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Modelling the effect of a dengue vaccine
on reducing the evolution of resistance
against antibiotic due to misuse in dengue
cases
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Abstract

Background: This paper intends to check whether and how a hypothetical dengue vaccine could contribute to
issue of evolution of bacteria resistance against antibiotics by reducing the number of patients that would
inappropriately being treated with antibiotics.

Methods: We use a new mathematical model that combines, in a novel way, two previously published papers, one
on the evolution of resistance against antibiotics and one classical Ross-Macdonald model for dengue transmission.

Results: The model is simulated numerically and reproduces a real case of evolution of resistance against
antibiotics. In addition the model shows that the use of a hypothetical dengue vaccine could help to curb the
evolution of resistance against an antibiotic inappropriately used in dengue patients. Both the increase in the
proportion of resistant bacteria due to the misuse of antibiotics in dengue cases as a function of the fraction of
treated patients and the reduction of that proportion as a function of vaccination coverage occur in a highly non-
linear fashion.

Conclusion: The use of a dengue vaccine is helpful in reducing the rate of evolution of antibiotic resistance in a
scenario of misuse of the antibiotics in dengue patients.
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Background
Antibiotics are one of the major breakthroughs in the
history of medicine and have saved millions of lives [1].
However, its misuse or overuse can also have disastrous
consequences [2]. Overuse is frequent: approximately
two-third (68%) of antibiotics are prescribed for upper
respiratory infections (URTIs) [3, 4] but > 80% of such
prescriptions have been found to be unnecessary and

inappropriate with adverse outcome including the men-
ace of antibiotic resistance.
Antibiotic resistance (the ability of microbes to evolve

and withstand the effects of antibiotics) is a significant
cause of morbidity and mortality globally [5–7], and
antibiotic over-consumption is the main driver of anti-
biotic resistance [8]. The association between antibiotic
consumption and resistance is well documented across
spatial and temporal scales at individual hospitals [9],
nursing homes [10], primary care facilities [11], and
communities [12], as well as across countries [13].
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Bacteria have become resistant to antimicrobial agents
as a result of chromosomal changes or the exchange of
genetical material via plasmids and transposons [14].
Many countries have adopted national action plans on

antimicrobial resistance (AMR) that aim to reduce per
capita antibiotic consumption. The Global Action Plan
on Antimicrobial Resistance endorsed by the member
states of the World Health Organization (WHO) and af-
firmed at the high-level meeting on antimicrobial resist-
ance during the 71st General Assembly of the United
Nations [15], recommends that all countries collect and
report antibiotic consumption data [16]. Surveillance
data on country-level antibiotic use are needed to moni-
tor national and global trends over time; compare anti-
biotic use among countries; provide a baseline for the
evaluation of future efforts to reduce antibiotic use; en-
able epidemiological analysis of the association between
antibiotic use and resistance over time [17, 18]; and sup-
port policies that aim to reduce antibiotic resistance.
Making better use of existing vaccines and developing

new vaccines are important ways to tackle AMR and re-
duce preventable illness and deaths.
Dengue is a mosquito-borne infection, transmitted by

the Aedes aegypti mosquitoes, characterized by sudden
onset of fever and severe headache; resulting in shock
and hemorrhage leading to death [19] in many of such
patients [20, 21]. The clinical manifestations are often
nonspecific, with signs and symptoms that overlap with
many other febrile illnesses including bacterial infec-
tions. As a result, health care practitioners often pre-
scribe antibiotics empirically, e.g. without confirming the
diagnosis, which leads to unnecessary use of antibiotics.
In one particular study in India [22], of 370 confirmed

dengue cases, 267 (74.6%)cases were prescribed antibi-
otics. A single antibiotic was prescribed to 225 cases
(60.8% of all cases), 2 antibiotics to 33 dengue cases
(8.9%), and 3 antibiotics to 9 (2.4%). Triple therapy anti-
biotics included cefotaxime in all prescriptions with
cefixime, azithromycin, amoxyclav, doxycycline, and cef-
triaxone in different combinations. Antibiotics given as
dual therapy were ceftriaxone with doxyxycline, cefotax-
ime, or amoxyclav, and cefotaxime with doxycycline,
cefixime, or metronidazole.
In another study in West Java, Indonesia [23], showed

that there were 547 (17.8%) out of 3078 dengue patients
that received antibiotics.
One of the authors (AK) found in the Clinics Hospital

in São Paulo, Brazil, that among 103 confirmed dengue
cases, 35 (34%) inappropriately received antibiotics.
Of course antibiotics are indicated when secondary

bacterial infections are present in some dengue cases
[24]. However, the problem of antibiotics misuse in den-
gue cases is related to misdiagnosing dengue with URTI
[21]. To distinguish between the appropriate and

inappropriate antibiotic use in dengue cases it is neces-
sary to demonstrate the presence of bacterial infection,
for instance, by collecting material for bacterial culture
procedures [21].
Therefore, is seems that there is enough evidence of

misuse of antibiotics in dengue patients. Such misuse
could worsen the selective pressure that leads to the
evolution of resistance against those antibiotics.
This paper intends to investigate whether and how a

hypothetical dengue vaccine could contribute to issue of
evolution of bacteria resistance against antibiotics by re-
ducing the number of patients that would inappropri-
ately being treated with antibiotics. We do so by using a
new mathematical model that combines, in a novel way,
two previously published papers, one on the evolution of
resistance against antibiotics, illustrated by the case of
resistance of K. pneumoniae resistance against Amika-
cine (this was one clear example of rapide evolution of
resistance studied by one of the authors of the present
paper) and one classical Ross-Macdonald model for den-
gue transmission.

The model
The model combines two distinct models, one proposed
previously in Massad, Yang and Lundberg [25] for the
study of the evolution of antibiotic resistance, and one
Ross-Macdonald type of dengue model [26], including
the possibility of vaccination.
The composite model is described in Fig. 1:
In Fig. 1, the left-hand side picture describes the

model by Massad, Yang and Lundberg [25], designed to
study the evolution of resistance against antibiotics. This
model considered a population in a hospital environ-
ment, in which X(t) represents individuals who have
been hospitalized by diverse causes with rate Λ, and are
susceptible to a given infectious agent. These individuals
may acquire an hospital infection by a strain of the
pathogen which is sensitive to a specific antibiotic
against that pathogen with a rate β1. Once infected with
the sensitive strain these individuals are denoted Y(t). A
fraction of p of those Y(t) individuals are treated with
the specific antibiotic and recovers to the susceptible
state again with rate γ.The fraction (1 − p) of non-
treated individuals die from the infection with rate α.
However, Y(t) individuals may be discharged from the
hospital with rate μ. Alternatively, the susceptible indi-
viduals X(t) may acquire the infection by a strain of the
pathogen which is resistant to the specific antibiotic
against that pathogen with a rate β2. Once infected with
the resistant strain these individuals are denoted Z(t).
These individuals may either be discharged from the
hospital with rate μ (like everyone else in the model), or
die from the infection with rate α. The model consider
the evolution of antibiotic resistance by two alternative
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mechanisms, one consisting in mutation, and one by
plasmid transfer from the sensitive to resistant strains.
These two mechanisms are represented in the figure by
the composite rate F. The mutational component of rate
F is described by the expression (θ + pξ)Y(t) + (ω +
pδ)(Y(t)Z(t)). In this expression, θ is the treatment-
independent mutation rate and pξ is the mutation rate
induced by antibiotic treatment. The second component,
comprises the term ω, which is the treatment-
independent plasmid transfer and the term pδ, which is
the plasmid transfer rate induced by antibiotic treatment
(note the cross-infection term (Y(t)Z(t)). The back-
mutational component of rate G is described by the
expression σ Z(t). In this expression, σ is the back-
mutation rate.
The right-hand side picture shown in Fig. 1 describes

the Ross-Macdonald model to be used to represent den-
gue infection with a vaccination component. The model
considers that people born with rate μH (assumed equal
to the natural mortality rate) and who are susceptible to
dengue are denoted SH(t). These individuals may acquire

dengue infection with incidence abð IMNH
Þ , where a is the

mosquitoes’ biting rate, b is the probability of infection
from mosquitoes to humans, IM(t) is the number of in-
fected mosquitoes and NH is the total human population
(assumed constant by equating the birth and death rates

as μH). Dengue infected individuals are denoted ITHðtÞ, a
fraction h of whom are interned in the same hospital as
in the first model. Non-hospitalized dengue individuals

are denoted IGHðtÞ . Alternatively the susceptible individ-
uals may be vaccinated with rate υH and are then de-
noted VH(t). Hospitalized dengue-infected individuals,
denoted IH(t), may either be infected with plasmids they
acquire from the resistant strain infected individuals in
the same hospital, ZH(t), provided that a fraction p' of
them is mistreated with the antibiotics (note that the
rate of plasmid transfer δ is the same), or are discharged
from the hospital with rate μH (like everyone else in the
model), or die from dengue infection with rate αH, or
are infected with the sensitive strain and treated and

Fig. 1 Composite model combining an antibiotic resistance model and a Ross-Macdonald dengue model with vaccination
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recovered from dengue with rate γH. Therefore, the term
p ' δIH(t)Z(t) represents the plasmid transfer from ZH(t)
to IH(t), by a cross-infection mechanism. Like in the
classical Ross-Macdonald model, susceptible mosquitoes,
denoted SM(t) may acquire dengue infection with inci-

dence acð IMNH
Þ , where again a is the mosquitoes’ biting

rate, c is the probability of infection from humans to
mosquitoes, IM(t) is the number of infected mosquitoes
and NH is the total human population. Once infected,
these mosquitoes get into a latent state, denoted LM(t)
and then either die or evolve to the infective state IM(t).
Note that mosquitoes are born and die with the same
rate μM, which implies that the total mosquito popula-
tion is assumed constant.
The model’s variables and parameters are described in

Table 1.
The model is described by the following system of

equations:

Dengue Model

dSH tð Þ
dt

¼ −ab
IM tð Þ
NH

SH tð Þ þ μH NH−SH tð Þ½ �−υHSH tð Þ
dIGH
dt

¼ ab
IM tð Þ
NH

SH tð Þ 1−hð Þ− μH þ αHð ÞIGH tð Þ−kγHIGH tð Þ
dIH tð Þ
dt

¼ ab
IM tð Þ
NH

SH tð Þh− μH þ αH þ dð ÞIH tð Þ− 1−p0ð ÞγHIH tð Þ−p0δIH tð ÞZ tð Þ
dRH tð Þ
dt

¼ 1−p0ð ÞγHIH tð Þ þ kγHI
G
H tð Þ−μHRH tð Þ

dVH tð Þ
dt

¼ υHSH tð Þ−μHVH tð Þ

ITH tð Þ ¼ IGH tð Þ þ IH tð Þ
NH ¼ SH þ IH þ RH þ VH

Vaccov tð Þ ¼ 1
NH

Zt

0

υHSH sð Þds

dSM tð Þ
dt

¼ −ac
ITH tð Þ
NH

SM tð Þ þ μM NM−SM tð Þð Þ
dLM tð Þ

dt
¼ ac

ITH tð Þ
NH

SM tð Þ− γM þ μMð ÞLM tð Þ
dIM tð Þ
dt

¼ γMLM tð Þ−μMIM tð Þ

NM ¼ SM þ LM þ IM

Antiobtic Resistance Model

dX tð Þ
dt

¼ −β1X tð ÞY tð Þ−β2X tð ÞZ tð Þ−μX tð Þ þ pγY tð Þ þ Λ

dY tð Þ
dt

¼ β1X tð ÞY tð Þ− 1−pð Þαþ pγ½ �Y tð Þ−μY tð Þ−F Y tð Þ;Z tð Þ½ � þ G Z tð Þ½ �
dZ tð Þ
dt

¼ β2X tð ÞZ tð Þ−αZ tð Þ þ F Y tð Þ;Z tð Þ½ �−μZ tð Þ−G Z tð Þ½ � þ p0δIH tð ÞZ tð Þ

N ¼ X þ Y þ Z
F Y tð Þ;Z tð Þ½ � ¼ θ þ pξð ÞY tð Þ þ ωþ pδð ÞY tð ÞZ tð Þ
G Z tð Þ½ � ¼ σZ tð Þ

resis tð Þ ¼ 1
N

Zt

0

β2X sð ÞZ sð Þ þ p0δIH sð ÞZ sð Þ þ F Y sð Þ;Z sð Þ½ �� �
ds

ð1Þ

Results
Model (1) was simulated, first with the antibiotic re-
sistant component only in order to reproduce the

results obtained by Massad, Yang and Lundberg [25]
with the data from Klebsiella pneumoniae strains re-
sistant against the antibiotic Amikacin in the Clinics
Hospital of the School of Medicine of the University
of São Paulo, Brazil. Results are shown in Fig. 2.
Note that the model tallies the actual data with good

accuracy for a fraction of antibiotic treated individuals of
70%. In just 5 years resistance evolved from less than
10% to more than 70%.
The complete model (1) was then simulated with

variables and parameters as in Table 1 in order to es-
timate the impact of inappropriately treating dengue
patients with the antibiotics and the impact of vaccin-
ation against dengue on the evolution of antibiotic re-
sistance of dengue-infected individuals mistreated
with the same antibiotic (Amikacin) against the same
pathogen (Klebsiella pneumoniae). The result can be
seen in Fig. 3.
Note that the final proportion of resistant bacteria var-

ies in a non-linear fashion with the increase in the pro-
portion of dengue patients inappropriately treated with
the antibiotic.
Note that the vaccination coverage necessary to reduce

the resistance against the antibiotic in this extreme situ-
ation is very high.

Discussion
In this paper we propose a composite model to test
the hypothesis that a hypothetical vaccine against
dengue could help to hamper the evolution of resist-
ance against antibiotics due to their misuse in dengue
patients. This hypothesis was tested with a composite
model combining a previously published model for
studying the evolution of antibiotic resistance, with a
classical Ross-Macdonald dengue model [26]. The
simulation of a real setting involving the overuse of
amikacin in patients infected with K. pneumoniae in a
large hospital in Sao Paulo, Brazil [25] and the inclu-
sion of dengue patients (see Fig. 1) into the bacterial
dynamics part of the composite model. The inappro-
priate use of antibiotics in dengue patients increased
the evolution of resistance against these antibiotics in
a non-linear fashion. Hence, if 10% of dengue patients
were treated with antibiotics, the proportion of bac-
teria resistant to the drugs would increase from the
baseline of 70% to almost 89% and so on as seen in
Fig. 3.
The result of the simulation of the impact of the

theoretical dengue vaccine also resulted in a highly
non-linear decrease in the proportion of resistant bac-
teria with the increase in the vaccination coverage
(Fig. 3). Although it should be expected a reduction
in the proportion of resistant bacteria with the reduc-
tion of susceptible individuals due to the vaccine, the

Kurauchi et al. Theoretical Biology and Medical Modelling            (2020) 17:7 Page 4 of 7



simulations show that the necessary coverage to result
in a significant reduction in the proportion of resist-
ant bacteria is very high. In addition, the higher the
proportion of dengue patients mistreated with antibi-
otics, the higher the necessary vaccination coverage to
reduce the antibiotic resistance to base level (Fig. 3).

Our model has several oversimplifications and limi-
tations. Firstly it assumes a homogeneously mixing
transmission, both to the bacterial infection and to
the dengue infection. The model is deterministic, ig-
noring eventual stochastic fluctuations in the com-
partments dynamics. Many of the parameters used in

Table 1 The Model’s variables, parameters, biological meaning and values

Variable/
Parameter

Biological Meaning Initial condition/Value used in the
simulations

Antibiotic Resistance Modela

X(t) Individuals susceptible to the hospital infection 100

Y(t) Individuals infected with a sensitive strain 1

Z(t) Individuals infected with a resistant strain 0.41

Λ Internment rate 3.33 × 10− 2 days− 1

μ Discharging rate 3.33 × 10− 2 days− 1

β1 Rate of infection with the sensitive strain 6.45 × 10− 3 days− 1

β2 Rate of infection with the resistant strain 6.00 × 10− 3 days− 1

p Fraction treated with the antibiotic 0.7

γ Recovered from infection with the sensitive strain 2.50 × 10− 1 days− 1

α Mortality rate induced by the infection 1.15 × 10− 1 days− 1

θ Rate of mutation from sensitive to resistant strains 1.00 × 10− 7 days− 1

ξ Treatment induced mutation rate 1.00 × 10− 6 days− 1

ω Rate of spontaneous plasmids transfer 1.15 × 10− 5 days− 1

δ Rate of treatment induced plasmids transfer 1.15 × 10− 4 days− 1

σ Rate of back mutation from resistant to sensitive strains 1.00 × 10− 8 days− 1

Dengue Modelb

SH(t) Individuals susceptible to dengue 1.00 × 105

IGHðtÞ Non-hospitalized individuals infected with dengue 1.0

IH(t) Hospitalized individuals infected with dengue 0.0

RH(t) Individuals recovered from dengue 0.0

VH(t) Individuals vaccinated against dengue 0.0

SM(t) Mosquitoes susceptible to dengue 1.50 × 105

LM(t) Mosquitoes latent with dengue 1

IM(t) Mosquitoes infective with dengue 0

μH Birth/Mortality rate 3.92 × 10− 5 days− 1

υH Vaccination rate Variable

a Mosquitoes’ biting rate 10 days− 1

b Probability of infection from mosquitoes to humans 0.6

c Probability of infection from humans to mosquitoes 0.6

γH Recovered from infection with the sensitive strain 5.0 × 10− 1 days− 1

αH Dengue-induced mortality rate 1.00 × 10−5 days− 1

p' Fraction of dengue-infected individuals mistreated with antibiotics. Variable

h Fraction of dengue-infected individuals that are hospitalized 0.3

κ Fraction of non-hospitalized dengue-infected individuals that recover from
infection

0.7

d Rate of hospital discharge of dengue patients 1.00 × 10−2 days−1

aParameters’ and initial conditions’ values from reference [25]
bParameters’ and initial conditions’ values from reference [26]
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the simulations are not based on empirical observa-
tions, although the antibiotic resistant part of the
model reproduces a real scenario with a reasonable ac-
curacy. The dengue model is not stratified by serotypes
but considers dengue as an all-or-nothing infection.
And finally, the theoretical vaccine is assumed to be
100% efficient to all dengue serotypes. Therefore if such
a vaccine would be available and if 100% of susceptible
people were vaccinated, then no dengue case would
occur and no misuse of antibiotic would occur. Consid-
ering 50 million dengue cases per year worldwide, con-
sidering that between 20 and 40% are mistreated with
antibiotics and considering the average cost of one anti-
biotic course of US$9.91 [27] for each episode of

wrongly diagnosed upper respiratory infection (the
main cause of antibiotic misuse in dengue patients [2],
then it should be expected an economic gain of be-
tween US$99,100,000.00 and US$198,200,000.00 per
year.
Notwithstanding the above oversimplifications, we

think that the composite model served its purposes since
it was designed to qualitatively investigate how a hypo-
thetical vaccine could curb the evolution of resistance
against antibiotics that is caused by the inappropriate
use of these drugs in dengue patients.
It is possible, therefore, based on the results of the

simulation of our model that a dengue vaccine would re-
duce the rate of evolution of antibiotic resistance in a

Fig. 2 Performance of the model of antibiotic resistance (black line) simulated with parameters as in Table 1, and actual evolution of Klebsiella
pneumoniae resistance against Amikacin (red line). Real data from Massad, Yang and Lundberg [24]

Fig. 3 Performance of the complete model of antibiotic resistance and dengue simulated with parameters as in Table 1. Continuous purple line
represents the equilibrium after 60 months of treatment in the absence of dengue, that is, the base line evolution of resistance against antibiotics
for that specific community. Other lines represent effect of vaccination with several proportions of antibiotic misuse against dengue, varying from
10% (lower light green line) to 50% (upper blue line)
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scenario in which dengue patients are inappropriately
treated with the drug.

Conclusion
The use of a dengue vaccine is helpful in reducing the
rate of evolution of antibiotic resistance in a scenario of
misuse of the antibiotics in dengue patients.
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