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Abstract

Background: To employ the benchmark dose (BMD) method in toxicological risk assessment, it is critical to
understand how the BMD lower bound for reference dose calculation is selected following statistical fitting
procedures of multiple mathematical models. The purpose of this study was to compare the performances of
various combinations of model exclusion and selection criteria for quantal response data.

Methods: Simulation-based evaluation of model exclusion and selection processes was conducted by comparing
validity, reliability, and other model performance parameters. Three different empirical datasets for different chemical
substances were analyzed for the assessment, each having different characteristics of the dose-response pattern (i.e.
datasets with rich information in high or low response rates, or approximately linear dose-response patterns).

Results: The best performing criteria of model exclusion and selection were different across the different datasets.
Model averaging over the three models with the lowest three AIC (Akaike information criteria) values (MA-3) did not
produce the worst performance, and MA-3 without model exclusion produced the best results among the model
averaging. Model exclusion including the use of the Kolmogorov-Smirnov test in advance of model selection did not
necessarily improve the validity and reliability of the models.

Conclusions: If a uniform methodological suggestion for the guideline is required to choose the best performing model
for exclusion and selection, our results indicate that using MA-3 is the recommended option whenever applicable.
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Background
To determine the reference dose of chemical substances,
including food additives and agricultural chemicals, that
cause the presence or absence of a harmful event (i.e.
dichotomous outcome) so that the acceptable daily
intake can be specified, a number of scientific approaches

using dose-response experimental data have been used. A
popular toxicological method uses the responses to low
dose exposures to confirm the absence of an outcome
event. The highest dose that does not cause an event is
referred to as the no observable adverse effect level
(NOAEL), below which no outcome is expected. Multiply-
ing this with a specified uncertainty factor that addresses
uncertainties, including the biological species barrier
between experimental animals and humans [1], the point
of departure has been determined in practice. However,
the determination of NOAEL depends on low dose data
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alone; so, if the number of experimental animals per dose
is limited, this imposes a serious statistical limitation that
involves non-negligible sampling errors [2, 3]. An alterna-
tive method, the benchmark dose (BMD) method, was
initially formalized by Crump [4]. The BMD method de-
termines the threshold dose by fitting various statistical
models to the dose-response curve, which addresses the
problems surrounding the use of NOAEL because it can
account for the response data across different doses and
can help in objectively calculating the point of departure.
The BMD method can potentially be extremely useful in
many scientific disciplines [5, 6]. The benchmark dose
lower bound (BMDL), which is the lower (one-sided) limit
of the 95% confidence interval of BMD, can yield a point
of departure that is comparable to that based on NOAEL
(Fig. 1) [7, 8].
To employ the BMD method, it is critical to select the

best performing BMDL by following the statistical fitting
procedures of multiple mathematical models. Parameter-
ized models only characterize reality, so multiple models
(usually nine or more) are commonly fitted to the same
experimental dataset. As a result, many BMDL values
can act as the candidate of preferred reference dose.
However, the reference dose should be the best perform-
ing BMDL and it must be selected, for example, as the
one that gives the best fitting results [9]. There are two
additional issues in selecting or determining the BMDL.
First, the BMD method uses a specified percentile point
(e.g. 10% of the benchmark response, abbreviated as
BMD10) as the threshold for the reference value, but the
10% percentile point is never strictly objective [10–12].
This is similar to using a p-value of 5% in many hypoth-
esis tests or other arbitrarily chosen threshold values.
Second, some fitted models (e.g. the Weibull model)
yield different parameter estimates when restrictions to
the range of parameters are imposed in advance of the

inference procedure [9]. Quantitative guides for such
restrictions can be complicated for non-expert users.
Although several technical problems exist, we believe

that the biggest obstacle to the wide application of the
BMD method in various governmental settings is the
lack of uniform guidelines that specify the steps required
to scrutinize fitting results and identify a single BMDL
value for determining the acceptable daily intake.
Objective guidelines are required to determine which
candidate models should be included or excluded in the
final evaluation report. Model exclusion has been
attempted by goodness-of-fit testing and by measuring
arbitrarily defined marker of fit, e.g., the ratio of BMD to
BMDL [13–15]. Nevertheless, model exclusion has not
been consistently practiced (i.e. sometimes not con-
ducted) and the criteria of exclusion have not been veri-
fied and/or harmonized across different studies. Further,
more model selection methods have been discussed and
developed [16, 17] than exclusion methods. A conserva-
tive approach is to use the modeling result that yields
the lowest BMDL among all the fitted models [10, 18],
which was recommended by the European Food Safety
Authority in 2009 [19]. However, the model with the
lowest BMDL might be the model with the broadest
uncertainty; i.e. a wide confidence interval caused by a
bad fit (e.g. even a fitted model can be rejected by Pearson’s
chi-squared test [10]). The AIC (Akaike information
criteria) [16, 20] or BIC (Bayesian information criteria) [16]
could be used as alternative ways of measuring goodness-
of-fit and selecting the model that gives the lowest value
(i.e. the best fit model). However, having the lowest AIC
does not guarantee that the goodness-of-fit of the model
around the low dose response will be successful and valid
to yield an appropriate BMDL [10, 16]. Model averaging
has been proposed as a possible solution [21–23] that may
partly resolve the uncertainties associated with the use of

Fig. 1 Example of benchmark dose (BMD), BMDL in Dose-response curve. A dose-response curve illustrating relationship between BMD10 and
BMDL10. Dots: fraction of animals affected in each dose group; Solid curve: Fitted model; BMD10: BMD corresponding to 10% extra risk on this
curve based on fitted model; Dashed line: the estimated lower bound on doses for a range of BMRs; BMDL10: The lower bound on BMD10 based
on the dashed curve
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mathematical models to explain the dose-response data. An
updated document in 2017 from the European Food Safety
Authority [24] recommends the selection of multiple
models with close AIC values (within ±2) and averaging the
results from all the selected models. Model averaging has
been proposed in various risk assessment settings using
dose-response data [25–27], but a standard application
method of model averaging has yet to be decided, including
the use of badly fitted model for averaging (e.g. model
averaging over all converged models or averaging over
well-fitted models only).
While all issues surrounding the use of the BMD

method for quantal response data cannot be fully and
immediately resolved, a simulation-based evaluation
might help to identify a possible well-performing path-
way of model exclusion and selection. To support the
formulation of technical guidelines for risk assessment
practices for food safety in Japan, we conducted a simu-
lation study to compare the performance of each and
various combinations of model exclusion and selection
criteria, as applied to three qualitatively different types
of quantal response datasets.

Methods
Quantal response data
For the simulation-based assessment, we selected three
datasets that are qualitatively different; i.e., (i) a dataset
with frequent testing at doses with high response rates,
(ii) a dataset with frequent testing at doses with low
response rates, and (iii) a dataset with doses involving
both high and low response rates. Specifically, the data
were retrieved from animal experiments with (i) 1-
aminoanthraquinone with an outcome of eosinophilic
droplet in proximal tubular epithelium in kidney in
male rats [28], (ii) 2-ethylhexyl vinyl ether with an out-
come of centrilobular hypertrophy in liver stem cells in
male rats [29], and (iii) acrylamide with an outcome of
axon degeneration in peripheral nerve in male rats [30]
as datasets (i), (ii), and (iii), respectively. In this study,
we were not concerned with the biological properties of
the experimental results or interpretations for toxico-
logical assessment, rather we manually selected these
datasets purely on the basis of the qualitative patterns
of the observed dose-response curves. The sample size
for each determined dose was n = 13, 6, and 48 and the
original study examined responses at 4, 4, and 5 differ-
ent doses (thus involving a total of 52, 24 and 240 ex-
posed animals in datasets (i), (ii), and (iii), respectively).
Using the total of nine different distributions that con-

sist of 2–4 unknown parameters, the BMD method was
employed to analyze the datasets. For each dataset, we
first identified the best-fit model by selecting the model
with the lowest AIC value, without imposing any param-
eter restrictions and without excluding any models in

advance of model selection. The nine statistical models
used in this study were:

Logistic model: 1
1þ expð − a − bxÞ,

Probit model: Φ(a + bx),
Log-logistic model: g þ 1 − g

1þ expð − b − c logðxÞÞ,
Log-probit model: g + (1 − g)Φ(b + c log(x)),
Gamma model: g þ ð1 − gÞ 1

ΓðaÞ
R bx
0 ðta − 1 expð − tÞÞdt,

Weibull model: g + (1 − g)(1 − exp(−axb)),
Multistage (quadratic) model: g + (1 − g) exp(−ax − bx2),
Multistage (cubic) model: g + (1 − g) exp(−ax − bx2 − cx3),
Quantal-linear model: g + (1 − g) exp(−ax),

where a, b, and c represent unknown parameters, g is
also an unknown parameter but it is used to represent
the baseline response value for 0 ≤ g < 1, x is the dose,
Φ(x) is the cumulative distribution function of the stand-
ard normal distribution at dose x, and Γ(x) is the gamma
function at dose x. During the simulations, we regarded
the identified best model for each chemical substance as
the “reference model”. Such a true model is accompan-
ied by the known lower bound of the benchmark dose
with response level at 10% (i.e. unbiased BMDL10) as
derived from the maximum likelihood estimates of the
parameters.
The statistical estimation was conducted using the

maximum likelihood method, and the likelihood func-
tion was defined under the assumption that the quantal
response data at a given dose follows a binomial distri-
bution. Computation of the 95% confidence interval
(CI), including BMDL and BMD upper bound (BMDU)
(i.e. one-sided upper 95% CI of BMD), relied on the
bootstrapping method. Specifically, case resampling was
performed using the Monte Carlo algorithm. We did not
use the profile likelihood method to avoid a too conser-
vative (underestimated) CI. We also did not use the
parametric bootstrapping, because the sample sizes in
the original datasets were small, and the use of multi-
variate normal distribution was not fully supported.

Simulation-based evaluation
We performed a simulation-based assessment of model
performance using the three “reference models” with
three different dose response curves. Briefly, our analysis
goes by: (i) identification of a reference model for each
dataset by AIC (Akaike Information Criteria), (ii) gener-
ation of a total of 1000 simulated datasets (each dataset
includes fittings by 9 individual model) from the refer-
ence model, (iii) application of model exclusion criteria
if available, (iv) application of one of the model selection
criteria including methods using model averaging, and
select or calculate one of the representative BMDL value
from each dataset, and (v) BMDL values were evaluated
in two aspects, the validity and the reliability.
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Because of the statistical estimation that we
performed, we considered that we knew the unbiased
BMD10 and unbiased BMDL10 values that should be re-
covered by the BMD method using the simulated data-
sets. Specifically, we randomly generated a total of 1000
simulated datasets from the reference model (Fig. 2).
The response outcome data were randomly generated
from a binomial distribution for each examined expos-
ure dose for the number of samples that were originally
allocated for the given dose (i.e. n = 13, 6, and 48 dichot-
omous responses in each observation dose for the sub-
stances in datasets (i), (ii), and (iii)). For each replicated
dataset, we fitted a total of nine standard distributions of
the BMD method and examined whether an appropriate
BMDL10 value could be recovered. To recover BMDL10
values, we imposed different combinations of model ex-
clusion and selection criteria, which allowed us to assess
which criteria would likely produce a valid and reliable
estimate. The candidate of selection method includes
the model averaging. To determine if the simulated
criteria was valid and reliable, we evaluated the perform-
ance as follows:
(i) Validity.
The simulated BMDL10 value must be the dose lower

than the unbiased BMD10 because the statistical role of
BMDL is to act as the one-sided 95% lower bound of

BMD. Out of the total of 1000 simulations for each
chemical substance, the validity was measured as

1
1000

X1000

i¼1
Iij � 100 %ð Þ;

Iij ¼ 1 if lij < B
0 if lij≥B

;

�

where lij is the BMDL10 value based on the i-th simu-
lated data and determined using model exclusion and se-
lection criteria j, and B is the unbiased BMD10 value.
(ii) Reliability.
For the criteria to be reliable, similar results must

be reproduced by repeating the same experiments.
That is, the simulated BMDL10 value must be close
to the unbiased BMDL10 value, and criteria that yield
a “distant” BMDL10 value from the unbiased one
would be regarded as a bad combination. Reliability
was measured quantitatively as the relative distance
from the unbiased BMDL10 as

1
1000

X1000

i¼1

lij − L
� �2

L
;

where L is the unbiased BMDL10 value.

Fig. 2 Simulation-based assessment of model selection criteria using the benchmark dose (BMD) method. We used three different datasets, 1-
aminoanthraquinone, 2-ethylhexyl vinyl ether, and acrylamide. For each dataset, unbiased estimates were obtained for the benchmark dose that
was 10% of the benchmark response (BMD10) and the lower bound of the benchmark dose with response level at 10% (unbiased BMDL10).
Random realizations for generating 1000 replicas of the experimental data were conducted and applied the BMD method with nine models for
each replica, which generated 9000 different model fits that were evaluated
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In addition to validity and reliability, we also assessed
the calculability of the BMDL value. That is, the propor-
tion of simulated datasets that yielded convergence and
thus the BMDL value out of the total simulated datasets
(1000) was assessed. Moreover, to avoid the impact of
substantial exclusions before model selection on the
calculability assessment, we also calculated the same
proportion out of the total simulated datasets that sur-
vived the model exclusion process. Lastly, as a potential
pitfall of simulation-based studies, it is important to
remember that the original true model is likely to be
recovered more often than other models, especially if a
higher number of samples is tested for each dose. To
avoid overoptimistic interpretation of the simulated re-
sults, we calculated the proportion of the same statistical
model, out of the nine candidate models, that was recov-
ered to be identical to the original (i.e. reference) model
out of 1000 simulated datasets. If the selected statistical
model was the same as the reference model, it is possible
that the corresponding result may have been recovered
due to the computational nature of the simulation study
(e.g. random simulations using the Weibull model may
lead to the choice of the Weibull model in each simula-
tion run).

Model exclusion and selection criteria
We considered a total of four possible model exclusion
criteria and six possible model selection criteria. Avoid-
ing excessive combinations of the two (i.e. multiple
exclusion criteria plus model averaging over preferred
models only), we tested and compared a total of 18
possible combinations.
The four model exclusion criteria were (i) no exclusion,

(ii) implementing goodness-of-fit testing using the
Kolmogorov-Smirnov test (KS test) to avoid models with
p < 0.10, (iii) KS test to exclude models with p < 0.10 and
also exclusion of models with the BMD/BMDL ratios >
10, and (iv) KS test to exclude models with p < 0.10 and
also exclusion of models with BMDU/BMDL ratios > 10
[31]. We used the KS test rather than Pearson’s chi-
squared or Fisher’s exact test because the experimental
sample sizes were very small [31–33]. BMD/BMDL and
BMDU/BMDL ratios > 10 were excluded because models
with ratios that exceed 10 have been regarded as precise
enough to yield a proper confidence limit [34–36]. Only
models that survived these exclusion procedures were
used in the model selection process.
Among the six model selection criteria, three were sin-

gle selection criteria and three were model averaging
methods. For the single selection criteria: (i) select the
model with the lowest BMDL value to be conservative as
part of risk assessment practice (Lowest BMDL) [10, 18];
(ii) select the model with the lowest BMD value, not
necessarily relying on the lower uncertainty bound

(Lowest BMD) [14]; or (iii) select the model with the low-
est AIC value as the best fit model (Lowest AIC) [14]. We
also computed model averaging results, not by taking the
average BMDL value, but by averaging all or part of the
fitted models for each resampled data. Model averaging
takes into account the model uncertainty by integrating
results from all or selected models [26, 37–40]. We con-
sidered three different patterns of model averaging: (i)
model averaging over all nine models (MA-all) [25]; (ii)
model averaging over three models with the lowest three
AIC values (MA-3) [25]; and (iii) model averaging over all
models that yielded AIC values within 3 of the lowest AIC
value (MA-AIC). Let πi(d) the dose-response curve of i-th
model and d the given dose, MA-all was calculated as

πMAallðdÞ ¼
P9

i¼1wiπiðdÞ where wk ¼ expð − Ik=2ÞP9

i¼1
expð − Ii=2Þ

and

Ik is the AIC value of model k. MA-3 was calculated using
the same formula with normalization over the three best-
fit models as judged by AIC. Similarly, MA-AIC was
computed using the arithmetic average of models (i.e.
averaging without weight function) and adhering to rules
of thumb [17], averaging all models with AIC within 3 of
the lowest AIC of the best-fit model. The weight function
was not used for MA-AIC because, in this instance,
models with similar AIC values are regarded as equally
well fitted models. MA-3 and MA-AIC are intended to
conduct averaging over well fitted models compared with
MA-all, so we did not examine a combination of model
exclusion with MA-3 or MA-AIC to avoid similar removal
of bad-fit models multiple times.

Results
The validity and reliability of the simulation results for
the 1-aminoanthraquinone dataset, which contained fre-
quent testing at doses with high response rates, are listed
in Table 1. BMDL10 was 0.92 and BMD10 was 7.67 under
the selection of Probit model as the reference model
with the lowest AIC value (Fig. 3), and resampling-based
simulations were performed. The lowest BMDL or low-
est BMD yielded the best validity results, except when
the exclusion using the KS test and BMDU/BMDL ratio
was applied in advance of model selection. The lowest
BMD following model exclusion using both the KS test
and BMD/BMDL ratio yielded the best reliability results.
The lowest AIC was among the worst criteria, although
about 1/3 of simulation results selected by the lowest
AIC were produced by the Probit model, i.e. the refer-
ence model. Model averaging results yielded intermedi-
ate ranks among all model exclusion and selection
criteria, and MA-3 produced the best reliability and
validity results among the model averaging techniques.
Similarly, simulation results for the 2-ethylhexyl vinyl

ether dataset, which contained frequent testing at doses
with low response rates, are shown in Table 2. BMDL10
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was 24.69 and BMD10 was 28.65 under the selection of
the Probit model as the unbiased model (Fig. 3). The
validity was highest using the lowest BMDL or the low-
est BMD for model selection whenever the same model
exclusion was applied in advance. Model averaging, es-
pecially, MA-3 yielded the best reliability performance.
Model exclusion did not improve the validity, rather it
decreased the reliability estimates of MA-all. No model
exclusion changed the calculability of BMDL, and only a
small improvement in the reliability of MA-all was
obtained by model exclusion.
The simulation results for the acrylamide dataset,

which contained doses involving both high and low
response rates, are shown in Table 3. BMDL10 was 0.79
and BMD10 was 0.94 under the selection of the logistic
model as the unbiased model (Fig. 3). The validity was
highest using the lowest BMDL for model selection, and
reliability was best when MA-3 was used. The logistic
model, the unbiased dose-response curve for acrylamide,
was selected for about every 1 in 3 selected models. The
sample size in this dataset was larger than those in the
other two datasets, the models converged at a higher

frequency than they did in the other simulations and
were rarely excluded by the BMD/BMDL or BMDU/
BMDL ratio.

Discussion
The BMD method is now widely used to determine the
reference dose for toxicological risk assessment in food
chemicals, agricultural chemicals, and environmental haz-
ards. However, governmental experts are often puzzled by
several ambiguous parts of model assessment, especially
the model exclusion and selection processes. As part of the
technical assessment for possible improvements in the
guidelines, we conducted a simulation-based experiment to
assess the model exclusion and selection process by com-
paring the validity, reliability, and other model perform-
ance indicators using all possible combinations of model
exclusion and selection criteria. For the exposition, we ex-
amined three different empirical datasets, each with differ-
ent characteristics of the dose-response pattern (i.e. the
datasets had rich information about high or low response
rates, and approximately linear dose-response patterns). By
replicating 1000 sets of hypothetical experimental data

Table 1 Simulation results for the 1-aminoanthraquinone dataset using the benchmark dose method (reference model: Probit)

Exclusion
criteriaa

Selectionb Reliability
(Mean distance)c

Rank Validityd

(%)
Rank BMDL

calculabilitye (%)
Non-exclusion and
BMDL calculationf (%)

True dose-
responseg (%)

None Lowest BMDL 0.4 5 100.0 1 95.6 95.6 0.1

Lowest BMD 0.3 2 100.0 1 95.6 95.6 0.1

Lowest AIC 120.9 15 88.4 15 95.6 95.6 34.1

MA-all 6.2 9 99.6 8 95.6 95.6 NA

MA-3 4.7 7 99.8 7 100.0 100.0 NA

MA AIC < 3 9.0 11 98.8 11 100.0 100.0 NA

KS Lowest BMDL 0.4 5 100.0 1 95.6 95.6 0.1

Lowest BMD 0.3 2 100.0 1 95.6 95.6 0.1

Lowest AIC 120.9 15 88.4 15 95.6 95.6 34.1

MA-all 6.1 8 99.6 8 95.6 95.6 NA

KS, BMD/BMDL Lowest BMDL 0.3 4 100.0 1 95.6 79.1 0.5

Lowest BMD 0.2 1 100.0 1 95.6 79.1 0.5

Lowest AIC 121.0 17 88.4 15 95.6 79.1 38.4

MA-all 6.3 10 99.3 10 95.6 79.1 NA

KS, BMDU/BMDL Lowest BMDL 27.2 13 91.0 12 95.6 49.0 18.4

Lowest BMD 27.1 12 91.0 12 95.6 49.0 18.4

Lowest AIC 148.3 18 79.4 18 95.6 49.0 35.3

MA-all 33.9 14 90.2 14 95.6 49.0 NA
aExclusion criteria: KS, Kolmogorov-Smirnov test of goodness-of-fit; BMD/BMDL, ratio of benchmark dose (BMD10) to benchmark dose lower bound (BMDL10) with
values > 10 excluded; BMDU/BMDL, ratio of benchmark dose upper bound (BMDU10) to BMDL10 with values > 10 excluded. bModel selection criteria: Lowest
BMDL, model with the lowest value of BMDL10; Lowest BMD, model with the lowest value of BMD10; Lowest AIC, model with the lowest AIC value; MA-all, model
averaging of all converged models; MA-3, model averaging of three models with the three lowest AIC values; MA-AIC, model averaging of all models with AIC
values < 3 compared with the best model that yielded the minimum AIC. cReliability (Mean distance), measured as the mean distance between unbiased BMDL10
and calculated BMDL10 followed by rank. dValidity (%), measured as the iterations that satisfied calculated BMDL10 lower than unbiased BMD10 followed by rank.
eBMDL calculability (%), measured as the iterations that yielded BMDL in the model selection criterion. fNon-exclusion and BMDL calculation (%), measured as the
iterations that yielded BMDL in the model selection criterion along with exclusion criteria. gTrue dose response (%), measured by the default model selected by
the model selection criterion. Note: Validity (%), BMDL calculability (%), non-exclusion and BMDL calculation (%), and true dose response (%) were converted into
rates of iterations divided by 9000, nine models in 1000 simulation data. NA, not applicable
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computationally in a random manner, we found that the
best criteria of model exclusion and selection were differ-
ent across the chemical substances in each dataset. Further,
the best criteria for achieving good validity was not neces-
sarily the best for ensuring good reliability. For instance,
the lowest BMDL outperformed the other criteria in
achieving high validity, but did not always yield the best re-
liability. The use of lowest AIC yielded the best reliability
result for the acrylamide dataset, but the worst reliability
for the 1-aminoanthraquinone dataset. Besides, the model
averaging results always ranked at an intermediate level
among all possible criteria, and did not yield the worst
results.
There are two take-home messages. First, although we

did not identify the best exclusion and selection criteria
for the qualitatively differently distributed datasets, we
have shown that model averaging over three models
with the lowest three AIC values (MA-3) did not yield
the worst result, and MA-3 without prior model exclu-
sion produced the best results among all the model
averaging results. For instance, MA-3 yielded the best
reliability result for the 2-ethylhexyl vinyl ether dataset.
If a uniform guideline to implement model exclusion
and selection is required, our results indicate that MA-3
could become the recommended option whenever ap-
plicable. Second, we found that model exclusion using

the KS test and the ratios of BMD or BMDU to BMDL
did not necessarily yield better validity and reliability
than non-exclusion. In particular, both the validity and
reliability for the 1-aminoanthraquinone dataset were
made worse by imposing exclusion. For example, by ap-
plying the exclusion criteria of KS test and the ratio of
BMDU and BMDL, reliability (mean distance) of Lowest
BMDL has been increased from 0.4 to 27.2 as compared
with non-exclusion (Table 1). In contrast, validity (rate
of “successful” calculation) of MA-all has been decreased
from 98.8 without exclusion to 90.2 as applied of KS test
and the ratio of BMDU and BMDL (Table 1). Thus, to
decide about model exclusion, visual assessment might
be enough to proceed to model selection.
Model averaging has previously been demonstrated as

a useful option when determining the point of departure
[25], especially for datasets that do not necessarily ex-
hibit a sigmoidal dose-response curve. We found that all
the model averaging options that we tested performed
well overall. However, how the distance metric (e.g.
AIC) across different models can be account for and
how model uncertainty of each parametric assumption
in the process of averaging can be quantified still need
to be considered. Considering that at least nine models
are fitted to the same dataset and some of the models
share similar properties while others do not, which

Fig. 3 Observed and predicted dose-response relationships for the 1-aminoanthraquinone, 2-ethylhexyl vinyl ether, and acrylamide datasets. a 1-
aminoanthraquinone with a substantial weight applied for doses with high response rates (n = 13 per observed dose). b 2-ethylhexyl vinyl ether
with a weight applied for doses with low response rates (n = 6 per dose). c Acrylamide with an approximately linear dose-response relationship
(n = 48 per dose). Original outcomes were eosinophilic droplet in renal proximal tubular epithelium in male rats for 1-aminoanthraquinone,
centrilobular hypertrophy in liver stem cells in male rats for 2-ethylhexylvinyl ether, and axon degeneration in peripheral nerve in male rats for
acrylamide, which we disregard in this study. The best fit models selected using only the Akaike information criterion were the Probit model for
1-aminoanthraquinone and 2-ethylhexyl vinyl ether, and the Logistic model for acrylamide. Unbiased BMDL10 and BMD10 were estimated as 0.9
and 7.7 respectively, for 1-aminoanthraquinone, 24.7 and 28.7, respectively, for 2-ethylhexylvinyl ether, and 0.8 and 0.9, respectively, for acrylamide
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models should be averaged needs to be considered, e.g.
averaging over all models or only some of them. We
found that averaging over some of the models might
yield a better performance than averaging over all
converged models, considering that the uncertainties of
well-fitted models might be far smaller than those of
badly fitted models. Averaging over the three best
models is still a subject of debate (e.g., averaging over
two best models rather than three) and the numbers
might change depending on the total number of models
to be tested (e.g. more than nine models could be tested)
[25]. However, considering that averaging over the three
best models outperformed all the models with close AIC
values, reliance only on the penalized likelihood during
the averaging might not be a good option. For now,
MA-3 is the method that we recommend, and we plan
to share the programing code and a package for this
procedure in the future.
It must be noted that the recommended option does

not work when the total number of converged models is
one or two; indeed, the convergence of one model alone

can occur occasionally. In such an instance, other cri-
teria, including using the modeling results that yield the
lowest BMDL or the model with the lowest AIC value,
need to be considered. What the present study has
shown is that both the lowest BMDL and lowest AIC
did not act as the unique best method for model selec-
tion, whereas the lowest BMDL method can ensure good
validity, which is understandable from the conservative
nature of this method. It should be noted that the use of
the lowest AIC was ranked as part of the worst result for
two of the datasets (the exception was the acrylamide
dataset) when it comes to validity and reliability.
Five technical limitations should be considered. First,

we examined only three different chemical substances as
source of information and addressed qualitative differ-
ences only among the three datasets. More datasets may
have revealed additional insights into ranking the model
selection criteria. Second, if a specific dataset behaved
uniquely, there should be a corresponding unique criter-
ion that is best suited to its analysis. However, our ob-
jective was to identify acceptable model selection criteria

Table 2 Simulation results for the 2-ethylhexyl vinyl ether dataset (reference model: Probit)

Exclusiona Selectionb Reliabilityc

(Mean distance)
Rank Validityd (%) Rank BMDL

calculabilitye

(%)

Non-exclusion and
BMDL calculationf (%)

True dose-
responseg (%)

None Lowest BMDL 17.8 7 100.0 1 85.2 85.2 0

Lowest BMD 17.8 7 100.0 1 85.2 85.2 0

Lowest AIC 20.7 15 66.7 9 85.2 85.2 33.4

MA-all 6.2 6 66.7 9 85.2 85.2 NA

MA-3 3.6 1 66.7 9 100.0 100.0 NA

MA AIC < 3 5.1 2 66.7 9 100.0 100.0 NA

KS Lowest BMDL 17.8 7 100.0 1 85.2 85.2 0

Lowest BMD 17.8 7 100.0 1 85.2 85.2 0

Lowest AIC 20.7 15 66.7 9 85.2 85.2 33.4

MA-all 6.2 5 66.7 9 85.2 85.2 NA

KS, BMD/BMDL Lowest BMDL 17.8 7 100.0 1 85.2 85.2 0

Lowest BMD 17.8 7 100.0 1 85.2 85.2 0

Lowest AIC 20.7 15 66.7 9 85.2 85.2 33.4

MA-all 6.1 4 66.7 9 85.2 85.2 NA

KS, BMDU/BMDL Lowest BMDL 17.8 7 100.0 1 85.2 85.2 0

Lowest BMD 17.8 7 100.0 1 85.2 85.2 0

Lowest AIC 20.7 15 66.7 9 85.2 85.2 0

MA-all 6.1 3 66.7 9 85.2 85.2 33.4
aExclusion criteria: KS, Kolmogorov-Smirnov test of goodness-of-fit; BMD/BMDL, ratio of benchmark dose (BMD10) to benchmark dose lower bound (BMDL10) with
values > 10 excluded; BMDU/BMDL, ratio of benchmark dose upper bound (BMDU10) to BMDL10 with values > 10 excluded. bModel selection criteria: Lowest
BMDL, model with the lowest value of BMDL10; Lowest BMD, model with the lowest value of BMD10; Lowest AIC, e model with the lowest AIC value; MA-all, model
averaging of all converged models; MA-3, model averaging of three models with the three lowest AIC values; MA-AIC, model averaging of all models with AIC
values < 3 compared with the best model that yielded the minimum AIC. cReliability (Mean distance), measured by the mean distance between unbiased BMDL10
and calculated BMDL10 followed by rank. dValidity (%), measured as the iterations that satisfied calculated BMDL10 lower than unbiased BMD10 followed by rank.
eBMDL calculability (%), measured as the iterations that yielded BMDL in the model selection criterion. fNon-exclusion and BMDL calculation (%), measured as the
iterations that yielded BMDL in the model selection criterion along with exclusion criteria. gTrue dose response (%), measured by the default model selected by
the model selection criterion. Note: Validity (%), BMDL calculability (%), non-exclusion and BMDL calculation (%), and true dose response (%) were converted into
rates of iterations divided by 9000, nine models in 1000 simulation data. NA, not applicable
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across qualitatively different datasets (which found MA-3
was acceptable overall) and we were not able to classify
dose-response curves into several different groups for
better fitting. Third, we used only computer simulations.
Using the reference model prior to simulations might have
been preferred during the estimation process. Although
we counted this bias in Tables 1, 2 and 3, the impact of
this on our examined criteria is not known. Fourth, we
did not explore parameter constraints in this study. Fifth,
we did not examine other percentile cutoff levels, i.e. the
benchmark response was fixed at 10%.
While numerous technical issues have yet to be

explored in applying BMD methods to risk assessment,
we concluded that MA-3 can be considered the best
guiding option to derive the reference dose when the
guidelines are expected to specify a single model exclu-
sion and selection method.

Conclusion
As part of the technical assessment for possible improve-
ments in the guidelines, we conducted a simulation-based

experiment to assess the model exclusion and selection
process by comparing the validity, reliability, and other
model performance indicators using all possible combina-
tions of model exclusion and selection criteria. If a
uniform methodological suggestion for the guideline is
required to choose the best performing model for exclu-
sion and selection, our results indicate that using MA-3 is
the recommended option whenever applicable.
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