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Response of membrane tension to gravity
in an approximate cell model
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Abstract

Background: Gravity, especially hypergravity, can affect the morphology of membranes, and further influence most
biological processes. Since vesicle structures are relatively simple, the vesicle can be treated as a vital model to
study the mechanical properties of membranes in most cases. Basic research on membrane tension has become a
vital research topic in cellular biomechanics.

Methods: In this study, a new vesicle model is proposed to quantitatively investigate the response of membrane
tension to gravity. In the model, the aqueous lumen inside the vesicle is represented by water, and the vesicle
membrane is simplified as a closed, thin, linear elastic shell. Then, the corresponding static equilibrium differential
equations of membrane tension are established, and the analytical expression is obtained by the semi-inverse
method. The model parameters of the equations are accurately obtained by fitting the reported data, and the
values calculated by the model agree well with the reported results.

Results: The results are as follows: First, both the pseudo-ellipsoidal cap and the pseudo-spherical cap can be used
to describe the deformed vesicle model; however, the former can better represent the deformation of the vesicle
model because the variance of the pseudo-ellipsoidal cap is smaller. Second, the value of membrane tension is no
longer a constant for both models. Interestingly, it varies with the vesicle height under the action of gravity. The
closer it is to the substrate, the greater the membrane tension. Finally, the inclination between the tangent and the
radial lines at a certain point is nearly proportional to the radius of the cross section in both models.

Conclusion: These findings may be helpful to study the vesicle model spreading more accurately by taking into
account the influence of gravity because it could affect the distribution of membrane tension. Furthermore, it may
also provide some guidance for cell spreading and may have some implications for membrane tension-related
mechanobiology studies, especially in the hypergravity conditions.

Keywords: Gravity, Equilibrium differential equation, Membrane tension, Pseudo-ellipsoidal cap,
Pseudo-spherical cap

Background
Gravity is constantly exerted on organisms [1], and some
studies have shown that gravity can affect numerous phys-
ical and biological processes: biological cells are no excep-
tion [2]. Biological systems interact with gravity on different
levels of organization, from the whole organisms [3] to cells

[4], to membranes [5] and even down to the function of
single proteins [6], and many experiments have directly
demonstrated that biological processes from single mole-
cules to various levels of tissue are dependent on gravity.
For example, Sieber et al. indicated that the viscosity,
conductance and capacity of membranes are dependent on
gravity [2, 7]. Häder D. et al. showed that single cells can
sense gravity [8].
Cell mechanical stimulations include mechanical stretch,

compression, hydrostatic pressure, microgravity and hyper-
gravity. Microgravity is the absence of gravity, which usually
exists in spaceflights to different planets or moons. Hyper-
gravity, which may be experienced by living cells in certain
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planets and during human highly accelerated flights,
refers to conditions that have greater gravitational force
than the gravity of the earth [9]. For example, astro-
nauts are transiently affected by hypergravity during
the processes of launching and returning to Earth, and
military pilots are subject to hypergravity when they are
engaged in certain sports, such as motor racing, motorcyc-
ling, and bobsledding [1]. Moreover, some studies have
shown that hypergravity can affect behaviors of cells, such
as proliferation [10, 11], gene expression [12], differenti-
ation [13], development and apoptosis [14], morphology
and function [1, 15], and cytoskeletal reorganization, ad-
hesion and movement [16].
The mechanical properties of membranes can affect most

biological processes, and membrane tension is a basic phys-
ical parameter of membranes that is involved in various bio-
logical processes, such as membrane trafficking, cell shape,
adhesion, growth, endocytosis and motility [17, 18]. Some
studies have emphasized the importance and contributions
of membrane tension in biological processes [19–23], and
have shown that membrane tensions originate mainly from
the hydrostatic pressure across the lipid bilayer and cytoskel-
eton (CSK)-membrane adhesion [22]. However, Reinhart-
King et al. emphasized that cells can exert significant forces
before complete actin polymerization or visible stress fibre
formation, which means that vesicles can be used to model
cell adhesion [24]. In addition, Liu et al. indicated that
the complexity of cells could be avoided by using the
vesicles as a biomimetic model of cells since there is no
CSK or nucleus in the vesicles, and emphasized that a
fully three-dimensional (3D) model of a vesicle could
be used to simulate a real cell [25]. Lu et al. have also
shown that vesicle models are a most useful tool to ex-
plore the relevant issues [26].
In summary, due to the high costs and limited number

of experiments in real microgravity, and the fact that
there is little research on the response of membrane ten-
sion to gravity, this paper applies a theoretical modelling
method to study the response of membrane tension
under the action of gravity. In the model, the vesicles are
simplified as water sacs, where the membrane of the
vesicle is assumed to be a thin closed shell and the
vesicle cavity is represented by water. The equilibrium
differential equations of the deformed vesicle model are
constructed and solved by using the analysis method of
the elasticity mechanics and semi-inverse method.

Methods
In this paper, a vesicle model is used to quantitatively in-
vestigate the response of membrane tension to gravity.
In the vesicle model, the water represents aqueous lumen
inside the vesicle and a elastic shell represents the mem-
brane of vesicle. The corresponding static equilibrium dif-
ferential equations of membrane tension are established

by theoretical method. The model parameters of the equa-
tions are accurately obtained by fitting the reported data,
and the analytical expression is obtained by the semi-
inverse method.

Hypotheses
Since vesicles are spherical structures consisting of a single
bilayer (i.e., membrane) surrounding an aqueous lumen
[26] and lipid bilayers are natural mimics of cellular mem-
branes, vesicles are commonly used as stable model sys-
tems for studying numerous biological processes, such as,
the adhesion of vesicles [27], membrane protein behaviour
[28], the mechanism of cell endocytosis [29], membrane
vesicle budding [30], and changes in membrane morph-
ology [31]. In this study, considering the complexity of the
cell structures, such as eukaryotic cell, the vesicle struc-
tures are relatively simple and often used to simulate cells,
and a 3D axisymmetric model of vesicles is established to
study the response of membrane tension to gravity. For
simplicity, the following assumptions are made:

a) The vesicles are simplified into watery sacs
according to the structure of vesicles [26].

b) In the model, the water representing the cavity of
the vesicle is wrapped with a membrane, and its
volume remains constant [25].

c) The details of the molecular structure within the
vesicle membrane are ignored [27], and the
membrane is assumed to be isotropic, linearly elastic,
of fixed thickness, thin and a closed shell [25].

d) The un-deformed vesicle model is used to represent
the suspended cell described by the sphere [32].
Since the cells gradually switch from a spherical to
a flattened shape in vitro [33], the spread cell is
described by the deformed vesicle model under the
action of gravity.

e) The deformation of the vesicle model is assumed to
be generated under the conditions of axial symmetry,
and the contact area is always circular [34].

Equilibrium equations
In the model, the cylindrical coordinate (r, z) is used in
which the z axis is directed against the gravity force and r is
an independent variable. The local slope of the membrane
at the same point is defined by the inclination θ between
the tangent line and the radial line as illustrated in Fig. 1.
The two variables z(r) and θ(r) are related through [35]:

dz
dr

¼ z
0
rð Þ ¼ − tanθ ð2:1Þ

Consider the equilibrium of the deformed vesicle
model in the r-direction for a micro-block between r
and r + dr; the force analysis diagram is shown in Fig. 2.
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From the equilibrium condition in the r-direction, the
formulation is established as follows:

−frdβ cosθ þ f þ dfð Þ r þ drð Þdβ cos θ þ dθð Þ−2fds sin dβ
2

þprzdβ− pþ dpð Þ r þ drð Þ z þ dzð Þdβþ 2pzdr sin
dβ
2

¼ 0

ð2:2aÞ
Because dθ and dα are small quantities, the formula-

tion is simplified:

sin
dθ
2

≈
dθ
2
; cos

dθ
2

≈ 1 ð2:2bÞ

By simplifying and neglecting the small quantities of
higher order, the equilibrium differential equation is ob-
tained in the r-direction:

f
r
− f tanθθ

0
−

f s
0

r cosθ
þ f

0 ¼ 1
cosθ

pz
0
−p

0
z

� �
ð2:2cÞ

In a similar manner, the equilibrium differential equa-
tion in the z-direction for a slice between z and z + dz
can be obtained as follows. The force analysis diagram is
shown in Fig. 3.
From the equilibrium condition in the z-direction:

−dG þ p � πr2− pþ dpð Þ � π r þ drð Þ2− f � 2πr � sinθ
þ f þ dfð Þ � 2π r þ drð Þ � sin θ þ dθð Þ ¼ 0

ð2:3aÞ

and simply:

Fig. 1 Schematic diagram of the deformed vesicle model: G is gravity applied to the centroid and an internal pressure p acts on the membrane
wall. r is the radial distance of any point on the free part of the vesicle model and θ is the inclination at the same point. The contact area is
circular, and r0 is the contact radius. θ0 denotes the contact angle, and h is the height of the vesicle model

Fig. 2 Schematic diagram of the geometrical model of the deformed vesicle and its force balance in the r-direction: a A geometrical model of
the deformed watery sac: a micro-block is taken from the deformed vesicle model. The radius of the micro-block position is r, the height is z, the
thickness is dr, the angle of rotation is dβ, and the arc length of the micro-block is ds. b A force diagram of the micro-block, where f is
membrane tension
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f � θ0 þ f
r
tanθ þ f

0 � tanθ ¼ p
cosθ

ð2:3bÞ

By solving the system of eqs. (2.1~2.3), the analytic ex-
pression of membrane tension is obtained:

f ¼
p
tanθ

−pz
0 þ p

0
z

θ
0

sinθ
cos2θ þ sinθθ

0 þ s
0

r

ð2:4Þ

In the above equations, the internal pressure p meets
the following relationship:

p ¼ p zð Þ ¼ p0−ρgz ð2:5Þ
where p0 is the bottom pressure.

Boundary conditions
It has been shown that the solution may be reduced to
solve the differential equations of the equilibrium to-
gether with the boundary conditions. To solve the above
equations, the global equilibrium condition of the mem-
brane is required:

2πr0F0 sinθ0 ¼ πr02p0−G ð2:6Þ
where F0 is the bottom membrane tension determined
by using the classic wetting formula of Young’s Eq. (2.7)
[34], in which, θ0 is the contact angle.

Γ ¼ F0 1− cosθ0ð Þ ð2:7Þ

Equation solving
In this study, the semi-inverse method is used. In the
semi-inverse method, one guesses parts of the solution
and then tries to determine the rest rationally so that all
of the differential equations and boundary conditions are
satisfied. As we know, the guessed solution is an exact
solution of this problem. In view of the abovementioned

facts, we assume the shapes of the deformed vesicles
model, then obtain the solutions of membrane tension.

Pseudo-ellipsoidal cap
In the model, the un-deformed vesicle is denoted by the
sphere, and the deformed vesicle is represented by the
ellipsoidal cap obtained by rotating the ellipse about the
z axis, as shown in Fig. 4.
The ellipsoidal cap geometry is a three-parameter

model defined in terms of contact radius r0, height h
and contact angle θ0. All three measured quantities are
required to evaluate the volume of the ellipsoidal cap. In
the r-z plane, the geometry profile of the vesicle model
is an ellipse described by the equation

r2

a2
þ z2

b2
¼ 1 ð3:1Þ

where, a and b are the semi-axis lengths in the r and z
directions, respectively. The values of a = 16.67 μm and
b = 15.90 μm are obtained by fitting the experimental
data in Table 1. The fitting method used in this paper is
the polynomial fitting in Origin 8.5. In the fitting
process, the contact radius r0 is obtained according to
the bottom area in Table 1, and then the values of the
semi-axis lengths a and b is obtained by fitting the con-
tact radius r0 and height h using Eq. (3.1).
In the ellipse, the relationship between angles θ1 and

θ0 satisfies the eq. (3.2),and εr is the ratio of the axes,
εr = b/a [37].

tanθ0 ¼ ε2r tanθ1 ¼ ε2r
r0
b−h

¼ 2hr0

r02− h
εr

� �2 ð3:2Þ

The volume of the ellipsoidal cap can be obtained [38]

Fig. 3 Schematic diagram of force balance in the z-direction for the deformed vesicle model
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V ¼ πr0h
3

2r0 tanθ0−hð Þ
tanθ0

ð3:3Þ

The differential surface area of the ellipsoidal cap can
be obtained

dA ¼ 2πa
.
b2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b4 þ a2−b2

� �
z2

q
dz ð3:4Þ

The heights determined by the geometric equation Eq.
(3.1) cannot rigorously satisfy the volume formula Eq. (3.3).
To overcome this deficiency, a geometry of the pseudo-
ellipsoidal cap is offered using the correction parameter m,
as shown below:

tanθ0 ¼ ε2r
r0

b−mh
¼ 2mhr0

r20−
mh
εr

� �2 ð3:5Þ

By combining Eq. (3.3) and Eq. (3.5), the volume of
the pseudo-ellipsoidal cap is obtained

V ¼ πmh
6ε2r

3r20ε
2
r þm2h2

� � ð3:6Þ

Then, the analytic expression of membrane tension is
formulated:

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4m2−a2m2r2 þ b2r2

p
p0 a4m2−a2m2r2 þ b2r2
� �

−ρgabm a2−r2ð Þ3=2
h i

b 2a4m2−a2m2r2 þ b2r2
� �

ð3:7Þ

Pseudo-spherical cap
Since the deformed cells are represented by the spherical
cap [32], a pseudo-spherical cap is selected to simulate
the deformed vesicle model more accurately. In the
pseudo-ellipsoidal cap model, when the ratio of the axes
εr is equal to 1, a pseudo-spherical cap is formed; when
the correction parameter m is 1, the spherical cap is gen-
erated, as shown in Fig. 5.
The radius of the spherical cap R = a = b = 16.26 μm is

obtained by fitting the experimental data in Table 1.
Similarly, the heights determined by the geometric equa-
tion cannot completely meet the volume formula, and
the correction parameter m is needed. In the pseudo-
spherical cap, the relationship between the height h and
contact radius r0 satisfies [39]:

mh ¼ r0 tan
θ0
2

ð3:8Þ

It yields the following relationship between the height
h and the contact radius r0 under the condition without
the volume dilatation:

V ¼ πmh
6

3r0
2 þm2h2

� � ð3:9Þ

The surface area of the pseudo-spherical cap can be
obtained:

A ¼ 2πRmh ð3:10Þ

Fig. 4 Schematic diagram of an ellipsoidal cap representing the deformed vesicle model on a supporting solid surface

Table 1 Dimensions of different spreading states [36]

Different spreading states Bottom area (μm2) Height (μm) Volume(μm3)

a 125.09 15.45 2988.40

b 243.84 12.75 2998.36

c 421.28 10.96 3000.60

d 549.88 9.41 3000.49

e 696.53 8.03 3010.90
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In the pseudo-spherical model, the analytic expression
of membrane tension is expressed as:

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2m2−m2r2 þ r2

p
p0 a4m2−a2m2r2 þ a2r2ð Þ−ρga2m a2−r2ð Þ3=2
h i

2a4m2−a2m2r2 þ a2r2ð Þ
ð3:11Þ

Analytical approximation
The total energy UT of this system is made up of three
terms: the elastic energy of the membrane UE, the mech-
anical energy of gravity UG and the surface energy US

[40].

UT ¼ UE þ UG þ US ð3:12Þ

In this study, the single variable method is adopted, so
the fluidity and viscosity of the liquid are ignored. The
deformation of the vesicle model is primarily due to
gravity. A spherical cap is selected to describe the geom-
etry of the deformed vesicle model and the initial bend-
ing energy of the un-deformed vesicle model is set to 0.
Then, the following equation can be obtained:

US

UE þ UG
¼ −πr02Γ

G R0 þ R−mh½ � þ πκmh
Rþ fΔA

ð3:13Þ

For representative parameter values κ = 20kBT ≈ 10− 19

J [34], mh/R = 1.8, R0 = 8.9 μm volume of approximately
3000 μm3 [41], f ≈ 4 × 10− 4N/m and G = ρgV = 29.4 ×
10− 12N, the value of this ratio is approximately 108. For
this reason, the elastic energy of the membrane and the
work performed by gravity are ignored throughout the
analysis, and the contact radius is determined by the

following equation first solved by Johnson, Kendall, and
Roberts (JKR theory) [39, 42].

r3 ¼ 9π 1−ν2ð Þ
2E

R2
0Γ ð3:14Þ

In this article, the Young’s modulus E and the Poisson
ratio ν of the membrane are 1000 Pa and 0.3, respect-
ively [36]. The membrane thickness t is 0.1 μm [43].
When the adhesion energy per unit area Г is chosen to
be 6 × 10− 4 J/m2 [33], r0 is 8.49 μm.
In the pseudo-ellipsoidal cap model, the height h is

calculated to be 13.29 μm, and the correction parameter
m is equal to 1.027, according to Eq. (3.1) and Eq. (3.6).
The contact angle θ0 is 73.75° by application of Eq. (3.5).
The tension F0 is 0.83 mN/m by using Eq. (2.7), and p0
is equal to 188.52 Pa by application of Eq. (2.6).
Furthermore, in the pseudo-spherical situation, the

height h is 13.02 μm and the correction parameter m is
equal to 1.071 using Eq. (3.9). The contact angle θ0 is
62.54° by using Eq. (3.8). The tension F0 is 0.41 mN/m,
and p0 is 86.14 Pa.

Results and discussion
Vesicle model deformation from the spherical state to the
pseudo-ellipsoidal cap state under the action of gravity is a
quasi-static process. The curve of the height h against the
radius of the cross section r is shown in Fig. 6. The height
h decreases when the radius of the cross section r in-
creases, which agrees well with the experimental data. The
results indicate that both the pseudo-ellipsoidal cap and
the pseudo-spherical cap can describe the deformed
vesicle model by gravity. To evaluate which can better rep-
resent the geometry of the deformed vesicle model, the

Fig. 5 Schematic diagram of the spherical cap
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variance formula is used to estimate the errors. The vari-
ance of the pseudo-ellipsoidal cap is equal to 0.83, and
that of the pseudo-spherical cap is 1.23, indicating that the
pseudo-ellipsoidal cap may be a better representation of
the deformed vesicle model.
The relationship between the inclination θ (θ < 90°)

and the radius of the cross section r is obtained as
shown in Fig. 7. The result shows that the inclination θ
is positively correlated with the radius of the cross sec-
tion r. The angle gradually increases as the radius of the
cross section r increases. The values of the contact angle
θ0 are 62.43° and 65.86°, respectively. This means that
the different models are chosen to describe the vesicle
model deformations; however, the results of the relation-
ship between the inclination θ and the radius of the
cross section r are the same results as shown in Fig. 7.
Moreover, the variation of membrane tension f with

height h is also analysed as shown in Fig. 8. The results
show that membrane tension increases with decreasing

height h; however, the value of the pseudo-ellipsoidal
cap is slightly larger than that of the pseudo-spherical
cap. In the pseudo-ellipsoidal cap, the minimum and
maximum values of membrane tension are 1.69 mN/m
and 2.95 mN/m, respectively, while the values in the
pseudo- spherical cap are 0.75 mN/m and 1.40 mN/m,
respectively. This suggests that the membrane tension of
the former is approximately twice that of the latter,
which may be caused by the bottom pressure. Neverthe-
less, in both models, membrane tensions are slightly lar-
ger than the reported values, which are approximately
0.2~0.4 mN/m. This means that gravity may have a
slight influence on membrane tension when using the
single variable method, so considering gravity may
contribute to more accurate study of the spreading of
vesicles model.
From the above, a macro approximation is used to de-

scribe the deformation of the vesicle model under the
action of gravity in the present study. It can be used to
quantitatively describe the response of membrane ten-
sion to gravity. Furthermore, the rationality of using the
pseudo-ellipsoidal cap and pseudo-spherical cap to rep-
resent the deformed vesicle model is explained from a
mathematical point of view.
However, there are some obvious deficiencies in this

study. Firstly, due to the very complex structure of
eukaryotic cells, the proposed vesicle model may not be
suitable for studying the eukaryotic cells. Since some
studies have shown that the behavior of bacterial, the
ability of bactetia to sense the surrounding environment
can change under microgravity, and intestinal microbes
can be dysregulated in microgravity. While bacterial be-
havior can affect manned spaceflight, and the intestinal
microbial disorders can lead to a series of diseases [44].
Given the wide variety of cell types, the relatively simple
structure of vesicles and the ability of vesicles to mimic
cells, this model can be used to study the changes of

Fig. 6 Curve of the height h against the radius of the cross section r

Fig. 7 Curve of the inclination θ against the radius of the cross section r

Fig. 8 Curves of the membrane tension against the height
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prokaryotic cells without CSK under the action of micro-
gravity, such as bacteria. In addition, the model can be
also used to study the changes of membrane tension in
simple cells, such as membrane tension variation of red
blood cells, which are subjected to fluid shear stress in
blood vessels [45]. Secondly, when studying the response
of membrane tension to gravity, the single variable
method is used, and the fluidity and viscosity of the liquid
are ignored, which seems to be slightly different from the
actual situation. In the future, we will comprehensively
study the variations of membrane tension with height
under the action of gravity, liquid fluidity and viscosity,
and study whether gravity has a significant influence on
the magnitude and distribution of membrane tension
compared with other factors.

Conclusions
To summarize, a theoretical model of the deformation
of the vesicle under the action of gravity is developed to
study the response of membrane tension to gravity. The
equilibrium differential equations, mainly consisting of
gravity, internal pressure and membrane tension, are
established. The analytic expression of membrane ten-
sion is obtained. Our findings can be succinctly summa-
rized as follows:

a) The deformed geometry of the vesicle model can be
represented by both the pseudo-ellipsoidal cap and
the pseudo-spherical cap under the action of
gravity, and the pseudo-ellipsoidal cap is better
from a mathematical point of view.

b) The membrane tension varies with the height: the
closer it is to the basement, the greater the
membrane tension.

c) The inclination θ between the tangent line and
radial line is nearly proportional to the radius of the
cross section r in both models.

d) Considering gravity may be useful to more
accurately study the spreading of the vesicle model
since gravity can influence the distribution of
membrane tension.

The focus of the present work is to quantitatively ana-
lyse the response of membrane tension to gravity. These
findings may provide certain guidance for cell model
spreading and may have some implications for membrane
tension-related biological processes, especially under the
hypergravity conditions.
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