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Abstract

Estimating HIV incidence is crucial for monitoring the epidemiology of this infection, planning screening and
intervention campaigns, and evaluating the effectiveness of control measures. However, owing to the long and
variable period from HIV infection to the development of AIDS and the introduction of highly active antiretroviral
therapy, accurate incidence estimation remains a major challenge. Numerous estimation methods have been
proposed in epidemiological modeling studies, and here we review commonly-used methods for estimation of HIV
incidence. We review the essential data required for estimation along with the advantages and disadvantages,
mathematical structures and likelihood derivations of these methods. The methods include the classical
back-calculation method, the method based on CD4+ T-cell depletion, the use of HIV case reporting data, the use of
cohort study data, the use of serial or cross-sectional prevalence data, and biomarker approach. By outlining the
mechanistic features of each method, we provide guidance for planning incidence estimation efforts, which may
depend on national or regional factors as well as the availability of epidemiological or laboratory datasets.
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Background
Since the first patient with acquired immunodeficiency
syndrome (AIDS) was reported in 1981 [1], its causative
agent, human immunodeficiency virus (HIV), has led to
77 million HIV infections globally and remains a major
public health issue [2]. To strategically assess the impact
of interventions and to guide policy makers in achieving
improved control of HIV/AIDS, it is critical to quantify
the dynamics of HIV epidemics accurately and reliably.
HIV incidence (i.e., the transient number of new infec-
tions) and prevalence (i.e., the fraction of infected individ-
uals at a given point in time) are two major indicators that
are used to assess and interpret the transmission dynam-
ics of HIV. HIV incidence and prevalence have been
estimated using mathematical and statistical modeling
approaches bymany academic and governmental research
groups. For instance, the Joint United Nations Program
on HIV/AIDS (UNAIDS) regularly provides updates of
national and global estimates, indicating that 1.8 million
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people were newly infected with HIV and 940,000 deaths
occurred in the year 2017 [2].
Unlike many acute infectious diseases, HIV infection

progresses slowly in vivo and has a complex natural his-
tory. During the first 2-4 weeks following infection, the
virus replicates rapidly and this period is referred to as
the acute stage [3, 4]. Thereafter, viral loads are greatly
reduced and reach a quasi-steady state, which is called
the asymptomatic stage. During the asymptomatic stage,
the viral load reflects the steady state achieved between
high rates of viral replication and virus clearance, and
is maintained at a remarkably stable level (i.e., the viral
load set point) over a number of years. If untreated, the
median length of asymptomatic stage may range from 8-
11 years. Infected individuals in the asymptomatic stage
do not show overt symptoms but can transmit HIV infec-
tion through high-risk behaviors. Subsequently, the viral
load increases slowly, resulting in the onset of AIDS
[5–7]. Because their immune systems are severely dam-
aged, individuals with AIDS experience a number of
opportunistic infections and are at high risk of death
without treatment.
Owing to the lengthy asymptomatic stage without

symptoms, many individuals do not realize that they are
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infected for a number of years. Moreover, through sex-
ual contact and intravenous drug use, infections often
remain undetected due to the reliance on voluntary test-
ing following those high risk exposures[8, 9]. This issue
both leads to increased HIV transmission and complicates
modeling exercises, increasing the difficulty of explicitly
quantifying the epidemiological dynamics of HIV/AIDS.
Furthermore, owing to the widespread use of antiretrovi-
ral therapy (ART), prevalence estimation is controversial:
even where prevalence can be estimated, this estimate
may not reflect the current dynamics of HIV epidemics
andmay reflect only the degree of spread frommany years
in the past [10]. It is generally recognized that estima-
tion of HIV incidence can provide greater insights into
the real-time evaluation of HIV epidemics. Nevertheless,
the long asymptomatic stage also causes challenges in
estimating HIV incidence.
Starting in the 1980s, a large number of modeling stud-

ies have aimed to estimate HIV incidence, and a variety
of useful methods have been proposed for this purpose.
These diverse methods have played important roles in
HIV incidence estimation in different parts of the world.
However, only brief comparative notes have been pub-
lished elsewhere [10–12], aiming for improvement in
practical estimation settings. In this review, we compre-
hensively describe the major methods that have been used
for HIV incidence estimation, including (i) the classical
back-calculation method, (ii) the method based on CD4+
T-cell depletion, (iii) the use of HIV case reporting data,
(iv) the use of cohort study data, (v) the use of serial
or cross-sectional prevalence data, and (vi) biomarker
approach. We focus on the structural mechanisms of
modeling as well as the mathematical derivation of like-
lihood functions, and compare the advantages and disad-
vantages of existing methods. Our review is targeted to a
general audience in theoretical biology. Finally, we sum-
marize important implications for future development of
estimation methods for HIV incidence.

Back-calculation
Back-calculation, one of the most widely-used statistical
modeling approaches, exploits the distribution of incu-
bation periods of AIDS. The back-calculation method
uses epidemiological surveillance data to reconstruct HIV
infections over time. The basic idea of the method can be
described as follows. If the rate of incident HIV infections
at time s is I(s) , and the probability density function of the
incubation period f (s) is known, then AIDS incidence at
time t, denoted by A(t), can be described by

A(t) =
∫ t

0
I(t − τ)f (τ )dτ . (1)

Conversely, if the dataset for A(t) is available from surveil-
lance data and f (s) can be determined from the literature,

HIV incidence can be “back-calculated” by rearranging (1)
to

A(t) =
∫ t

0
I(s)f (t − s)ds. (2)

If F(t) denotes the cumulative distribution function of the
incubation period, one can describe the expected num-
ber of AIDS diagnoses over the time interval [Ti−1,Ti],
denoted by Xi, as

E(Xi) = ∫ Ti
Ti−1

∫ t
0 I(s)f (t − s)dsdt

= ∫ Ti−1
0

∫ Ti
Ti−1

I(s)f (t − s)dtds
+ ∫ Ti

Ti−1

∫ Ti
s I(s)f (t − s)dtds

= ∫ Ti−1
0 I(s)

∫ Ti
Ti−1

f (t − s)dtds
+ ∫ Ti

Ti−1
I(s)

∫ Ti
s f (t − s)dtds

= ∫ Ti−1
0 I(s)[ F(Ti − s) − F(Ti−1 − s)] ds

+ ∫ Ti
Ti−1

I(s)[ F(Ti − s) − F(0)] ds
= ∫ Ti

0 I(s)[ F(Ti − s) − F(Ti−1 − s)] ds.

(3)

Here, the last equality holds because F(Ti−1−s) = F(0) =
0 for Ti−1 − s ≤ 0. Then, we have

E(Xi) =
∫ Ti

0
I(s)[ F(Ti − s) − F(Ti−1 − s)] ds. (4)

The classic method using AIDS data
The back-calculation method was first proposed by
Brookmeyer et al. [13–15] who used AIDS incidence
data to estimate discrete HIV incidence using the max-
imum likelihood estimation method. Let T0,T1, · · · ,TL
denote discrete times,N denote the total number of infec-
tions before TL, and Xi denote the number of diagnosed
AIDS cases in the ith time interval [Ti−1,Ti]. Then, N is
the sum of all infected cases that have been diagnosed,
X. = ∑L

i=1 Xi, and those infected before TL but have
not been diagnosed are indicated by XL+1 = N − X..
Suppose that X = (X1,X2, · · · ,XL,XL+1) follows a multi-
nomial distribution with sample size N, where probabili-
ties (p1, p2, · · · , pL, 1 − p.) can be calculated according to
Eq. (3), and p. = ∑L

j=1 pj. In fact, pi = ∫ Ti
T0

i(s)[ F(Ti −
s) − F(Ti−1 − s)] ds, where i(s) is the probability density
function for these N individuals being infected at time
s. Denoting the observed AIDS incidence in each time
interval as x1, x2, · · · , xL, the likelihood function can be
described as follows:

N !

x1! x2! · · · xL!
(
N−∑L

i=1 xi
)
!
px11 px22 · · ·pxLL (1−p.)N−∑L

i=1 xi .

The back-calculationmethod can estimate the historical
incidence of infection that was already diagnosed and also
the number of infections that have yet to be diagnosed.
Becker et al. [16] proposed a non-parametric approach

to this method using the discrete version of Eq. (2). Let
the number of HIV infections in the ith time interval be Ii
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and the probability mass function of the incubation period
be fd. Then, the expected number of AIDS diagnoses in
interval i can be described as

E(Xi|I1, I2, · · · , Ii) =
i∑

j=1
Ijfi−j. (5)

Let μi = E(Xi) and λj = E(Ij). Then,

μi =
i∑

j=1
λjfi−j.

Assuming that HIV infections are generated by a non-
homogeneous Poisson process, Xi (i = 1, · · · , L) would
follow Poisson distributions with means μi. Then, the
likelihood function is

L∏
i=1

⎛
⎝ i∑

j=1
λjfi−j

⎞
⎠

xi

exp

⎛
⎝−

i∑
j=1

λjfi−j

⎞
⎠ , (6)

where xi is the observed frequency of AIDS cases.
It should be noted that thismethod assumes that the dis-

tribution of the incubation period does not vary over time.
In fact, it is easy to modify Eq. (2) to A(t) = ∫ t

0 I(s)f (t− s |
s)ds, where f (t − s | s) is the probability density func-
tion for an individual who was infected at time s and
diagnosed at time t. Thus, f (t − s | s) describes the time-
dependent distribution of incubation period. Similarly, the
discrete version of Eq. (5) becomes E(Xi|I1, I2, · · · , Ii) =∑i

j=1 Ijfi−j,j with fi−j,j representing the probability for an
individual infected during time interval [ tj−1, tj) and diag-
nosed during time interval [ ti−1, ti).
In this way, the mathematical expression of the back-

calculation method is straightforward, but the estimation
of Ii using this method is challenging [17] because of the
high dimension of Ii which leads to instability. To estimate
the incidence of HIV Ii, several published studies [18, 19]
have used either A(t) or I(t) as flexible parametric func-
tions. Rosenberg et al. [20] estimated the infection curve
I(s) directly, assuming that I(s) is a member of the general
family G = {g1(s), · · · , gI(s)}, where gi(s) are integrable
real functions. That is,

I(s) = �I
i=1gi(s)βi.

Specifically, this method includes splines and step func-
tions.
It should be noted that for models involving spline

and step functions, another weakness is the potential of
overfitting and the ill-posed inverse problem. Overfitting
arises when too many knots in the spline are applied. The
ill-posed problem arises when the step function is too
discrete and when the estimated HIV incidence becomes
overly sensitive to temporal fluctuations of data points.
Moreover, when the HIV epidemic has just started and the
trend has not been stable, the back-calculated incidence

in the most recent years would be more uncertain than
that based on long-lasting epidemic dynamics. This is
caused by small number of diagnosed infections in recent
observed times, yielding substantial uncertainties. How-
ever, in many existing settings in developed countries, the
HIV epidemic has continued for substantial number of
years, and in such an occasion, the uncertainties in the
estimated recent infections are not as large as that esti-
mated in the early epidemic phase with dramatic peaks
and troughs, as shown by Yan and Zhang [21]. In addition,
this method has been criticized because the estimation
strongly depends on the distribution of the incubation
period, which needs to be determined from other cohorts.
Estimation of the incubation period encountered criti-
cal challenges in the 1990s, as the introduction of ART
extended the length of the incubation period, inevitably
changing this distribution. To account for the effect of
ART, extended methods were proposed [22–26].

Using both HIV and AIDS diagnoses
In addition to AIDS incidence, the frequency of diagnosed
HIV infections has become available as part of epidemi-
ological surveillance data, greatly assisting researchers to
extend the back-calculation method [27–40]. Early stud-
ies used only HIV diagnoses of individuals who later
progressed to AIDS [27–32]. Subsequently, several other
methods were proposed to incorporate all HIV diagnoses,
including infected individuals who have not yet developed
AIDS [33–40]. Yan et al. [41] proposed an approach which
uses the number of new HIV diagnoses to back-calculate
historical HIV incidence, partially aided by supplemen-
tary data from the old AIDS case surveillance system in
populations where there were such system in the 1980s.
The estimate is also calibrated with supplementary data
based on “recent infections”, that is, the proportion among
newly diagnosedHIV that is recently infected according to
enhanced surveillance or laboratory assays. This method
was used to estimate HIV incidence amongmen who have
sex with men in Australia [42, 43]. Adding information
on HIV diagnoses to the back-calculation method enables
estimation of HIV incidence in recent years and reduces
the uncertainty associated with this estimate to some
degree. Moreover, the method enables joint estimation of
HIV diagnosis rate [44]. However, challenges associated
with estimating or assuming a time from infection to HIV
diagnosis remain.

Including CD4+ T-cell counts at diagnosis
Upon HIV diagnosis, CD4+ T-cell count data has now
become widely available. Various studies have defined
HIV/AIDS progression based on CD4+ T-cell counts and
employed Markov process models [33, 38] to estimate
HIV incidence. Birrell et al. [45] formulated a CD4-stage
structured model to use CD4+ T-cell counts at diagnosis.
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CD4+ T-cell count data represented the first CD4 count
recorded within three months of HIV diagnosis. The
model included a total of five stages: CD4+ T-cell counts
of [ 500,∞), [ 350, 500), [ 250, 300), [ 0, 200), and the AIDS
stage. Infected individuals are assumed to experience
progressive decline in CD4+ T-cell counts and proceed
through the five stages before they are diagnosed with
AIDS. Let dj = (d1,j, d2,j, d3,j, d4,j), and dk,j, k = 1, 2, 3, 4
denote the probability of diagnosis in the kth CD4 count
stage during time interval j. Let ej = (e1,j, e2,j, e3,j, e4,j),
where ek,j, k = 1, 2, 3, 4 denotes the expected number of
undiagnosed infections in the kth CD4 count stage dur-
ing time interval j. Suppose that the expected number of
diagnosed HIV and AIDS cases during time interval j is
μHIV
j andμAIDS

j , respectively, then

μHIV
j = ej−1 · djT , and

μAIDS
j = e4,j(1 − d4,j)ρ4,5

(7)

where

ej = PT
j ej−1 + (λj, 0, 0, 0)T .

λj is the expected number of new HIV infections in time
interval j, and Pj is the transition matrix describing the
proportion of individuals transitting between different
stages during time interval j. Then,

(Pj)k,l =
⎧⎨
⎩

(1 − dk,j)(1 − ρk,k+1) k = l,
(1 − dk,j)ρk,k+1 k = l − 1,
0 otherwise.

(8)

where ρk,k+1 is the transition probability from stage k to
k + 1. Let Xj and Yj(j = 1, · · · , L) denote AIDS and
HIV diagnoses during the time interval j, respectively,
which are assumed to follow independent Poisson distri-
butions with means μHIV

j and μAIDS
j , respectively. Then,

the likelihood function for HIV and AIDS diagnoses can
be calculated as

L1(X,Y;h,d) ∝
L∏
j=1

(
μAIDS
j

)Xj

exp
(
−μAIDS

j

)
×

(
μHIV
j

)Yj
exp

(
−μHIV

j

)
.

CD4+ T-cell count data at diagnosis is also available for
a subset of the above-diagnosed HIV-positive individuals.
The CD4+ T-cell count data at diagnosis are divided into
four sets: [ 500,∞), [ 350, 500), [ 250, 300), and [ 0, 200).
Let Cj = (C1,j,C2,j,C3,j,C4,j) or Ck,j(k = 1, 2, 3, 4) be the
number of HIV-positive individuals whose CD4 counts
fall into the kth CD4 stage during the jth time interval,
and Nj = �4

k=1Ck,j. That is, Nj individuals are diag-
nosed with HIV during the time interval j with the state
variable, CD4-at-diagnosis data. We assume that these Nj
HIV-positive individuals with CD4 data are multinomially
distributed as

Cj ∼ Multinomial(Nj, rj),

where

rj = {rk,j : k = 1, 2, 3, 4}, rk,j=
ek,j−1dk,j

μHIV
j

, j=1, 2, · · · , L.

Then, the likelihood of observing CD4-at-diagnosis data
can be given as

L2(C|D;h,d) ∝
L∏
j=1

4∏
k=1

rCk,j
k,j .

The full likelihood is the product of L1 and L2:

L(X,Y,C;h,d) = L1(X,Y;h,d)L2(C|D;h,d).

This method can make full use of all the available data,
including HIV and AIDS diagnoses as well as CD4+ T-
cell counts at diagnosis. Using this method, one cannot
only estimate the incidence of HIV infections but also the
diagnosis rates at different CD4 stages and during dif-
ferent time intervals, providing insightful information to
comprehensively evaluate the epidemiology of HIV/AIDS.
Using this model, Birrell et al. estimated HIV incidence
in England and Wales [46], and found that the mean time
to diagnosis had shortened from 2001 to 2010 owing to
expansion of HIV testing. However, this method is also
highly dependent on the progression rate between differ-
ent stages. Moreover, the quantities requiring estimation
have much higher dimensions yielding additional difficul-
ties. Birrell et al. [45] employed the Bayesian estimation
technique, ensuring the stability of estimates.

Using CD4+ T-cell count data at diagnosis based on
a CD4+ T-cell depletionmodel
In addition to the back-calculation method, another
major HIV incidence estimation method is to jointly use
HIV diagnosis data and the first CD4 count data while
employing the CD4+ T-cell depletionmodel [47–49]. This
method first estimates the distribution of diagnosis delays
(i.e., the time from infection to diagnosis), and then esti-
mates the incidence of HIV from the depletion of CD4+
T-cells [49]. Here, HIV incidence refers to the number of
new infections during each time interval, including both
diagnosed and undiagnosed infections by the end of the
study period. The CD4+ T-cell depletion model that was
adopted by Lodi et al. and Touloumi et al. [50, 51] can be
expressed as

√
CD4(t) = ai + (bi × t) + eit ,

where t denotes the time from infection to the date of
the first CD4+ T-cell count determination. Then, the time
from date of infection to CD4 testing for an individual i
can be estimated by
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Ti =
√
firstCD4 − ai

bi
.

ai and bi are assumed to follow a bivariate normal distri-
bution N[ (a, b), (σa, σb), ρ], and are variable from person
to person. Using standard survival analysis techniques,
the diagnosis delay probability P(x) was estimated, which
is the probability that an infected person would be diag-
nosed within x time units after infection. To statisti-
cally estimate undiagnosed infections, the authors further
defined the diagnosis delay weight asW (x) = 1/P(x).
Let t0 and tN be the start and end times of the study

period. The estimated infection time for each diagnosed
individual may be either before or after t0. Suppose the
estimated number of infections in the ith year after t0 is
ni (using the CD4+ T-cell depletion model), where i =
1, 2, · · · ,N , and the time of infection for each case is DIj,
j = 1, 2, · · · , ni. Then, the number of new infections in the
ith year after t0 can be estimated as

λi =
ni∑
j=1

W (tN − DIj).

A certain number of individuals remain to be infected
but are not diagnosed before t0. Let U denote the number
of such individuals. These individuals may either be diag-
nosed between t0 and tN , or not diagnosed until the end of
the study period tN . Let ui, i = 1, 2, · · · , be the number of
newly diagnosed cases among these persons in the ith year
after t0. Then, U = ∑

i≥1 ui is the total number of diag-
noses observed during the study period. In addition, ui for
i > N are cases who are not diagnosed until the end of
the study period.Hi is further defined as the total number
of cases diagnosed during the ith year after t0 (including
those infected before and after t0), where i = 1, · · · ,N .
Thus, ri = ui/Hi is the proportion of new diagnosed cases
in the ith year after t0 who are infected before t0. Both Hi
and ri are treated as linear regression functions of time t,
so Hi and ri for i > N can then be predicted, and ui for
i > N can at last be calculated as ui = Hi × ri. For per-
sons who are infected but not diagnosed before t0, another
diagnosis delay weight is defined as W = U/

∑N
i=1 ui.

Suppose the estimated number of infections in the ith year
before t0 ismi (using the CD4 depletion model). Then, the
number of new infections in the ith year before t0 can be
estimated as

νi = miW .

In fact, the method based on a CD4+ T-cell deple-
tion model is also a kind of back-calculation method
(it is sometimes referred to as the extended back-
calculation method) because it also uses HIV/AIDS or
CD4 T-cell counts at diagnosis to ‘back-calculate’ the
time of infection among infected individuals. In the clas-
sical back-calculation method, only the total number

of HIV/AIDS cases is required. In the extended back-
calculation method, CD4+ T-cell counts at diagnosis are
required at the individual level. For non-experts, the
extended back-calculation method is easier to carry out
owing to its low computational complexity compared with
the classical back-calculation method. Nevertheless, sim-
ilar to the classical back-calculation method, the validity
of the extended back-calculation method is highly depen-
dent on the CD4+ T-cell depletion model. In many coun-
tries and geographic areas, the empirical data required to
estimate parameters of the CD4+ T-cell depletion model
are extremely scarce. In China for example, after the
test-and-treat policy became widespread, it became much
more difficult to empirically observe CD4+ T-cell count
data during natural infection in the absence of ART.

Simple method using HIV case reporting data
In 2017, Xia et al. [52] proposed a very simple novel
method by which even non-experts can estimate HIV
incidence using HIV case reporting data. The method
assumes that HIV incidence and case finding are stable
within each 3-year period. The timeframe of interest is
broken down into overlapping 3-year periods (e.g., 2002−
2004, 2003 − 2005, · · · , 2008 − 2010). The HIV incidence
for the second year of each 3-year period can be estimated
by solving the following equations:

R = D1
U1 + I1

= D2
U2 + I2

= D3
U3 + I3

,

and

U2 = U1 + I1 − D1,

U3 = U2 + I2 − D2,
I2 = I1 + ε1, where ε1 is small,
I3 = I2 + ε2, where ε2 is small.

R is the case finding rate in a year,Di is the number of new
diagnoses in year i,Ui is the number of undiagnosed cases
at the beginning of year i, and I1 is the HIV incidence in
year i (i = 1, 2, 3). Then,

I2 ≈ D1D3 − D2D2
D1 − 2D2 + D3

.

This method is simple enough for non-experts. More-
over, it is very easy to carry out, requiring only HIV case
reporting data. However, the method is applicable only if
both incidence and diagnosis rates are stable over three
years.

Cohort studies
Another strategy for estimation of HIV incidence is to
use cohort studies of uninfected individuals [53]. Since it
is difficult to follow sufficient individuals at the national
level, a cohort study design is employed for estimat-
ing incidence among subpopulations [11]. This method
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enables researchers to directly measure HIV incidence in
the sample population, but biases are introduced when
estimating incidence by cohort. These biases are mainly
caused by two sources of error [11]. First, individuals who
receive follow-up visits may not be representative of the
population. Second, individuals who adhere to the follow-
up visits may obtain counseling repeatedly, and thus, their
knowledge of HIV may improve over time which could
affect risk of acquiring HIV.

Prevalence data
Incidence and prevalence are two important metrics for
evaluating HIV epidemics. In fact, these two measures
are related to one another. Two different types of preva-
lence data have been used to estimate HIV incidence:
serial prevalence and cross-sectional prevalence [54–59].
In this section, we review two different incidence estima-
tion methods using serial and cross-sectional prevalence
data.

Estimating incidence from serial prevalence surveys
UNAIDS has developed an Estimation and Projection
Package (EPP) which can be used to obtain HIV preva-
lence and projections [57]. Another software program,
SPECTRUM [58], internally linked with EPP, can be
employed to calculate the HIV incidence using the AIDS
Impact Model (AIM) module. Here, we summarize the
simplified methodology implemented in SPECTRUM. Let
Ha,t ,Aa,t and Pa,t denote the number of HIV infections,
the total number of adults in the population and HIV
prevalence of individuals aged a at time t, respectively.
Thus,

Ha,t = Aa,t × Pa,t .

New HIV infections (Ia,t) are the number of HIV infec-
tions in year t minus the number of survived infections
from year t − 1. The number of survived infections from
year t − 1 can be further calculated as the number of HIV
infections in year t − 1 minus deaths among HIV infected
individuals (including deaths caused by AIDS, DA

a,t , or
deaths from other reasons, DNA

a,t ) in year t − 1:

Ia,t = Ha,t −
(
Ha−1,t−1 − DA

a−1,t−1 − DNA
a−1,t−1

)
.

AIDS deaths in year t are calculated as the convolution
of the number of new infections in year t − i and the pro-
portion of deaths caused by AIDS i years after infection
(ri):

DA
a,t−1 =

20∑
i=0

(Ia−i,t−i × ri).

SPECTRUM has been updated several times since its
initial 2004 release [60–63], and the last update took place
in 2017 [64]. Other studies using the similar modeling

approach have been conducted to estimate HIV epidemic
[65, 66]. Hallett et al. [10] indicated that this method
can estimate HIV incidence from the earliest stages of
the epidemic, which is helpful to evaluate HIV epidemics
over time. However, if large amounts of data are avail-
able, the estimate will involve a large uncertainty as the
variation range of the incidence curve is very large. Since
SPECTURM need to use EPP to generate the prevalence
estimate and projections, and subsequently estimate the
incidence of new HIV infections, any change in the inci-
dence can only be detected through prevalence changes
that may be observed over several years in later time. An
additional disadvantage of this method is the difficulty
in choosing an appropriate dataset from which preva-
lence is estimated. The estimation of HIV incidence could
be significantly biased if the prevalence for the entire
population is not estimated properly. For the long time,
epidemiologists have used the data from antenatal clinics
to estimate the prevalence in the entire population in sub-
Saharan Africa [57]. As the HIV prevalence then appeared
to be greater than that of the general population, national
population-based household HIV surveys data are addi-
tionally used to calibrate overall population prevalence
[67–69]. In fact, EPP began to include such household
survey data in the estimation [70, 71]. Besides, household
survey could miss a large part of the population that was
affected by the HIV epidemic, and may on the other hand
yield substantially small estimate of the prevalence. Syn-
thesizing the use of different datasets over time could act
as a cause of biased estimation.

Calculating incidence from cross-sectional prevalence
Hallett et al. [59] proposed a method to estimate the
age-specific incidence of HIV from cross-sectional preva-
lence data. They first estimated incidence based on cohort
mortality rates of infected individuals as well as survival
distributions followingHIV infection, then calculated age-
specific incidence according to the relationship between
these two measures.
In the following, we first summarize the relationship

between age-specific incidence and cohort incidence. The
age group i is defined as individuals aged from ai − r

2
to ai + r

2 . Thus, the age group i is centered at ai with a
width of r years. The total number of individuals and HIV-
infected individuals in age group i at time j are denoted
by Ni,j and Hi,j, respectively. Then, the prevalence is pi,j =
Hi,j/Ni,j.
We assume that cross-sectional prevalence is measured

with an interval of T years in such age groups. Thus, age
cohorts can be constructed as aged ai − r

2 to ai + r
2 at

the start and ai − r
2 + T to ai + r

2 + T at the end of each
interval. Now the cohort incidence, which is denoted by
λ̃i, can be illustrated by diagonal parallelogram (regions A
and B in Fig. 1). The conventional age-specific incidence
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Fig. 1 Diagram of age cohort experience of incidence and
conventional age-specific incidence

rate for age-group i, which is denoted by λi, is illustrated
by regions B and C in Fig. 1. As Fig. 1 shows, region C can
be seen as part of the incidence of cohort i − 1. Denote
the areas of regions A and B as SA, SB. The total area for
the diagonal parallelogram is Tr (that is, SA + SB). The
fractions contributed by cohort i and i − 1 are 1 − T/2r
(SB/(SA + SB)) and T/2r (SA/(SA + SB)), respectively.
Then, the conventional age-specific incidence rate can be
calculated using the following equation:

λi =
(
1 − T

2r

)
λ̃i +

(
T
2r

)
λ̃i−1.

The derivation of the above formula assumes that T ≤ r.
When T > r, a similar method can be used for deriving a
different formula, which is omitted here.
In the following, the methodological background of the

cohort incidence estimation λ̃i is described. Let π̃i be the
fraction of infected individuals in the ith age-group who
survive from the start to the end of the interval, and μ̃i
be the mortality rate during this interval for individuals
in the ith age-group who are uninfected. Then, the num-
ber of seroconverting individuals in age group i during the
interval T can be approximated as

Hi,T − π̃iHi,0,

and the number of person-years spent by age-group i
during the interval T is approximated as

T
(Ni,0 − Hi,0) + (Ni,T − Hi,T )

2
.

Then, the cohort incidence can be derived as

λ̃i = seroconversions
person-years

= 2(Qipi,T − π̃ipi,0)
T(1 − pi,0 + Qj(1 − pi,T ))

,

whereQj denotes the change in the size of the cohort over
the time interval T.

Qj ≈ 1 − (1 − π̃i)pi,0 − (1 − exp(−μ̃iT))(1 − pi,0).

The authors further defined age cohort 0, calculating
the prevalence at the start and end of the interval, and
subsequently, the cohort incidence for this age cohort. π̃i
can either be estimated based on the age-specific cohort
mortality rates of infected individuals, or estimated using
the distribution of survival time after infection, although
we omit the details in this review. To use this method,
age-specific cross-sectional prevalence data are required.
Moreover, the duration between two cross-sectional mea-
surements of prevalence should be small to ensure that the
incidence and prevalence do not change significantly dur-
ing this time interval. Because people with long survival
time are preferably included in cohorts, the time-length
bias is inevitable with this method. Both methods using
serial and cross-sectional prevalence could be affected by
the increasing coverage of ART [10, 59].

Biomarker approach for cross-sectional incidence
estimation
It is widely recognized that recent infection rates are diffi-
cult to estimate using the back-calculation method owing
to the long incubation period of AIDS, while cohort stud-
ies have difficulty following a sufficient number of high-
risk uninfected persons. To complicate these issues, ART
can considerably extend the incubation period, adding
complexity to the majority of estimation methods men-
tioned above. As a possible alternative, a biomarker-based
approach using cross-sectional incidence estimation was
proposed and has clear advantages in estimation of recent
infections [72–86]. This approach uses biomarkers from
biological samples collected in cross-sectional studies to
identify recent HIV infections.

Using diagnostic tests for the p24 antigen during the
pre-seroconversion period.
In 1995, Brookmeyer et al. [72] proposed a simplisticmod-
eling approach that uses diagnostic tests for HIV-1 p24
antigen to determine the prevalence of individuals who are
p24 antigen-positive among HIV-seronegative individu-
als. Letμ be themean duration of the p24 antigen-positive
period before seroconversion, I be the infection risk per
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unit time for each uninfected individual (that is, the cur-
rent incidence rate), and p be the expected proportion
of individuals who are p24 antigen-positive among indi-
viduals whose HIV-antibody test results are negative or
indeterminate. Then, p can be approximated as Iμ, and I
can be estimated as

I = p/μ.

Here, μ is referred to as the window period during which
infected individuals have not yet seroconverted, but are
still identifiable using biomarker(s). Supposing that p̃ is
the number of individuals who are p24 antigen-positive
during the window period, and n is the total number of
individuals in the cross-sectional survey whose HIV anti-
body tests results are negative or indeterminate (i.e., p =
p̃
n ). Then, we have

I = 1
μ

· p̃
n
.

The confidence interval for the incidence rate can be
further estimated by assuming that p̃ follows a Poisson
distribution with expectation nIμ.

Using HIV enzyme immunoassay (EIA), antibody avidity
index or genetic diversity
For the method proposed by Brookmeyer et al. [72], all
individuals whose HIV antibody tests are negative need
to undertake diagnostic testing for p24 antigen. Since the
duration of the p24 antigen-positive pre-seroconversion
period (window period) μ is very short (mean duration
22.5 days [72]), a large number of individuals need to
be tested in situations where I (the population incidence
rate) is high or n (the number of individuals that can
be tested) is large. Janssen et al. [73] developed a new
method to employ a testing algorithm based on either
a sensitive assay (3A11) or a less-sensitive assay (3A11-
LS). For a given cohort study, let T be the mean duration
between seroconversion for the two assays (i.e., the win-
dow period), n be the number of individuals who are
3A11 reactive and 3A11-LS non-reactive, and N be the
number of individuals who are HIV-negative or 3A11
reactive/3A11-LS non-reactive. Then, the incidence rate
is

I = n
N

· 1
T
.

The window period using the sensitive/less sensitive
assay testing algorithm is longer (i.e., 129 days) [73]. How-
ever, the algorithm does not perform well in populations
infected with non-B HIV-1 subtypes [74]. Parekh et al.
[75] proposed a subtype-independent assay called BED
capture EIA (BED-CEIA; named after HIV subtypes B,
E, and D), which can be used for detecting recent infec-
tions in populations infected by multiple HIV-1 subtypes.
The mean BED window period is 156 days. Using the

BED assay, Karon et al. [76] further proposed a method
which can take into account information on history of
HIV testing. Here, testing history refers both to whether
an individual has undertaken HIV testing prior to HIV
infection as well as the testing frequency. Since the anti-
body avidity index is always low during early infection,
another method for estimation of recent infections based
on the avidity index was proposed [77]. Genetic diversity
of HIV has also been used as a biomarker to estimate HIV
incidence [78–81], since it changes as the disease pro-
gresses. Other published studies [78, 79] identified recent
HIV-1 infections based on data from traditional or next-
generation DNA sequencing. Another research team [80,
81] developed a method based on a high-resolution melt-
ing (HRM) diversity assay to determine HIV diversity
without sequencing.

Multiassay algorithms (MAAs)
The above serological assays have limitations because of
their low accuracy in distinguishing recent from chronic
infections. Some chronic infections may be misclassified
as recent infection, and thus these methods may overes-
timate HIV incidence [82, 83]. Laeyendecker et al. [82,
83] demonstrated that factors such as low viral loads, low
CD4+ T-cell counts, and > 2 years of ART were asso-
ciated with misclassification by the BED-CEIA. Avidity
assays, which identify recent infections by studying the
maturity of the antibody response against HIV, also have
difficulties in distinguishing recent infections for HIV-
1 incidence estimation [87, 88]. Laeyendecker et al. [84]
and Brookmeyer [85] developed a MAA to estimate HIV
incidence. The MAA integrates data from BED-CEIAs,
antibody avidity assays, HIV viral loads and CD4+ T-cell
counts. These algorithms are described in Fig. 2a and b,
respectively.
All biomarker approaches estimate incidence at a time

prior to sample collection, and the concept of the shadow
describes the lag-time [85, 89–91]. Shadow and mean
window period are two distinct but important con-
cepts for evaluating the statistical accuracy of current
HIV incidence estimates. Estimation approaches with
large mean window periods will have smaller standard
errors, and those with small shadows can better esti-
mate more recent incidence [85, 89–91]. Thus, estimation
approaches involving a larger mean window period and a
smaller shadow are desirable.
The difference between theMAAs proposed by Laeyen-

decker et al. [84] and Brookmeyer [85] is that they use
different cut-offs for CD4+ T-cell counts, BED-CEIAs,
avidity and viral loads. Thus, the two algorithms have dif-
ferent mean window periods (141 days, 95% confidence
interval (CI) (94, 150) vs. 159 days, 95% CI (134, 186),
respectively) and shadows (128 days vs. 184 days, respec-
tively). As Fig. 2a and b show, both of these algorithms
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Fig. 2Multi-assay algorithms (MAAs) for cross-sectional HIV incidence estimation (a) and (b) MAAs using CD4+ T-cell counts with different cut-off
values. (c) MAA using only three biomarkers. (d) MAA using HRM diversity assay

require CD4+ T-cell counts, which are difficult to obtain
in some settings. Thus, Laeyendecker et al. [85] developed
another MAA using only three biomarkers (BED, avidity,
and viral load) as shown in Fig. 2c. This three-biomarker-
assay does not require CD4+ T-cell count data, and thus
is less expensive. However, the mean window period for
the three-biomarker-assay is 58 days shorter than that of
the four-biomarker-assay. Hence, to achieve the same inci-
dence standard error, the three-biomarker-assay requires
a sample size about 57% larger.

Cousins et al. [86] proposed a new MAA in which a
HRM diversity assay is used in place of CD4+ T-cell count
data, as shown in Fig. 2d. The mean window period and
shadow for the HRM-based MAA are 154 days (95% CI
128, 180 days) and 179 days (95% CI 135, 243 days),
respectively. The performance of the HRM-based MAA
was shown to be nearly identical to that of the MAA
including CD4+ T-cell count data.
For all MAAs, HIV incidence is calculated using the

following equation:
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I = n
N

· 1
T
,

where n is the number of MAA-positive subjects, N is the
total number of individuals who areHIV seronegative, and
T is the mean window period.
Several narrative reviews have been published describ-

ing incidence estimation approaches that use biomarker
data [10, 11, 74, 88, 91–93]. Technical challenges of
biomarker approach include misclassification of chronic
infections as recent infections and a large variation in
testing results between individuals [10], although the
accuracy of recent infection estimate has been markedly
improved by using MAAs. As reviewed by Murphy et al.
[93], biomarker-based incidence could achieve high pre-
cision if false recency ratio is sufficiently close to zero.
Moreover, as the biomarker approaches include a variety
of biomarkers, the complexity to identify recent infec-
tions has become more and more complex over time,
which may sometimes even require specialized equip-
ments. Early treatment and the use of pre- and post-
exposure prophylaxis also bring new challenges to the
biomarker approaches. In recent years, the incidence in
some populations or sub-populations have been estimated
by using biomarker approaches [94–96], and sometimes
the biomarker method was combined with other exist-
ing modelling approaches [97, 98]. Because of financial
constraints, insufficient coordinated action among fund-
ing bodies, governments and developers could also act as
a hazard for propagating this approach [93], frequently
involving problems in purchasing agreement and limited
financial support for quality control and training.

Discussion
In this review, six major methods for estimating HIV inci-
dence were briefly described. These included the back-
calculationmethod, methods using CD4+ T-cell depletion
models, methods using HIV case reporting data, meth-
ods based on cohort studies, methods using prevalence
data, and biomarker-based approaches. Back-calculation
methods can be divided into three subgroups according to
the data used: (i) AIDS diagnosis data only, (ii) both HIV
and AIDS diagnosis data, and (iii) HIV/AIDS diagnosis
data as well as CD4+ T-cell counts at diagnosis. Similarly,
methods using prevalence data can be further divided into
methods based on serial and cross-sectional data. Our
primary foci were the background mechanism of estima-
tion, the required data types, the scope of application, the
model formulation, the derivation of the maximum like-
lihood function, and the advantages and disadvantages of
applying each method in practice.
Back-calculation methods are widely used to estimate

the incidence and prevalence of HIV in various parts of
the world [43, 46]. Thesemethods were initially developed
using AIDS diagnosis data only, but were later extended

to use both HIV and AIDS diagnoses, and then to further
account for CD4+ T-cell counts at diagnosis. The back-
calculation method has also been modified to include
the effect of ART on the distribution of the incubation
period. Back-calculation methods have clear advantages
and disadvantages compared with other methods [99].
First, the back-calculationmethod requires only data from
case reporting systems, and does not necessarily require
laboratory testing and individual-level data. However, the
incidence estimate in recent years tends to be unstable,
especially where the HIV epidemic has just started, and
accuracy of the estimate is influenced by the distribution
of the incubation period (or the progression rate) as well
as the testing rate.
Compared with back-calculation method, it would be

easier to implement the statistical estimation using CD4+
T-cell depletion among non-experts. However, it assumes
that the distribution of delays in diagnosis does not change
over time. Thus, it may overestimate HIV incidence if
HIV testing rates increase over time. As mentioned above,
cohort studies have many difficulties and may introduce
some biases when incidence is directly estimated among
high-risk populations with close follow-up. For meth-
ods using prevalence data, both methods using serial
and cross-sectional prevalence data are associated with
uncertainties in evaluating HIV prevalence and AIDS
deaths. Moreover, both methods are strongly influenced
by the use of ART. Methods using cross-sectional preva-
lence data further assume that HIV incidence during the
time interval between two prevalence surveys is con-
stant, which is only true for very short time intervals.
Biomarker-based approaches, which uses biomarkers in
biological samples collected in cross-sectional studies to
identify recent HIV infections, can avoid the difficulties
associated with follow-up of high-risk uninfected persons
in cohort studies as well as difficulties in estimating the
distribution of long incubation periods. Biomarker-based
methods can better estimate more recent HIV incidence
compared with the back-calculation method. As labo-
ratory testing techniques progress, MAAs have become
available at low cost, which could minimize the effort and
cost involved in incidence estimation in the future. Nev-
ertheless, minimizing the ‘false recency ratio’ (FRR) at a
sufficiently low level remains to be a challenge. Biomarker
approaches also involve other technical difficulties in
quality control, training and evaluation of assays.
The required data are, at the moment, divided into four

different categories: (i) epidemiological data including
AIDS diagnoses andHIV diagnoses, (ii) CD4 T-cell counts
at diagnosis, (iii) prevalence data, and (iv) biomarker test-
ing data. Prevalence datamay be further divided into serial
prevalence and cross-sectional prevalence data. It must
be noted that definitions of HIV incidence are not uni-
form across different methods. For the back-calculation
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method, methods using CD4+ T-cell depletion models,
methods using cohort studies and methods using serial
prevalence data, HIV incidence is defined as the number
of new HIV infections per unit time (year) or the instan-
taneous incident infections occurring at time t. However,
for methods using cross-sectional prevalence data, HIV
incidence is defined as the average hazard of new infec-
tions occurring during the interval. For the biomarker
approach, an HIV incidence rate is estimated, which is
defined as the infection risk per unit time for each unin-
fected individual (except for the method using BED-CEIA
[76], which estimates conventional incidence instead).
Obviously, conventional incidence and incidence rates can
be converted as long as the total number of uninfected
individuals is known. In addition to different incidence
definitions, there is also another difference among these
methods. The back-calculation method, methods using
CD4+ T-cell depletionmodel, methods using cohort stud-
ies and methods using serial prevalence data can estimate
serial incidence (i.e., the incidence year-over-year). How-
ever, the method using cross-sectional prevalence data
and the biomarker approach estimate the cross-sectional
incidence or the HIV incidence at a time prior to collec-
tion of samples. Thus, different methods estimate HIV
incidence with variable time frames.

Conclusion
A variety of methods exist to estimate HIV incidence
from different data types and scopes, and it is diffi-
cult to conclude which method perform best. Rather, it
should be remembered that HIV incidence estimation
itself described what cannot be directly validated, as the
estimated quantity is not directly observable in natural
settings. Thus, a new method should be regarded as way
to mitigate uncertainty with respect to the estimates of
another method, and analyzing HIV data from multiple
standpoints and sources is one way to overcome such
uncertainty. As the methods for HIV incidence estima-
tion have different scopes and different advantages and
disadvantages, we hope that this review will be useful for
determining which datasets need to be collected to esti-
mate HIV incidence in a comprehensive manner. Should a
surveillance system be improved to collect multiple types
of datasets as described above, it would be feasible to
cross-validate different methodologies and see how dif-
ferent methods can complement each other so that an
objective assessment of the HIV/AIDS epidemic will be
eventually achieved.
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