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Abstract

Variations of gene expression levels play an important role in tumors. There are numerous methods to identify
differentially expressed genes in high-throughput sequencing. Several algorithms endeavor to identify distinctive
genetic patterns susceptable to particular diseases. Although these processes have been proved successful, the
probability that the number of non-differentially expressed genes measured by false discovery rate (FDR) has a
large standard deviation, and the misidentification rate (type I error) grows rapidly when the number of genes to
be detected become larger. In this study we developed a new method, Unit Gamma Measurement (UGM),
accounting for multiple hypotheses test statistics distribution, which could reduce the dependency problem.
Simulated expression profile data and breast cancer RNA-Seq data were utilized to testify the accuracy of UGM. The
results show that the number of non-differentially expressed genes identified by the UGM is very close to the real-
evidence data, and the UGM also has a smaller standard error, range, quartile range and RMS error. In addition, the
UGM can be used to screen many breast cancer-associated genes, such as BRCA1, BRCA2, PTEN, BRIP1, etc.,
provides better accuracy, robustness and efficiency, the method of identification differentially expressed genes in
high-throughput sequencing.

Keywords: Differentially expressed genes, False discovery rate, Standard deviation, RNA-Seq data, Root mean square
error, Cancer-associated genes

Introduction
Cancer is a major public health problem worldwide. It is a
disease that arises from uncontrolled cell cycle, proliferation
and inter-cellular communication. As of to date, more than
100 types of cancers were diagnosed in human [1]. Scientists
have reached a consensus that cancer is caused by both gen-
etic factors, such as mutations and disrupted hormones, and
environmental factors [2]. Some tumors are hereditary dis-
eases, which are attributed by the disorder of the mechanism
regulating cell growth and proliferation. In general, genetic
or epigenetic changes in DNA could confer a normal cell
potential malignancy [3, 4]. Cellular- oncogenes, anti-

oncogene and DNA repair genes are major types of genes
that contribute to this process. The interaction of these
genes is sometimes referred to as the “driver” of cancer [5].
Although the genomic composition of cells are almost

identical for an individual, genetic, transcriptional and ex-
pression variation may occur during cell differentiation
and proliferation. Investigation into the difference of gene
expression profiles among cells in different state would
provide significant insights into the function of genes and
their products [6]. The identification of affiliation/connec-
tion between disease and genetic or expressional pattern
renders tremendous/enormous significance. Differentially
expressed genes and proteins can be screened from the
level of genes and proteins, respectively.. Screening differ-
ential molecules can be accomplished in two ways: screen-
ing from protein expression data or using RNA-Seq data
to detect differentially expressed genes. Over the past dec-
ade many genome-wide studies have demonstrated that
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there are many genes harboring overrepresented muta-
tions, such as tumour protein 53 (TP53) [7], phosphatase
and tensin homolog deleted on chromosome ten (PTEN)
[8], kirsten rat sarcoma viral oncogene homolog (KRAS)
[9], myelocytomatosis viral oncogene (MYC) [10], breast
cancer (BRCA) [11] .
Gene chip is also known as Bio-array or microarray,

and this technology is based on the theory of
hybridization by Edwin Mellor Southern. In the 1980s,
gene chip prototype was proposed. The first gene chip
was achieved in 1991. With the development of human
genome project and molecular biology technology, gene
chip technology has been developing rapidly in the past
20 years. Gene chip can detect the growth of tumor-
related information, and has evolved to be a sophisti-
cated technology in tumor detection and analysis. The
rapid development of gene chip technology has brought
revolutionary impact on medical research [12].
Genomics research shows that the gene expression dif-

ferences are associated with biological conditions and
disease stages. It is a useful tool of microarray technol-
ogy for quantitative analysis of gene expression in recent
decades. Both the microarray data and RNA-Seq data is
characterized by low sample size and high dimensional
variables. Therefore, when identifying differentially
expressed genes in these data, multiple comparisons are
required. When we conduct multi-sample hypothesis
tests, the false discovery rate (FDR) is a widely adopted
method to control type I errors in null hypothesis test-
ing. The FDR method is a probability designed to con-
trol the false events [13, 14]. For type I error, the FDR
controlling procedure is not as strict as family wise error
rate (FWER) controlling procedures, which controls the
probability of more than one type I error [15]. There-
fore, FDR controlling programs have an advantage over
type I errors, but at the cost of increasing the error rate
[16, 17]. At the same time, the results of different
methods are quite different. So far, there is still no uni-
fied conclusion in the scientific community regarding
the most efficient, robust and accurate method. There-
fore, this paper aims to propose a new method for
screening differentially expressed genes based on gene

expression profiling data, and uses simulated gene chip
data and breast cancer data to verify the validity and ac-
curacy of the proposed method. Furthermore, this article
also aims to provide a case study for the screening of
clinical differentially expressed genes.

Methods
Multiple hypothesis testing and FDR
In the 1950s, multiple hypothesis testing began to gain
attraction, especially for high-throughput data analysis,
where the problem of multiple comparisons was particu-
larly outstanding. Microarray data is an example of high-
dimensional data, which is characterized by small sample
size and high variable dimension, which constituted a
typical multiple hypothesis testing problem. Table 1
summarizes this situation in traditional form.

FDR ¼ E
V

S þ V

� �
¼ E

V
R

� �
R≠0

0 R ¼ 0

8<
: ð1Þ

The definition of FDR is the expectation of false discov-
ery rate(V/R). At present FDR has been widely used in
practical problems. According to the literature reported,
when m0 =m, then FDR = FWER. When m0 ≤m, then
FDR ≤ FWER. FDR not only improves the test capability,
but also makes better the traditional multi-hypothesis test
process, which is too conservative. Therefore, FDR sup-
plies a applicable error calculation standard for multiple
tests of large-scale data. FDR commonly used control
process Benjamini, & LIU (BL), Benjamini, & Hochberg
(BH), Benjamini & Yekutieli (BY) and a-daptive linear
step- up (ALSU). Currently the most widely used method
is the ALSU procedure. The ALSU procedure as follows:

(1) Let H01, H02, H03, …, H0m be the tested null
hypotheses. Using single test method to test each
event and get P values P1, P2, P3, …, Pm, and sort p
values P�

1;P
�
2; P

�
3;…;P�

m.
(2) Let rðλÞ ¼ max

1≤ i≤m
fi : P�

i ≤λg, where λ is usually
taken as 0.5. r(λ) represents the number less than λ.

Table 1 Multiple hypothesis testing

Declared non-significant Declared significant Total

True null hypotheses U V m0

Non-true null hypotheses T S m1(m-m0)

m-R R M

We need to consider testing the m (null) hypothesis, where m0 is true and the rest m1 =m-m0 is false. After testing the m (null) hypotheses, there are R rejected
and m-R not rejected null hypotheses. m (null) hypotheses were committed into four parts by type I error and type II error. They are U, V, S, and T. U and S
denote the number of correct tests in m. V denotes the number of type I error tests in m. T represents the number of type II error in m, and R is used to
represent observable random variables. U, V, S, and T are unobservable random variables
In the 1990s, Benjamini and Hochberg put forward the FDR control method. FDR control method uses correction theory to correct the first type of error in
multiple hypothesis testing. In the rejected events, FDR controls the prospective rate of falsely rejected null events (type I errors) [15]. FDR is a relatively
conservative comparison method, with greater power, compared with FWER control. FDR is outlined as follows
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(3) Estimate π̂0 by π̂0 ¼ m−rðλÞ
m�ð1−λÞ. Estimate m̂0 by m̂0

¼ m−rðλÞ
1−λ , where m̂0 is the number of true vents.

(4) Estimate k̂ ¼ arg max
1≤ i≤m

fi : P�
i ≤

i
m
�αg. Where α =

0.05.
(5) If k̂ exists, reject the events of H�

0ð1Þ;H
�
0ð2Þ;H

�
0ð3Þ;…;

H�
0ðk̂Þ. Else, do not reject any hypotheses.

(6) Adjust P�
i by P�

i ¼ min
i≤ k ≤m

f minfcm0

k
�P�

k ; 1gg.

From the above introduction, we can figure out that
the key step of the ALSU procedure is the appraisal of
m0. The accuracy of m0 is crucial for the screening of
differentially expressed genes, FDR control processes
and testing capabilities. However, statisticians found that
this approach is very unstable [18]. In spite of the fact
that we repeated many times FDR procedure and get the
mean of m0 is exactly similar to the true value, the
standard deviation (SD) is very large, which caused wide
random deviation. Therefore, it is necessary to improve
the estimation algorithm of m0.

New estimation method
The P-value is the probability that the sample emerge
extreme results when the null event is true. In the hy-
pothesis test, the P-value is used to determine the hy-
pothesis test results and reflects the feasibility of the test

results, i.e., the level of accepting and rejecting the null
hypothesis. The smaller P value, the more significant the
hypothesis test result. If we assume the null hypothesis
is H0, the alternative hypothesis is H, and the sample ob-
servations are X1, X2, X3, …, Xn. After selecting the ap-
propriated statistic T, we can compute the
corresponding P value. In multiple hypothesis tests, the
P-value results are shown in Fig. 1.

From Fig. 1 we can get that P value is a very regular na-
ture in the ideal state. If the number of genes is m, and
the ratio of the number of non-differentiated genes is π0,
therefore the number of non-differentiated genes are
m0 =m ∗ π0. Assuming there is a value γ, which all differ-
ential expression of gene test P values are distributed in
(0, γ). In this case, the genes distributed in (γ, 1) should be
all non-differentially expressed genes. In this region, the
number of non-differentially expressed genes in unit

gamma length were min
1≤ i≤m

fi : P�
i ≥γg�

γ
1−γ

#fPi≥γg� γ
1−γ

.

Therefore the number of genes distributed in (0, γ) should
theoretically be the sum of all the differentially expressed

genes and min
1≤ i≤m

fi : P�
i ≥γg�

γ
1−γ

, i.e., the number of genes

in (0, γ) is m−m0 þ min
1≤ i≤m

fi : P�
i ≥γg�

γ
1−γ

m−m0 þ γ
1−γ

#

fPi≥γg:. In order to avoid the effect of random error, we

Fig. 1 Relationship between P(i) and its frequency; P(i) and i are simu-lated data (10,000 genes). a. Frequency distribution of P(i); b. P(i) vs i. Note:
Hypothesis testing has the following two characteristics. I). When H0 is true, the P value calculated from observed value is uniform distribution in
(0, 1), i.e., P ~ U (0, 1). II). When H0 is false, the distribution of P value is uncertain. However according to the definition of P value can be known,
this time P value is small. Usually the P value is less than 0.05, and tends to zero
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calculated the number of non-differentially expressed
genes in the multi-gammas.
The key of this algorithm is to appraise m0m0. Let H01,

H02, H03, …, H0m be null hypothesis (genes). Corres-
pondingly, the P-values of independent hypothesis tests
are P1, P2, P3, …, Pm. Level of significance is α. Because
this article uses the concept of the unit gamma length
number of genes. In this paper, the algorithm is named
Unit Gamma Measurement (UGM), which process as
follows:

(1) Let H01, H02, H03, …, H0m be the tested null
hypotheses. Using single test method to test each
event and get P values P1, P2, P3, …, Pm, and sort p
values P�

1;P
�
2; P

�
3;…;P�

m.
(2) Select the appropriate cutoff gamma, which is used

to qualitatively divide the P value. Gamma should
be greater than the Level of significance. Gamma
can be appropriately increased when there are lots
of genes. Calculate the number of genes distributed
in (0, γ), (γ, 2γ), …, (n ∗ γ, (n + 1) ∗ γ). (n + 2) ∗ γ was
greater than 1. We define Pre _ γ and Lat _ γ(k) as
follows:

Preγ ¼ max
1≤ i≤m

i : P�
i ≤γ

� �
Latγ kð Þ ¼ max

1≤ i≤m
i : P�

i ≤k�γ
� �

k ¼ 1; 2; 3;…; n

8<
: ð2Þ

(3) Estimate m −m0. Estimation method as follow:

m−m0 ¼ m̂1 ¼ Pre γ−
Xn
i¼1

τi�Lat γ ið Þ ð3Þ

τiτi was weight coefficient, which formula is as follows:

τi ¼ 1

Lat γ ið Þ�Pn
j¼1

1
Lat γ ið Þ

ð4Þ

(4) Get m̂0

m̂0 ¼ m−m̂1 ð5Þ

(5) Adjust P�
i by P�

i ¼ min
i≤ k ≤m

f minfcm0

k
�P�

k ; 1gg.

Simulation experiment and evaluation parameters
We use in silico analysis to generate gene expression
profiles according to the data structure presented in
Table 2. The sample size of the experimental group (pa-
tient group) and the control group (normal observation
group) is 40. The population mean of gene expression
levels of experimental group and control group is μ1i
and μ2i. When the gene (non-differentially expressed
gene) number is less than m0, μ1i = μ2i = μμ1i = μ2i = μ.
When the gene (differentially expressed gene) number is
more than m0–1, μ1i ≠ μ2i. In order to avoid the impact
of accidental factors on the results, we performed 1000
repeated experiments on the algorithm for different
values of π0.

Results
Performance on simulated data
In general, the proportion of differentially expressed
genes was small, i.e., π0π0 was large. In the simulation,
we set the total number of genes (m) was 10,000, 8000,
5000, 3000, 2000 and 1000. We set the value of π0π0 was
0.8,0.85,0.9 and 0.95. In each case, we estimated the m0

using Adaptive Benjamini and Hochberg (ABH), Storey
& Tibshirani-λ (S~λ), Two Stages Test (TST) and UGM
methods and computed the average of m0 with repeated
1000 times simulations.

Table 2 Constitution of the gene expression profiles

Gene category Gene
number

Samples S1 Samples S2

1 to 40 1 to 40

Non differentially expressed genes Gene 1 X11~N(μ, 1) X12~N(μ, 1)

Gene 2

Gene m0

Differentially expressed genes Gene m0 + 1 X21~N(μ1, 1) X22~N(μ2, 1)

Gene m0 + 2

Gene m

μ~N(0, 2), μ1~N(0, 1), μ2~N(2, 1). Non-differentially expressed genes’ number is from 1 to m0, which samples S1 and S2 come from a same population, i.e.,
μ1i = μ2i = μμ1i = μ2i = μ. μ1 = μ2 = μ~N(0, 2); Differentially expressed genes’ number is from m0 + 1 to m, i.e., μ1 ≠ μ2, μ1~N(0, 1), μ2~N(0, 2)μ1i ≠ μ2i
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Table 3 showed the mean of m0 estimated by ABH, S-
λ, TST, UGM in different conditions. We used the esti-
mated m0 values and the actual m0 value to do the rela-
tive error analysis. The result shows that the relative
error of the UGM method is distributed between − 0.181
and 0.156%. The relative error of the other three estima-
tion methods were distributed between 0.071 and
5.900%, − 0.708 and 0.431%, − 4.873% and − 4.633%. The
estimation results of m0 in the four methods have identi-
cal tendency as the actual value. However, the results of
the UGM method and the ABH, TST method have sig-
nificant difference (P = 0.01296, P = 0.0000, chi-square
test), which is undetected between the UGM method
and the S-λ method (P = 0.8644).
The SD represents the discrete degree of the data. The

range is the diversity between the maximum and mini-
mum values in a list of numbers. The quartile range is
the distance between upper quartile and lower quartiles.
Both range and quartile range can reflect the fluctuation
range and the discrete degree of the data. The root mean
squared error (RMSE) is used to measure the disparity

between the estimated values and the true values. The
coefficient of variation (CV) is used to indicate the dif-
ference between the different indicator units. Table 4
compares the results of m0 estimation of the four
methods using six indicators.
Table 4 showed that all the results of four

methods trended to 2850. However, there was a big
deviation yielded by the TST method computing the
number of non-differentially genes (2714.4), i.e., the
TST algorithm is less reliable for m0 estimation. The
mean shows that the m0 estimated by the UGM
method is the closest to the real value, which
slightly better than the S-λ algorithm. In addition,
the quartile range computed using ABH, UGM and
S-λ method were increased. But the results of ABH
and UGM method were very close to each other.
What’s more, the SD, range and CV derived by the
UGM method are better than both the ABH and S-λ
method, which means that the discrete extent of the
data calculated using the proposed method is
smaller. In summary, UGM is more stable, accurate

Table 3 Estimate the number of non - differentially expressed genes

M m0 The conventional algorithm for estimating m0 UGM

ABH S~λ TST

m = 10,000 9500 9517.19 9508.02 9050.38 9506.46

9000 9009.29 8994.82 8567.83 8998.81

8500 8506.22 8501.08 8094.84 8499.64

8000 8005.65 8016.6 7621.17 8002.45

m = 8000 7600 7618.56 7594.42 7238.49 7605.38

7200 7212.48 7202.38 6857.02 7201.19

6800 6806.34 6797.70 6476.21 6802.57

6400 6405.70 6389.94 6092.90 6394.36

m = 5000 4750 4769.55 4747.70 4523.67 4746.36

4500 4510.81 4494.24 4286.04 4501.43

4250 4256.13 4248.34 4044.48 4247.84

4000 4005.39 4001.74 3806.76 3999.08

m = 3000 2850 2873.10 2842.86 2712.85 2847.21

2700 2712.24 2704.64 2571.58 2699.57

2550 2557.97 2542.64 2431.85 2552.04

2400 2405.60 2396.16 2286.61 2399.08

m = 2000 1900 1920.93 1907.90 1810.11 1900.54

1800 1810.78 1804.56 1715.32 1802.80

1700 1709.40 1707.18 1619.89 1700.99

1600 1605.61 1599.80 1522.54 1597.70

m = 1000 950 972.36 949.10 904.86 949.81

900 911.96 897.02 857.14 901.10

850 856.03 843.98 809.41 849.86

800 805.23 800.84 761.54 800.16

Each m corresponds to four different m0. The confidence interval selected for each experiment was 0.95
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and robust. The UGM method is better than other
conventional algorithms.

Performance on real data
In order to verify the validity and accuracy of UGM, we
selected the breast cancer gene chip data to further ver-
ify UGM in this paper. However, the selection of real
data is random and unlimited breast cancer gene chip
data, which is part of our previous research. In this
paper, the gene chip data was downloaded from the
NCBI\GEO database. (platforms number: GPL570; ac-
cession number: GSE31192 [5, 19]. Total RNAs were ex-
tracted from breast cancer and normal tissues. The
experimental group was women with breast cancer, and
the control group was women of the same age without
breast cancer. Malignant epithelia and tumor-associated
matrix of pregnancy-associated breast cancer (PABC)
and non-PABC were isolated by laser capture micro-
dissection and gene expression profile. Eventually, a total
of 33 set of gene expression data composed of 20 tumors
tissue and 13 normal tissues profiled by 22,283 probes
were obtained.
Breast cancer gene chip data were pretreated by the

RMA procedure, and all probes P values were computed
with t-test or Satterthwaite’s approximate t-test. With
FDR set at 0.05, ALSU and the UGM estimated m0 and
identified the differentially expressed genes associated
with breast cancer. Results were shown in Table 5.
The results showed that UGM algorithm and ALSU al-

gorithm respectively yielded 4397 (8.04%) and 4282
(7.83%) differentially expressed genes. While the general
t-test resulted in 11,319 (20.7%). The UGM and the
ALSU were reduced by 6922 (61.2%) and 7037 (62.2%).
The ALSU and the UGM methods are significantly more
powerful than the general t-test (p = 0). What’s more,
the UGM method calculating the number of differen-
tially expressed genes were slightly higher than the result
of ALSU, suggesting that the UGM method renders a
more comprehensive screening results with higher effi-
ciency and a reduced false negative rate.
Risk factors for developing breast cancer include being

female, obesity, lack of physical exercise, drinking

alcohol, ionizing radiation, etc. In recent years, many
cancers have been recognized as inherited disease with a
subset of genes mutated, including BRCA1 and BRCA2,
both of which are tumor suppressor. These proteins help
repair damaged DNA and, therefore, play a role in en-
suring the stability of the cell’s genetic material. Specific
inherited mutations in BRCA1 and BRCA2 increase the
risk of female breast and ovarian cancers, and they have
been associated with increased risks of several additional
types of cancer. In this paper, we used the UGM algo-
rithm to analyze the gene expression profile data of
breast cancer. The results showed that BRCA1 (P =
0.007) and BRCA2 (P = 0.000129) were selected the
genes susceptible to cancer (differentially expressed
genes). What’s more, many genes related to BRCA1 and
BRCA2 have been screened out. They are BRIP1 (P =
0.0000572), PTEN (P = 0.00399), RAD51 (P = 0.00389),
BARD1 (P = 0.0344), MMP11 (P = 0.0256), RRM2 (P =
0.000823), NEK2 (P = 0.0000149), MKI67 (P = 0.000397),
ITGA7 (P = 0.0195), CXCL5 (P = 0.0014).
In this paper, the data we used were breast cancer

gene expression profile data. we further used the DA-
VID Bioinformatics Resources 6.8 (https://david.
ncifcrf.gov) to analyzed gene-disease association of
differentially expressed genes. DAVID 6.8 allows re-
searchers to associate sets of genes from a gene list
(differentially expressed genes list) to disease pheno-
type, employing information from OMIM and the
Genetic Association Database mapped to DAVID
genes. The results showed that there were 2 terms as-
sociated with breast cancer, and 224 (8.414%) genes
were enriched in disease-associated with breast cancer
(p1 = 8.31E-05, p2 = 1.57E-04). The results of gene-

Table 4 Comparison of results of m0 estimation using the four
methods

Indicators ABH S-λ TST UGM

Mean 2870.35 2852.16 2714.4 2849.83

SD 21.89 20.6 11.51 18.8

Range 142.72 244 67 110

quartile range 23.17 76 15 23.33

RMSE 29.93 50.36 136.08 18.71

CV 0.76% 1.77% 0.24% 0.66%

m= 3000, π0 = 0.95, m0 =m ∗ π0 = 2850

Table 5 Results of identified the differentially expressed genes
with the GEO database

Gene.No Gene.symbol UGM.adj. P.Val ALSU.adj. P.Val P.Value

1 CD300LG 1.49E-09 1.57E-09 2.87E-14

2 PPP1R14A 1.74E-09 1.83E-09 6.71E-14

3 PIR-FIGF 7.04E-09 7.41E-09 4.15E-13

4 SAMD5 7.04E-09 7.41E-09 5.57E-13

5 MYH11 7.04E-09 7.41E-09 6.78E-13

4281 – 4.74E-02 4.99E-02 3.91E-03

4282 TGFA 4.75E-02 5.00E-02 3.91E-03

4378 EFTUD2 4.98E-02 5.25E-02 4.20E-03

4379 TGM2 5.00E-02 5.27E-02 4.22E-03

11,318 SLC35F6 2.29E-01 2.41E-01 4.99E-02

11,319 RPS19 2.29E-01 2.41E-01 5.00E-02

54,674 EML6 1 1 1

54,675 SPG11 1 1 1

Gene. No is the ordered gene sequence. The confidence interval selected for
each experiment was 0.95
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disease association analysis by differentially expressed
genes are shown in Fig. 2.

Conclusion and discussion
In this paper, we have improved the use of p-value of
multiple hypothesis testing in identifying disease-
associated genes. The estimation results of methods
were compared using simulated microarray data with
mean, SD, range, quartile range, RMSE and CV as evalu-
ation indices. The simulation results showed that the
mean of non-differentially genes (m0) estimated by the
new method was very close to the real value. The results
of the UGM method and the ABH, TST method have
significant differences (P = 0.01296, P = 0.0000). How-
ever, there was no significant difference between the
UGM method and the S-λ method (P = 0.8644). These
results suggested that the UGM method and S-λ method
are significantly superior to the ABH and the TST
methods. In addition, the SD, range, quartile range, CV
and RSME of the number of non-differentially expressed
genes calculated by the S-λ method were all larger than
those of the UGM method and are more discrete, which
is concordant with the study by Wu Jing [16]. In sum-
mary, the UGM exhibited better stability, accuracy and
robustness,which was better than other conventional
algorithms.
In order to verify the effectiveness of the new pro-

posed method in screening differentially expressed

genes, we used this method to calculate the gene expres-
sion profile data of breast cancer. The results displayed
that the UGM method was significantly more powerful
than the general t-test (p = 0), and has slightly larger set
of differentially expressed genes than those of the ALSU,
presenting lower false negative rate and higher screening
efficiency. In the differentially expressed genes screened
by UGM method, a bunch of well-established oncogenes
and anti-oncogenes were discovered, including BRCA1,
BRCA2, PTEN, BRIP1 [20], RAD51 [21], BARD1 [16,
17], MMP11 [22], RRM2 [23], NEK2 [24] et al. Further-
more, genes associated with BRCA1, BRCA2 and TP53
were also identified, such as ITGA7 [25], CXCL5 [26]
etc.
Microarray technology and DNA and RNA sequencing

technology produced huge amount of gene data, which
has been widely used in biomedical research. The data
dimension of gene expression profile is high and the
sample size is small. Identifying informative candidate
genes from expression profile data has become an im-
perative task and attracts extensive attention in the field
of biology and medical statistics research. Microarrays
can provide a dynamic snapshot of cell activity, but the
results are not noticeable/obvious. The purpose of this
paper is to provide useful answers to some of the most
common practical problems in microarray data analysis,
especially the multiple validation of differential
expressions.

Fig. 2 Result of gene-disease association analysis by differentially expressed genes. Note: The gene-diseases can be obtained by the differentially
expressed genes list. The abscissa lists the top ten gene-disease items. The primary coordinate is the number of enriched differentially expressed
genes corresponding to each genetic disease item. The secondary coordinate is enriched P value for each gene-disease
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In the field of microarray data analysis, one of the cri-
tica problems of multiplicity test is to estimate the num-
ber of true null hypothesis. Traditional processes have
dominated the FWER, which is the probability of type I
error. When the number of genes is large, the ability to
detect differentially expressed genes decreases, and the
bona fide differentially expressed genes may be ignored.
In actual research, identifying differentially expressed
genes from expression profile data is important for gene
localization, identification of biomarker and therapeutic
targets and study of disease mechanism. The expected
percentage of the null hypothesis that is wrongly
rejected is a meaningful indicator in multiple compari-
sons, but not the probability of error detection. In this
background, Benjamini and Hochberg [14] developed
the FDR control program, which was a groundbreaking
achievement. The traditional method needs tight domin-
ate the FWER, with a conservative type I error rate dom-
inated contra any configuration of the hypothesis tested.
The FDR method keeps the error-recognition rate within
the allowable range, which provides an appropriate
metric for multiple tests of large-scale data. Following
Benjamin and Hochberg (BH) ‘s pioneering paper, the
concept of FDR has been widely used in large-scale data
analysis. For the BH method, many scholars have ex-
tended on their basis and developed many excellent
methods. The adaptive linear step-up (ALSU) method
proposed by Benjamin et al. has been widely used in pre-
vious studies.
The key step in the ALSU process is to estimate the

number of non-differentially expressed genes. However,
we find that the estimation method proposed in this
process is not accurate enough. Although the average of
the estimated values has been very close to the true
value over the course of many iterations, it is still far
from the standard deviation. This introduces large
amount of random errors, leading directly to inaccurate
final results. In this study, we designed a new method to
estimate the number of non-differentially expressed
genes and proved its superiority, by using well-
established microarray data.
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