayed effect of 8 to 16 weeks on dengue. This
pattern is common for each year except year 2012, which
implies that most of the dengue cases reported with 8 to
16 weeks delay with rainfall. In year 2012, the correlation
between rainfall and dengue incidences shows a delayed
effect of 16 to 19 weeks.

Rainfall pattern in CMC area and cutoff values for rainfall
data
As mentioned in the introduction rainfall pattern in Sri
Lanka is governed by its tropical location and the mon-
soon seasons and consequently has a strong seasonal
variation in the rainfall pattern. CMC area belongs to the
wet zone with 2500mm average annual rainfall and 75% of
average rainfall occurs during the two monsoon seasons
[33]. According to the statistics for Colombo from 2009–
2015, the number of annual rainy days ranges from 133
to 208 days. That is, precipitation occurs on more than
36% of the total days in a year. Hence, rainfall pattern in
Colombo provides an ideal environment for vectors [11].

Although monsoon seasons provide ample breeding
habitats for Aedes mosquitoes, heavy rainfall can poten-
tially flush away larvae or pupae or the immature stage
of mosquitoes [34, 35]. In addition, heavy rainfall can
increase the mortality rate of adult mosquitoes[11].
According to [33], rainfall pattern in urban Colombo
has positive association with extreme rainfall events and
identified as one of the flood risk area in Sri Lanka.
Hence, decrease the spread of dengue transmission in the
period with extreme rainfall. Moreover, El Niño Southern
Oscillation (ENSO) influences the seasonal variability of
rainfall, specially in the tropical zone of the world [36].
Sri Lanka experience an excess of seasonal rainfall dur-
ing El Nino years [36] and consequently, influence the
vector populations. Therefore, finding the weekly rainfall
value, which can make favorable environment for dengue
is important for decision makers to predict the number
of dengue incidences in upcoming monsoon seasons. To
calculate the weekly rainfall value, which gives highest
correlation value with dengue data, we usedminimum and
maximum cutoff values on rainfall data.
For each year of period from 2009 to 2015, we evalu-

ated highest correlation value and time lag by increasing
reported minimum rainfall value and decreasing max-

Fig. 9 Pearson’s cross–correlation of dengue data with rainfall data in CMC area for a 2009 b 2010 c 2011 d 2012 e 2013 f 2014 and g 2015
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Fig. 10 Pearson’s cross–correlation of dengue data with rainfall data within cutoff values in CMC area for a 2009 b 2010 c 2011 d 2012 e 2013 f 2014
and g 2015

imum rainfall value. Then we found the best match
minimum and maximum cutoff values are 14mm and
454mm weekly rainfall with 10 weeks delay. Moreover, we
observed that more than 65% of data values fall within the
interval of 44mm to 454mm. However, the cutoff values
for total time period gives 0.24 for the highest correlation
value. Therefore, correlation between dengue and rainfall
data has been calculated for each year separately using
the rainfall values within minimum and maximum cutoff

values. Figure 10 represents the correlation of dengue data
with rainfall data within cutoff values. It demonstrates that
weekly rainfall value between 14mm to 454mm influences
the risks of dengue cases at lag times 8–weeks up to 12–
weeks with higher relative risks. This pattern is common
for every year between 2009 to 2015 except 2012.
In addition, Fig. 11 shows the distribution of dengue

incidence and rainfall data with 10–weeks lag time in
Colombo Municipal Council area.

Fig. 11 Scatter plot of dengue data and rainfall data with 10–weeks time delay in CMC area
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Fig. 12 Pearson’s cross–correlation of dengue data with maximum temperature data in CMC area

Now consider the time delay of reported dengue inci-
dences with maximum temperature. It can be observed
from Fig. 12 that the highest correlation occurs with a
16–week delay. Figure 13 represents the distribution of
dengue data and maximum temperature data with 16–
week delay. Since the highest correlation value is less than
0.2, correlation measures against time lags from 0 to 20
weeks were plotted for each year from 2009 to 2015 to
calculate the annual time lag.
From Fig. 14, it can be observed that there is no com-

mon correlation pattern or lag period. Only for year 2009
and 2010 highest correlation value between maximum
temperature and dengue is grater than 0.5. Since ENSO
influenced on local temperature and precipitation world-
wide, we consider the ENSO years and intensities [37]
to clarify the effect on correlation between dengue and
maximum temperature. According to ENSO years and
intensities [37] year 2009, 2010 had moderate El–nino
effects and during the event temperature was increased.
’This event might have caused mosquitoes to emerge
over a shorter period of time, and the virus to have a

shorter (extrinsic) incubation period. Further, it can be
seen a negative correlation till 16th weeks lag time in
year 2015. Year 2015 had strong El–nino effect and it
might have caused to increase the mortality rates of adult
mosquitoes.
Similarly, we analyzed time delay of dengue incidences

with minimum temperature. From Fig. 15, it can be
observed that the highest correlation occurs with a 13–
week delay. In addition, from Fig. 16, it can be observed
the distribution of dengue data and minimum tempera-
ture data with 13–weeks delay. Since the highest corre-
lation value is less than 0.1, correlation measures against
time lags from 0 to 20 weeks were plotted for each year
from 2009 to 2015 to calculate the annual time lag.
Figure 17 represents the correlation values between

minimum temperature and dengue incidences against
time lag. In years 2009 and 2010, correlation between
dengue incidences and minimum temperature is positive
until 10 weeks time lag. In year 2015, correlation between
minimum temperature and dengue reported cases begin
to increase with 10 weeks time delay.

Fig. 13 Scatter plot of maximum temperature data with dengue data with 16–weeks time delay in CMC area
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Fig. 14 Pearson’s cross–correlation of dengue data with maximum temperature data in CMC area for a 2009 b 2010 c 2011 d 2012 e 2013 f 2014
and g 2015

Parameters estimation model
From data analysis results, it can be observed that sea-
sonality pattern and time delay of the disease depend
upon climate factors. Hence, rainfall data, maximum
temperature data and minimum temperature data with
time delay can be used to capture the periodic pat-
tern and magnitude of per–capita vector density. More-
over, the infected vector density depends on infected

human population. Hence the function for n can be
defined as.

n(t) = a1d(t − l1) + a2pr(t − l2) + a3maxT(t − l3) + a4minT(t − l4),

(20)

where d, pr, maxT and minT denote reported dengue
incidences, rainfall data, maximum temperature and

Fig. 15 Pearson’s cross–correlation of dengue data with minimum temperature data in CMC area
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Fig. 16 Scatter plot of minimum temperature data with dengue data with 13–weeks time delay in CMC area

minimum temperature data at time t. In our study t cor-
responds to the time in weeks. Therefore, we include time
lag l1, l2, l3 and l4 to reported dengue incidences, rain-
fall, maximum temperature and minimum temperature
variables respectively. a1, a2, a3 and a4 are coefficients
constants. Based on the pattern and correlation analysis,
we modified our formula in Eq. (20) accordingly. We
used rainfall data with 10–weeks time delay, maximum
temperature data with 16–weeks time delay, minimum

temperature data with 13–weeks time delay and reported
dengue data with 4–weeks time delay to define a func-
tion for per–capita vector density. Moreover, we used
relative Fourier spectrum results to determine constant
coefficients a1, a2, a3 and a4. Equation 21 represents the
modified formulation for per–capita vector density.

n(t)= a1d(t − 4)+ a2pr(t − 10)+ a3maxT(t − 16)+ a4minT(t − 13).

(21)

Fig. 17 Correlation of dengue data with minimum temperature data in CMC area for a 2009 b 2010 c 2011 d 2012 e 2013 f 2014 and g 2015
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Table 1 Descriptions and values of all parameters used in the
model simulation

Parameter Definition Value Reference

βh transmission rate for
vector to host

0.75 [39]

βv transmission rate for host
to vector

0.375 [39]

μh reproduction and
mortality rate of host

1
75 years [40]

μv reproduction and
mortality rate of vector

1
4 days [39]

γh recovery rate of host 1
14 days [39]

Data driven model
Now the data driven quasi–equilibrium IR model can be
read as,

dI
dt

=βhn(t)
βI

βI + 1
(1 − I − R) − (μh + γh)I, (22a)

dR
dt

=γhI − μhR, (22b)

with
n(t) =a1d(t − 4) + a2r(t − 10) + a3maxT(t − 16)

+ a4minT(t − 13). (22c)

Notice that the data driven model in Eq. (22) is
two dimensional model with real time data dependent
parameter n(t). The model can be used to identify the
dynamics of dengue in 4 weeks advance using real time
data.

Model validation
Real time data driven models should be able to predict the
dynamics of the disease with sufficient time duration to
take control measurements. For an example, WHO rec-
ommended to start adulticidal activities, specially space

spraying treatments to control the disease transmission
when first few dengue cases are detected or an outbreak
is forecasted [2, 38]. The adulticidal treatments are valid
for approximately two weeks period [38] and if adulticidal
treatments are started early in an epidemic with suffi-
ciently large scale then the intensity of transmission is
reduced [2]. Hence, according to control point of view,
predictive strength in an interval of two weeks is suf-
ficient. Therefore, to measure the accuracy of the data
driven quasi–equilibrium IR model in the interval frame-
work, we consider the interval of [ t − 1, t + 1] and define
an error function er(t) as,

er(t)= min
{
|I(t) − d

(
t′
) |100, 000

Nh
|t′ ∈ {t − 1, t, t + 1}

}
.

(23)

Here, I(t) and d(t) denote predicted data and actual data
at time t and total population respectively. Notice that,
er(t) denotes relative error at time t and based on the rela-
tive error values, we define level of accuracy of the model
Ac(t) as,

Ac(t) =

⎧⎪⎪⎨
⎪⎪⎩

highly significant if er(t) < 5,
significant if 5 ≤ er(t) < 10,
average if 10 ≤ er(t) < 15,
poor if 15 ≤ er(t).

(24)

Numerical results
In order to simulate the model (22) numerically, we use
differential equation solver ode45 in MATLAB. Table 1
represents the parameter values use in the model sim-
ulation. The function ode45 implements a Runge–Kutta
method. Figure 18 represents comparison between sim-
ulation results and reported dengue data. Analyzing the
results, we can observe that simulated results captures the
seasonality of the disease.

Fig. 18 Comparison of actual dengue incidence with predicted number of cases from February, 2009 to December, 2015
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Fig. 19 Accuracy level boundaries of the model a for year 2009 and 2010 b for year 2011 and 2012 and c for year 2013 to 2015 and predicted data
from February,2009 to December, 2015. Notice that, 28, 56, 83 and 111 equivalent to 5, 10, 15 and 20 per 100,000 inhabitants (A is reported dengue
data)

Recall that the model depends on weekly reported
dengue incidences, rainfall data, maximum temperature
and minimum temperature with 4, 10, 16 and 13 weeks
time lags respectively. Hence the model can be used to
forecast of dengue incidences upto 4 week ahead using
real time data.
Then we investigate the level of accuracy of our model

using error function in Eq. (23) and accuracy levels in
Eq. (24). Figure 19 represents the accuracy level of the
model from year 2009 to 2015.
From Fig. 19, it can be observed that most of actual

dengue incidences data points lie within highly significant
or significant accuracy level boundaries. Furthermore, for
each year of period from 2009 to 2015, we analyzed the
accuracy level of the model. The results shown graphically
in Fig. 20 and numerically in Table 2.
It is observed from the analysis that the level of accuracy

of the model is 77%, 88%, 71%, 77%, 91%, 58% and 79%
significant from year 2009 to 2015 respectively.

Discussion
Developed data driven compartmental model predicts the
dengue outbreak. The behaviour of dengue transmission
significantly depends on many external variables includ-
ing climatic factors. In this study we started with the
classical compartmental model and reduced the model in
to a quasi–equilibrium IR model. Then we compared the
dynamical behaviour and the stability of the developed
model with the classical model and identified that there
is no significant difference between both models. Several
previous works focused to developed theoretical models
to determine the dynamic behaviour of dengue transmis-
sion [16, 41, 42]. However, the theoretical model may not
provide the realistic results when the nature of the disease
is highly diverse. Therefore, data driven compartmental
models offer a promising direction, especially with the
variables with potential impact on dengue transmission.
To capture the realistic nature of the disease, we devel-

oped the data driven quasi–equilibrium IR model. In the

Fig. 20 Annual results for the accuracy level of the model from year 2009 to 2015
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Table 2 Annual results for the accuracy level of the model

Year Highly Significant (%) Significant (%) Average (%)

2009 62 77 95

2010 70 88 100

2011 60 71 83

2012 44 77 84

2013 85 91 94

2014 52 58 77

2015 67 79 97

literature, a number of studies have been conducted to
determine the effects of climate factors on the trans-
mission of dengue in the context of mathematical and
statistical models [12, 43–45]. Most of them have been
concluded that the rainfall, temperature and humidity are
the most important variables with potential impact on
dengue transmission. However, the effect of climate fac-
tors on dengue transmission depends on regional location.
Therefore, we can not use the results in these studies
directly in ourmodel and it is needed to develop a regional
specified data driven model to predict dengue outbreak.
In a tropical country like Sri Lanka has the ideal tem-

perature and relative humidity throughout the year [46]
which create favorable environment to propagate the
dengue transmission. As stated previously, the seasonal
fluctuations of the disease in Sri Lanka have been gov-
erned by the precipitation data. From Fig. 21 it can
be observed that the correlation between precipitation
and relative humidity is higher than 0.5 and there is no
delay effect between rainfall and relative humidity. That is
humidity and rainfall move together and hence the effect
of humidity on dengue transmission is captured by the
rainfall data. The distribution of relative humidity data
and rainfall data is illustrated in Fig. 22. In addition, the

availability of temperature data is higher than the avail-
ability of relative humidity data. Therefore, we selected the
rainfall data and temperature data as the climate factors
for our model.
Based on reported dengue incidences, rainfall data and

temperature data, we analyzed periodic and seasonal pat-
tern of dengue infection for urban Colombo, Sri Lanka.
Fourier spectrum over empirical data and precipitation
data of CMC area have been indicated 26 weeks peri-
odic pattern which differ from the situation in the city of
Semarang (dengue data in the city of Semarang (Indone-
sia) shows annual periodic pattern [12]). The results
demonstrated the seasonal pattern of dengue transmis-
sion depends on regional locations.
Moreover, we analyzed the correlation of the climate

data using Pearson correlation coefficient. The result illus-
trated that the rainfall data, maximum temperature and
minimum temperature data in CMC area have maximum
correlation with dengue data with 10, 16 and 13 weeks
lag respectively. Comparing the results with other studies
[44, 47, 48], it can be observed that the predominant effect
of the climate data also depends on the regional location.
For an example, highest correlation between minimum
temperature data and dengue incidence in Guadeloupe
(French West Indies) occurs with a 5–week delay which
differ from the situation in CMC area in Sri Lanka.
Comparing our results with the findings from similar

studies, it can be observed that our results are compatible
with the vector biology and viral transmission cycle. Nev-
ertheless, the influence of climate factors on the transmis-
sion of dengue depends on the regional location. Hence,
our results implied that all the findings related to regional
based climate factors are unique and local climate factors
have a significant effect on dengue dynamics in CMC area.
However, it is possible to modify the developed model to
forecast the dengue outbreaks in given region by changing
the real time data dependent parameter n(t).

Fig. 21 Pearson’s cross–correlation of relative humidity data with rainfall data in CMC area
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Fig. 22 Scatter plot of relative humidity data with rainfall data with no time delay in CMC area

During the modeling process of analyzing and forecast-
ing tool, several limitation problems emerged. One of the
main limitations for such model is lack of data sources.
For an example, in the countries with relatively smaller
geographical areas and commendable public transport
services, the disease transmission dynamics is governed
by human mobility. Hence, the forecasting model with-
out human mobility does not have full capacity to capture
the future outbreaks. However, the data availability is
limited for the factors like human mobility. It would be
purposeful to moderate the developed model to a spa-
tial model by incorporating human mobility in further
research [45, 49, 50].
Further, to analyze the realistic setting, factors like

human behavior and awareness have to be added to the
developed IR model. For instance, impact of the climate
variability over disease transmission may be controlled by
taking prior action such as cleaning the environment and
destroying the vector breading sites. However, one of the
major hindrance for such model is there is no proper way
to measure the human behavior or socio–economic activ-
ities which affect the transmission of dengue. Changing
the data dependent parameter including vector control
policies will help to increase the accuracy of the model.

Conclusion
Dengue is a disease with exponential growth. Since
dengue transmission is being affected by climate changes,
identifying the periodic pattern and correlation with cli-
mate conditions is vital to control the spreading of the
disease. First, we considered the reduced classical SIR
model and derived quasi–equilibrium IR model. Further-
more, we identified that there is no significant difference
of qualitative and quantitative behaviour between reduced
SIRmodel and quasi–equilibrium IRmodel. Then the data
driven quasi–equilibrium IRmodel has been developed to
capture the climate effect on dengue transmission.

Based on reported dengue incidences and climate data,
we analyzed periodic and seasonal pattern of dengue
infection for urban Colombo, Sri Lanka. Fourier spec-
trum over empirical data and precipitation data of CMC
area have been indicated 26 weeks periodic pattern and it
can be concluded periodic pattern depends on monsoon
seasons. However, another Fourier amplitude related two
and half year has been appeared. It would be worthwhile
to examine the correlation between serotype shift and
periodic pattern of dengue incidences in further research.
The correlation between dengue and precipitation has

been analyzed and introduced the minimum and the max-
imum cutoff values to precipitation data. As a result we
can conclude that if the weekly rainfall value for CMC area
is in between 14mm to 454mm then dengue incidences
have correlation with rainfall with 8-14 weeks lag. The
correlation between dengue and temperature indicated
the influence of ENSO.
Relating to analyzed data, the data driven quasi–

equilibrium IR model has been moderated to predict
weekly dengue incidences upto 4 weeks. Finally, the model
has been validated and the model can be used to pre-
dict more than 75% accurate data. We are looking forward
to extend this model using human mobility in further
research.
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