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Abstract

Background: The increasing amounts of genomics data have helped in the understanding of the molecular
dynamics of complex systems such as plant and animal diseases. However, transcriptional regulation, although
playing a central role in the decision-making process of cellular systems, is still poorly understood. In this
study, we linked expression data with mathematical models to infer gene regulatory networks (GRN). We
present a simple yet effective method to estimate transcription factors’ GRNs from transcriptional data.

Method: We defined interactions between pairs of genes (edges in the GRN) as the partial mutual information
between these genes that takes into account time and possible lags in time from one gene in relation to another. We
call this method Gene Regulatory Networks on Transfer Entropy (GRNTE) and it corresponds to Granger causality for
Gaussian variables in an autoregressive model. To evaluate the reconstruction accuracy of our method, we generated
several sub-networks from the GRN of the eukaryotic yeast model, Saccharomyces cerevisae. Then, we applied this
method using experimental data of the plant pathogen Phytophthora infestans. We evaluated the transcriptional
expression levels of 48 transcription factors of P. infestans during its interaction with one moderately resistant and one
susceptible cultivar of yellow potato (Solanum tuberosum group Phureja), using RT-qPCR. With these data, we
reconstructed the regulatory network of P. infestans during its interaction with these hosts.

Results: We first evaluated the performance of our method, based on the transfer entropy (GRNTE), on eukaryotic
datasets from the GRNs of the yeast S. cerevisae. Results suggest that GRNTE is comparable with the state-of-the-art
methods when the parameters for edge detection are properly tuned. In the case of P. infestans, most of the genes
considered in this study, showed a significant change in expression from the onset of the interaction (0 h post
inoculum - hpi) to the later time-points post inoculation. Hierarchical clustering of the expression data discriminated
two distinct periods during the infection: from 12 to 36 hpi and from 48 to 72 hpi for both the moderately resistant
and susceptible cultivars. These distinct periods could be associated with two phases of the life cycle of the pathogen
when infecting the host plant: the biotrophic and necrotrophic phases.
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Conclusions: Here we presented an algorithmic solution to the problem of network reconstruction in time series data.
This analytical perspective makes use of the dynamic nature of time series data as it relates to intrinsically dynamic
processes such as transcription regulation, were multiple elements of the cell (e.g., transcription factors) act simultaneously
and change over time. We applied the algorithm to study the regulatory network of P. infestans during its interaction with
two hosts which differ in their level of resistance to the pathogen. Although the gene expression analysis did not show
differences between the two hosts, the results of the GRN analyses evidenced rewiring of the genes’ interactions
according to the resistance level of the host. This suggests that different regulatory processes are activated in
response to different environmental cues. Applications of our methodology showed that it could reliably predict
where to place edges in the transcriptional networks and sub-networks. The experimental approach used here
can help provide insights on the biological role of these interactions on complex processes such as pathogenicity. The
code used is available at https://github.com/jccastrog/GRNTE under GNU general public license 3.0.
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Introduction
Generation of new and abundant next generation se-
quencing data has enabled a better understanding of the
molecular dynamics of diseases, and interactions be-
tween organisms in general [3, 12, 25, 31, 63]. However,
understanding the regulation of transcription in complex
systems remains an elusive subject for several reasons.
One of the reasons is that experiments to test protein -
DNA interactions and their role in regulation are expen-
sive and difficult to replicate [15, 59]. An alternative to
experimental approaches to reveal regulator – target in-
teractions is the use of predictive models such as infer-
ence of Gene regulatory networks (GRN). GRNs
determine the dynamics of transcriptional changes in
particular physiological states of an organism, thus play-
ing an important role in understanding the genetic basis
of phenotypic traits [28, 41, 42, 64].
Genome-wide clustering of gene expression profiles

provides an important first step towards building pre-
dictive models by grouping together genes that exhibit
similar transcriptional responses to various cellular con-
ditions and are therefore likely to be involved in similar
cellular processes [3, 36]. However, the organization of
genes into co-expressed clusters provides a very coarse
representation of the cellular network. In particular, it
cannot differentiate causal interactions from those aris-
ing from cascades of transcriptional regulation where
many players will have correlated expression without
having direct interactions. More generally, as appreci-
ated in statistical physics, long-range order (i.e., high
correlation among non-directly interacting variables) can
easily result from short-range interactions. Thus correla-
tions, or any other local dependency measure, cannot be
used as the only tool for the reconstruction of inter-
action networks without additional assumptions [27, 65].
In the last decade, several approaches to face these

limitations have arisen. The main goal consists on

capturing gene interaction as a network model. Nodes of
the network are genes, and edges represent direct inter-
actions among genes [4, 17, 35]. In the context of a
GRN, these direct interactions represent regulatory
events, and thus are causal interactions. The criteria,
under which edges are defined, largely vary depending
on the methods that are used [44]. Correlation-based
models for example, determine these relationships by es-
timating the linear association of mRNA abundance.
This, however, leads to many false positives while dis-
carding non-linear interactions, making these models
less likely to provide reliable conclusions on biological
problems and undermining the potential uses of expres-
sion data altogether. Methods like ARACNE and
MRNET use mutual information to capture non-linear
dynamics of gene regulation [46, 51, 67], as opposed to
methods like BLARS that used penalized linear regres-
sion to infer these relationships [26, 56]. Whereas
methods such as GENIE3 use machine learning to infer
network relationships [30] [29]. More recently developed
methods aim at solving the problem on inferring direct
gene interaction in gene regulatory networks by exploit-
ing time-series data. For instance, updated versions of
ARACNE and GENIE3 have been optimized to deal with
this type of data. But also, completely novel approaches
like SWING appeared to address the inference of GRNs
from time-series data under a Granger causal framework
[19]. Transfer Entropy (TE) appears as a way to simul-
taneously estimate linear and no-linear interactions,
which are common in regulatory dynamics, but also as
an approach to quantify the time-directed transfer of in-
formation between pairs of genes in time-series data [10,
55]. Previous studies have suggested TE as a way to infer
GRNs from microarray data but a comprehensive frame-
work is still lacking [53, 60]. Moreover, these approaches
focus in few examples of small networks and therefore
algorithm performance has little statistical support and
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is unclear how it might perform in different scenarios
with varying network topology [60]. In this study we
introduce GRNTE a simple yet comprehensive software
implementation to estimate GRN using TE from tran-
script, or gene expression data.
We benchmarked our newly developed method using

the eukaryotic model Saccharomyces cerevisae’s GRN.
Our benchmarking procedure aims to test our method
in multiple sets of data to estimate performance over a
range of sub-networks. Subsequently, the method was
applied to the plant pathogen Phytophthora infestans in
a compatible (susceptible host) and incompatible (mod-
erately resistant host) interaction. Phytophthora infes-
tans, is the causal agent of potato (Solanum tuberosum)
late blight disease [21]. This pathogen is a hemibiotroph,
meaning that during the beginning of the disease cycle it
feeds from living host tissue (biotroph) and later it kills
its host and feeds from dead host tissue (necrotroph). A
crop plantation may be destroyed in just a few weeks
[21]. So far, it is not well understood how and why this
transition occurs, from biotroph to necrotroph. Al-
though, effector proteins, that are secreted by the patho-
gen into the host cell, appear to play a key role [40, 62].
Despite the fact that P. infestans is considered a model

organism within the oomycetes, and has been depicted
as the most destructive pathogen of potato crops [21, 25,
33], the pathogen’s transcriptional dynamics during the
interaction with its host are not fully understood [18,
21]. A previous study has provided information on the
genes involved in gene expression regulatory functions
in Stramenopiles (eukaryotic clade which includes P.
infestans) [12]. This information can serve as a tool to
better understand how the expression of complex phe-
notypes is regulated in P. infestans. Applications of our
methodology showed that it can reliably predict where
to place edges in the transcriptional regulatory networks
and sub-networks. The experimental approach used here
provides insights into the biological role of these interac-
tions on complex processes such as pathogenicity.

Materials and methods
Model formulation
The model formulation starts considering a GRN with
vertices (v) and edges (e). Then, a probability of inter-
action for each pair of genes is estimated, by using the
marginal probability distribution of each vertex and the
joint probability distribution of the pair. In this context,
a vertex represents a random variable that corresponds
to the expression profile of a gene. Candidate interac-
tions are defined as the mutual information between two
gene expression profiles (Ivi, Ivj). The mutual information
for a pair of genes, vi and vj, is given by I(vi, vj) =H(vi) +
H(vj) −H (vi, vj), where H(vi) and H(vj) are the entropy of
the i th and j th gene (vertex), respectively, and H(vi, vj)

is the joint entropy of vi and vj obtained from the joint
probability distribution {p(vi, vj)} of (vi, vj). Experimental
and theoretical approximations to understand gene in-
teractions have used Hill kinetics to model transcrip-
tional interactions [8, 50]. This approach is highly robust
when analyzing expression profiles under a myriad of
physiological conditions. However, in time variant sce-
narios, the expression profile is a function of both time
(t) and the adjacent vertices (see eqs. 1 and 2 in [47].
Given the relationship expressed in eq. 1 in [47] the

mutual information of the expression level and time is
I(t, xi)~H(xi) as formulated by Frenzel and Pompe [10,
20, 55]. Therefore, to avoid false assignations based on
the dependency of two variables with time, we defined
the partial mutual information for every pair of genes as
done by Frenzel & Pompe [20]:

I viþl; v jjvi
� � ¼ H viþl; við Þ þ H vj; viþl

� �
−H við Þ−H viþl; v j; vi

� �

Where vi + l represents the future values in the ith + l
time of vi. In this expression, H(vi) and H(vj) have the
same values used in the calculation of mutual informa-
tion but the joint entropy (H(vj, vi + l)) is different, thus
controlling for the unlagged values of the expression
profile. This transfer entropy (TE) process corresponds
to Granger causality for Gaussian variables in an autore-
gressive model [7]. However, it also allows the detection
of non-linear interactions. We use the framework postu-
lated by Frenzel & Pompe [20] as a stepping stone to es-
timate interactions between Transcription Factors (TFs).
In accordance with the data processing inequality [10,

37, 60], if two genes v1 and v3 interact via a third gene
v2, the mutual information value I(v1, v3) should be less
than min[I(v1, v2); I(v2, v3)]. Therefore, for each triplet of
genes, direct interactions can be estimated by comparing
the values of mutual information and the interaction
with minimum value. This is also the case for the TE
formulation, where given a lag step l the joint entropy
H(v1, v3 + l) is under the same constraint. We used this
property to avoid estimation of interactions due to spuri-
ous events. This differs from Frenzel & Pompe [20] par-
tial mutual information estimation as we exclude effects
of third genes without changing our calculation of mu-
tual information. In addition, if an edge is placed be-
tween genes v1 and v2, the edge has direction v1→ v2 if
I(v1, v2) > I(v2, v1). This process however cannot address
bidirectional interactions; thus, the result is a directed
network of the genetic interactions based on an expres-
sion profile, our implementation also optimizes the lag
value (l) as it estimates the lag step that maximizes mu-
tual information for each pair of genes.
Transfer entropy takes non-negative values between 0

and infinity. To assess the significance of this measure-
ment we compared the value of each candidate interaction
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with a null distribution of TE values. For this, we ran-
domly shuffled the expression values of genes across the
time series and evaluated the TE for such manifestly inde-
pendent genes (See next section for the generation of gene
expression data). Based on this, we obtained an empirical
null distribution of the values of TE. Higher values of TE
indicated a stronger relationship. We assigned a p-value
for each comparison that corresponded to the fraction of
TE values that were above or equal to the observed value
of TE in the distribution. This was done for 105 different
reshuffling iterations in each pairwise comparison to at-
tain reliable estimates of the significance of the inter-
action. We call this new method Gene Regulatory
Networks on Transfer Entropy (GRNTE).

Yeast network simulated expression data
To evaluate the reconstruction accuracy of our method,
we generated several sub-networks from the GRN of the
eukaryotic yeast model, S. cerevisiae [23]. Using Gene-
NetWeaver [54], we simulated expression data for 100
sub-networks of S. cerevisiae. These networks consist of
200 randomly selected genes. GeneNetWeaver uses or-
dinary differential equations to simulate expression
values, the interaction parameters are estimated based
on network topology. We simulated expression values
for a time series consisting of 21 points. With these ex-
pression data we reconstructed the network topology
using GRNTE. For each sub-network, we calculated a
receiving operating characteristic (ROC) curve, by esti-
mating the true and false positive rates over a varying
threshold and calculated the area under the curve. By
doing this we could easily assess the specificity of the al-
gorithm. However, it has been noted that small varia-
tions from a value of 1 area under the ROC curve can
result in large number of false positives [44]. Therefore,
we also assessed the precision and recall (PR) curve and
its corresponding area under the curve. Both ROC and
PR curves were computed as a measure of the algo-
rithm’s performance. We used R 3.5.1 to carry out all
tests of GRNTE. GRNTE requires the libraries “en-
tropy” and “gdata”. We also used the library
“igraph” to parse the network objects and to calculate
topology metrics. We compared our strategy with five
state of the art algorithms: BLARS, dynGENIE3,
MRNET, TDARACNE, and SWING. All tests were per-
formed on a single compute node with a single core
(2.2 GHz), with 64 GB of available RAM, running on
Red Hat Enterprise Linux 6. Each test consumed be-
tween 0.5 and 1.0 GB of RAM.

Evaluation of network properties by assignment of
communities
We estimated network modularity by assigning nodes to
communities with two different algorithms. Multilevel

community detection (MCD) and Markov Clustering
(MCL). MCD assigns a community to each mode in the
network, so that in the first step there are as many com-
munities as nodes. In subsequent steps nodes are reas-
signed to a community in a local manner such that it
achieves the highest contribution to modularity [9, 38].
Modularity is calculated based on the edge weights (TE
values) of incident nodes according to Blondel et al., [9].
Finally, when no nodes can be reassigned to a commu-
nity (i.e., reassigning a node would rather reduce the
overall modularity) each community is considered a ver-
tex on its own, and then the process starts again using
that new set of vertices. The final number of communi-
ties is determined when the process cannot continue
without decreasing the modularity [9]. This algorithm
results in assignment of communities in a greedy fashion
(i.e., nodes tend to be assigned on communities even if
they have few edges). In contrast, MCL assigns commu-
nities based on a Markov process [61]. In this algorithm
the adjacency matrix (A) is normalized to a stochastic
matrix of transition probabilities. The matrix is then
squared and normalized iteratively until a convergent
state is achieved. In this algorithm a node in row x be-
longs to community with node y if the coordinate A(x,y)
= 1 [61]. This results in communities being assigned to a
convergent state when nodes share large numbers of
edges.

Selection of differentially expressed genes coding for
transcription factors, in P. infestans
We decided to apply our model for the reconstruction
of part of the regulatory network of the plant pathogen
P. infestans while interacting with S. tuberosum. We de-
termined a set of TFs that were significantly overex-
pressed during this interaction. Initially, we applied
significance microarray analysis (SAM) to determine the
set of differentially expressed genes in the available
microarray experiment from [16] (GEO accession:
GSE33240). We selected the genes with a log2
fold-change (log2FC) > 1, and false discovery rate (FDR)
q-value ≤0.01. We then cross-validated our results with
the Serial Amplification of Gene Expression (SAGE)
analysis [3, 24], and chose the TFs that were differen-
tially expressed on both sets of data, according to the
criteria mentioned above.
The top 20 differentially expressed genes were se-

lected. These belonged to eight families of TFs (C2H2,
DDT, FHA, Jumonji, Myb, Myb-Related, PHD, and
TRAF), according to the criteria established in
Buitrago-Flórez et al. [12]. All genes associated to these
eight families of TFs were selected for further steps. This
yielded a total of 54 genes for which we designed
RT-qPCR primers. Only 48 of these could be success-
fully amplified, see below. Subsequently, the 48 genes
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that could be amplified were selected for the posterior
construction and analysis of the transcription regulatory
networks.

Infection assays, RNA extraction, and cDNA preparation
Two cultivars of S. tuberosum group Phureja, Col2 and
Col3, kindly provided by the Potato breeding program
from Universidad Nacional de Colombia, were used.
Cultivar Col2 is a susceptible variety whereas Col3 is
moderately resistant to late blight (C. Ñustez, personal
communication). All plants were grown under green-
house conditions (temperature 18 °C, 12 light hours, and
60% relative humidity).
Leaflets from 6-weeks-old plants were collected and

infected with P. infestans strain Z3–2 [14]. The strain
was grown on Potato Dextrose Agar (PDA) at room
temperature (21 °C on average), and a sporangial suspen-
sion adjusted to a concentration of 4 × 105 sporangia per
ml was prepared as previously described [62]. Infection
assays on potato leaflets were performed in moist cham-
bers at room temperature. Ten leaflets were inoculated
per time-point and per cultivar, for a total of 60 leaflets
per experiment (six time-points per cultivar). Samples
were collected every 12 h up to 72 h post inoculation
(hpi) and flash frozen in liquid nitrogen. Additionally,
we collected the initial inoculum as a reference for the
onset of the interaction (0 hpi). This initial inoculum
consisted of P. infestans growing on PDA medium. The
whole experiment was replicated three times (three bio-
logical replicates).
Total RNA was extracted using the Qiagen RNeasy ex-

traction kit (Qiagen, Valencia, CA, USA) according to
the manufacturer’s protocol and resuspended in 50 μl of
RNAse-free water. Treatment with DNAse (Thermo Sci-
entific, Suwanee, GA, USA) was performed to avoid con-
tamination with genomic DNA. Reverse transcription
was performed using the DyNAmo 2 step synthesis kit
(Thermo Scientific, Suwanee, GA, USA), with 1 μl of
RNA in a 50 μl final volume. The oligo-dT were used as
primers. Quantification of cDNA was performed using a
Nanodrop 1000 (Thermo Scientific, Suwanee, GA,
USA), and cDNA was then diluted to a final concentra-
tion of 800 ng μl− 1 of total cDNA.

Primer design
We designed primers for reverse transcriptase quantita-
tive PCR (RT-qPCR) using the QuantPrime software [2].
Pairs of primers were designed to span an exon-exon
junction to avoid genomic DNA amplification. Primers
were tested against a cDNA pool that included all sam-
pling time-points. Primers, which had unspecific amplifi-
cation or no amplification at all were discarded. A total
of 50 primer pairs were kept. Among these, 48 corre-
sponded to TFs and two corresponded to the Elongation

factor 2 and ß -tubulin genes, which were used as refer-
ence (normalizing) genes for the RT-qPCR. Three differ-
ent annealing temperatures, 61.5, 60.5, and 59.5 °C, were
tested. Among the 48 genes coding for transcription fac-
tors, 28 had an optimum annealing temperature of 61.5 °
C and 20 had an optimum annealing temperature of
59.5 °C. Therefore, we separated the analyses into two
independent groups. Group one corresponded to genes,
whose optimum annealing temperature was 61.5 °C and
the ß-tubulin gene was used as the reference gene (nor-
malizing gene). Group two corresponded to genes,
whose optimum annealing temperature was 59.5 °C and
the Elongation factor 2 gene was used as the reference
gene. The expected amplicon size was confirmed in an
1.5% agarose gel (Primer sequences available in
Additional file 1: Table S1, Evaluation of PCR amplifica-
tion in Additional file 2: Figure S1).
Gene expression at the different time-points (12, 24,

36, 48, 60, and 72 hpi) was compared to that of sporan-
gia of P. infestans growing on PDA medium (0 hpi).
Experiments were performed using the Dynamo SyBR-
Green RT-qPCR kit (Thermo Scientific, Suwanee,
Georgia, USA) according to the manufacturer’s instruc-
tions. Samples were run in 96-well plates containing 1 μl
of cDNA and a total volume of 10 μl for 40 cycles. Amp-
lification temperature was set according to the annealing
temperature for the reference gene in each group of
evaluated genes. Expression values were calculated as
the relative ratio of expression compared to the refer-
ence gene according to Pfaffl method [13, 52].

Results
Comparison with existing algorithms
We evaluated the performance of transfer entropy (TE)
on eukaryotic datasets from the GRNs of the yeast S.
cerevisiae. A total of 100 sub-networks were subsampled
consisting of 200 nodes each. For each sub-network we
generated time series expression data using GeneNet-
Weaver [54]. We used this dataset as a gold standard set
of verified interactions that would ideally be recovered
from the expression data. Based on the expression pro-
files, we evaluated the TE as the directional increase of
mutual information (MI) given by the shifting of the
time series (Fig. 1). For each pair of nodes evaluated, a
single probability distribution of the values of TE was
calculated. The absolute value of TE can be used to de-
scribe the weight of the interaction while the p-value in-
dicates the significance of the interaction. The shifting of
the time series may also give a sense of directionality
given that when the MI increases, the regulated TF is
shifted with respect to the regulator, and vice versa when
the shift occurs the other way around the MI decreases.
Using the p-values we ranked the regulatory edges from
the most confident to the less confident. To evaluate
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such a ranking independently of the choice of a specific
threshold, we used the standard convention of calculat-
ing the area under the Precision Recall curve (AUPR)
and the area under the receiving operating characteristic
(AUROC) [57].
To facilitate comparison between algorithms (i.e.

BLARS, dynGENIE3, MRNET, TDARACNE, and SWING,
see methods), we transformed the directed graphs gener-
ated by the TE to symmetric undirected graphs. Each al-
gorithm assigns a confidence value, between 0 and 1 for

each edge. The AUPR determines the proportion of true
positives among all positive predictions (prediction preci-
sion) versus the fraction of true positives retrieved among
all correct predictions (recall) at varying thresholds. Con-
versely the AUROC estimates the average true positive
rate versus the false positive rate.
Figure 2 shows the values of the AUPR and the

AUROC obtained for the benchmark networks of S. cer-
evisiae, Table 1 shows the average AUPR and AUROC
values for a set of 5 networks with 100 genes each used

A B

Fig. 1 Expression profile from two interacting genes in yeast. Gene b regulates gene a A Original expression profiles with a mutual information
(MI) value of 2.1. B When the expression profile of gene a is shifted with respect to gene b, the MI value increases to 3.4

Fig. 2 Values of the area under precision recall (AUPR) and the area under the receiving operating characteristic (AUROC) obtained for the
benchmark networks of Saccharomyces cerevisiae. GRNTE is compared against five methods (BLARS, dynGENIE3, MRNET, SWING, and TDARACNE)
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in the DREAM4 challenge. In the benchmark networks
GRNTE showed the best performance with respect to
the AUROC and the third best performance with respect
to the AUPR when compared to the other five methods
(BLARS, dynGENIE3, MRNET, SWING, and TDAR-
ACNE). For GRNTE, assigned edges have high precision
when the confidence threshold is high. However, preci-
sion rapidly diminishes when the edges are assigned at
lower confidence values, which leads to poor perform-
ance in AUPR. BLARS and SWING despite having
higher mean AUPR, showed no significant difference
from GRNTE and TDARACNE (Pairwise T-test, p-value
< 0.05). This pattern or high precision at high confidence
threshold is preserved when prediction the DREAM4
dataset. Where AUPR is low for all the algorithms. Over-
all for this dataset, values of AUPR and AUROC are
lower than the average obtained in our benchmark
networks.
AUROC values of GRNTE were significantly higher

than most methods tested, which shows a high rate of
detection of true positive interactions. This suggests that
the GRNTE is more reliable than both TDARACNE and
BLARS at high thresholds but rapidly becomes unreli-
able at low thresholds. Notably although SWING
showed a lower mean AUROC it didn’t show any signifi-
cant differences when compared to GRNTE. These re-
sults suggest that the GRNTE may be comparable with
state-of-the-art methods when the parameters for edge
detection are properly tuned, although it must be noted
that the accuracy of GRNTE comes with a higher run-
ning time compared to most of the compared methods
(Table 2).
Ultimately GRN analysis aims to extract the global

structure of a set of gene interactions [6, 38, 48], using
modularity as a measurement of structure, we used the
benchmark dataset as a mean to recover the network
structure. We calculated the number of communities in
each of the sub-networks of the dataset. We used a con-
servative algorithm (MCL) and a greedy algorithm (MCD)
for calculation of the number of communities. We calcu-
lated the ratio of the number of communities recon-
structed over the number of communities estimated by

each algorithm in the gold standard network (Fig. 3).
GRNTE preserves community structure as the mean ratio
is close to one both in the conservative and the greedy al-
gorithm (1.07 and 1.10), whereas the other algorithms de-
viated from this metric. Indicating that although a given
algorithm may show a low number of spurious edges, in
most cases, the spurious edges contribute to misleading
clustering which can be detected by a multilevel commu-
nity detection as in the case of MRNET. Additionally, al-
gorithms like TDARACNE and dynGENIE3 lack
important edges which result in the constitution of several
small clusters that misrepresent the network structure, as
seen by MCL clustering. BLARS and SWING showed
similar ratios to those of GRNTE, which reveal its reliabil-
ity at estimating network structure.

Application of transfer entropy to the P. infestans dataset
The expression profiles of 48 TF genes of P. infestans
during its interaction with potato cultivars Col2 and
Col3 were assessed via RT-qPCR. An expression profile
was constructed for each TF by calculating the ratio of
the expression for the gene at each time-point after in-
oculation in comparison with the expression of the same
gene in P. infestans growing in PDA medium (Time 0)
(Fig. 4; Additional file 3: Table S2). Hierarchical cluster-
ing showed that the expression of the genes at 12, 24,
and 36 hpi (when the pathogen is growing biotrophi-
cally) grouped separately from that at 48, 60, and 72 hpi
(when the pathogen grows as a necrotroph, killing the
host tissue), for both the moderately resistant and sus-
ceptible potato cultivars (p-values of clustering were
0.03 and 0.06 for Col2 and Col3 respectively) (Fig. 4).
When infecting the Col2 cultivar (susceptible), a total of
21 and 15 TF genes were consistently down-regulated
and up-regulated, respectively. In the case of Col3 (mod-
erately resistant) 23 and 16 P. infestans genes were con-
sistently down-regulated and up-regulated, respectively.
When comparing the expression profiles of the P.

infestans genes between the two cultivars we did not ob-
serve major changes (Additional file 4: Figure S2). In
contrast, in both cultivars about 23% of the genes stud-
ied showed a drastic change in expression during the
time series (measured by series autocorrelation). In both

Table 1 Average AUROC and AUPR scores of the DREAM4
networks predicted from time series data. The highest score is
shown in bold

Algorithm AUROC AUPR

GRNTE 0.768 0.410

BLARS 0.774 0.423

dynGENIE3 0.536 0.228

MRNET 0.638 0.378

SWING 0.657 0.416

TDARACNE 0.591 0.361

Table 2 Average CPU time and RAM usage of each algorithm.
Each run was carried out in a 200 gene dataset

Algorithm Average CPU time (seconds) Average RAM usage (MB)

GRNTE 2813.9 409

BLARS 66.83 321

dynGENIE3 181.03 456

MRNET 715.2 247

SWING 10.11 560

TDARACNE 2977.85 782
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cultivars, genes PITG_03670 and PITG_11647 (both anno-
tated as hypothetical protein with a Myb domain) had a sig-
nificant transition from high expression to low expression.
Whereas genes PITG_01528 (cell division cycle 5-related
protein) and the Myb-like DNA-binding proteins,
PITG_05989, PITG_11223, PITG_13133, PITG_17559,
PITG_19851, and PITG_21561, displayed a transition from
low expression to high expression (according to Durbin
Watson test, p-value > 0.05). Notably genes PITG_01528,
PITG_11223, PITG_13133, PITG_19851, and PITG_21561
only exhibited this pattern in cultivar Col3. Additionally,
gene PITG_00513 (cell division cycle 5-related protein) had
a different expression pattern in Col2, where it went from
highly expressed at the early stages to lowly expressed at
the late stages (Fig. 4).
The transcript expression time series was used to infer

the regulatory network in both cultivars (Fig. 5). A total
of 299 edges were identified for the P. infestans regula-
tory network when infecting Col2 (Col2 network; Add-
itional file 5: Network S1) and 286 edges when infecting
Col3 (Col3 network; Additional file 6: Network S2). The
Col2 network had an average degree of 12.45, not differ-
ent from an Erdos-Renyi random network with the same
number of nodes and an average number of edges
(p-value = 0.32932). This network was composed of 3
modules as detected by MCD with a modularity value of
0.2878 (Fig. 5A). The Col3 network showed an average
degree value of 11.96 (p-value = 0.38011). There was no
observable correlation between expression level and
node degree (Additional file 7: Figure S3). We found
three communities as well in this network with a modu-
larity value of 0.3177 (Fig. 5B). A total of 86 common
edges were found between these two networks (Fig. 4C;
Additional file 8: Network S3). A high level of rewiring
was observed in both the Col2 and the Col3 networks,
with a Hamming distance of 318. That is, 318 edge

addition or removal operations were required to convert
one network into the other. However, this number is sig-
nificantly less than the hamming distance between two
random networks according to the Erdos-Reyni model
with the same number of edges (p-value = 0.00094). Both
networks had the same number of nodes; therefore, the
same level of rewiring inside the sub-network.
To further evaluate the similarities between cultivars

Col2 and Col3, we assessed the intersection between the
two inferred networks (Fig. 6). For this, we selected the
common edges between the two sub-networks and the
nodes associated to these. This was considered the
shared sub-network and consisted of a small network of
40 nodes and 86 edges with an average degree of 4.25.
We found a total of 4 communities in this network,
three of this communities where composed of nodes
similar to those found in the communities identified in
Col2 and Col3 network reconstructions, A fourth com-
munity however was composed of nodes belonging to all
three communities (Fig. 6).

Discussion
Network analysis is a valuable approach to understand
biologically relevant phenomena as well as formulating
hypotheses to be tested in the laboratory [5, 6, 58].
These networks serve as a basis for the creation of
models of physiology at a cellular scale. In order to ob-
tain robust models, it is necessary to address the chal-
lenges of reconstruction from empirical data to make
accurate predictions and advance our understanding of
biologically relevant phenomena [27, 28]. Here we pre-
sented an algorithmic solution to the problem of net-
work reconstruction in time series data. This analytical
perspective makes use of the dynamic nature of time
series data as it relates to intrinsically dynamic processes
such as transcription regulation, were multiple elements

Fig. 3 Ratio of the number of communities reconstructed over the number of communities estimated by each algorithm in the gold standard
network. Grey is Multilevel community detection (greedy) and white is Markov Clustering (liberal)
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Fig. 4 Expression profiles for 48 transcription factors (TFs) in Phytophthora infestans obtained by RT-qPCR during the infection process in Solanum
tuberosum group Phureja cultivars a Col2 (susceptible) and b Col3 (moderately resistant). Expression values are shown for down-regulated genes
in blue and up-regulated genes in orange. Expression ratios are calculated relative to time 0 hpi (P. infestans growing on potato dextrose agar
(PDA) medium). Hierarchical clustering shows two distinct groups during the infection of the leaf tissue corresponding to the biotrophic (12, 24,
and 36 hpi) and necrotrophic (48, 60 and 72 hpi) phases, respectively. The names of the TF families are also denoted
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Fig. 5 Regulatory networks for Phytophthora infestans infecting Solanum tuberosum group Phureja leaflets. Three communities from susceptible
and resistant cultivars Col2 and Col3 are depicted. a The Col2, susceptible cultivar, network had 299 edges and a modularity value of 0.2878. b
The Col3, resistant cultivar, network had 286 edges and a modularity value of 0.3177. All nodes from community 1 (red), 17 nodes from community 2
(green), and 11 nodes from community 3 (blue) were shared between the two networks. Five nodes from community 3 in Col2 were assigned to
community 2 in the Col3 cultivar. c Common edges between Col2 and Col3 regulatory networks

Fig. 6 Intersection network for the cultivars Col2 and Col3. Four communities were found, the communities in red, green, and blue were composed
by the same nodes in the Col2 and Col3 networks. The fourth community (purple) is composed by genes that showed consistent up-regulation in the
Col2 and Col3 hosts
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of the cell (e.g. transcription factors) act simultaneously
and change over time. Thus, understanding the relation-
ships of these changing elements can give insights of the
basic biology of complex phenomena such as disease.
Like similar algorithms used for the purpose of GRN

reconstruction, our strategy attempted to discern con-
nections between genes via establishing correlations
within their expression profile. It however differentiates
from methods such as LASSO or LARS as it evaluates
non-linear relationships using MI (Mutual Information)
[29, 56]. Some other methods implement MI to establish
edges between nodes; these however only evaluate the
relationship in a static manner [46]. We introduced a
dynamic aspect by considering that regulators and regu-
lated genes have a shift in their expression profile. Thus,
we reduced sources of noise in the assignation of con-
fusing edges between nodes, by having the same parent
(i.e. the node controlling both nodes) while at the same
time assigning directionality to the edge. We also pro-
vide a way to score the edges that do not depend on the
empirical ranking of the MI values. Our in-silico results
suggest that including time into the prediction of edges
results in a high number of predicted edges. Although
algorithms like SWING incorporate time delays into
their architecture, and it shows high performance, the
use of linear models may inhibit detection of some edges
that follow non-linear dynamics. The incorporation of
multiple strategies into an algorithmic pipeline has been
noted in the past. Marbach et al., [43] note that incorp-
orating algorithms with different operating principles
(e.g., MI, and regression) results in higher performance
overall as false positive edges are weighted out by agree-
ment between algorithms, and rare edges can be de-
tected by incorporating multiple avenues. Therefore,
incorporating methods such as BLARS, SWING and
GRNTE may have advantages in network analysis of
transcriptomic data as this rely in different principles,
and can altogether overcome the weaknesses of each in-
dividual approach.
Another significant concern is the validation of the

resulting network. A standard framework has been set
up by DREAM in order to compare different algorithms
[45, 54], the incompleteness of gold-standard networks
remains a demanding challenge nonetheless. Missing
edges in a gold-standard network can lead to the under-
estimation of true positives as these mask as false posi-
tive results. As further research adds more edges to the
gold standard network, the predicted true positives can
either increase (i.e., false positives could decrease) or re-
main constant. This is because the number of predicted
positive edges is the sum of the number of true positives
and the number of false positives [4, 44]. The lack of
well-curated gold-standard networks causes biases in the
measurement of algorithmic performance. For this

reason, simulated data is often preferred to test network
reconstruction in addition to validating the reconstruc-
tion on biological networks. The assessment of the per-
formance of different algorithms on real biological
networks will improve soon as evidence for more
gold-standard edges is gathered. In the interim, synthetic
networks will complement the algorithm benchmarking
experiments. Therefore, it is crucial to use GRN simula-
tion tools that account for as many biological factors as
possible [54]. In addition to benchmarking procedures
should include large number of different networks, as
network topology has large effects on algorithm per-
formance as evidenced by the large variances in AUPR
and AUROC values displayed in all algorithms. More-
over, in cases where a small set of networks is present
this can lead to overestimate or underestimate the pre-
dictive quality of a given algorithm. For example, the
above-average scores we obtained in our benchmarking
setup compared to those available for DREAM4. These
datasets proved to be challenging to all the algorithms
and overall could lead to the conclusion that the algo-
rithms have low performance when in another set of
networks, the algorithms may have shown higher
competence.
The use of GRN simulation tools becomes particularly

relevant when one intends to evaluate the network
structure as a whole. If the objective is to understand
physiology as an emergent property of gene expression,
properly assessing the network features is paramount to
make reliable predictions and design constructive experi-
ments [6, 42, 49]. We have shown that although not all
the edges inferred in a network are accurate, it is still
possible to confidently estimate global properties of the
network such as modularity. We show that these proper-
ties tend to be preserved even if the inference of edges is
not completely accurate as variation in recall is not
reflected in variation of community detection. If the
properties of the network can be faithfully reconstructed
without fully assessing the individual edges, a robust
transition from simulated datasets into experimental
ones can be made based on the assumption that the
noise of missing and spurious edges is balanced. It is
therefore necessary to consider the type of experiments
in which each algorithmic solution can be used, whereas
approaches like BLARS and ARACNE are useful in tran-
scriptome assays of static physiological states [39, 40], al-
ternatives like GRNTE, SWING or TDARACNE are
shown to be a better alternative for time series data.
We have shown that network inference from expres-

sion data is a key tool for improving the biological in-
sights obtained from transcriptomics data. Exploiting
time series transcriptome analyses has helped in the un-
derstanding of the infection process of animal patho-
gens. Such studies have shown, for instance, that in
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Plasmodium falciparum distinct clusters of genes have a
differential behavior during the different stages of the
complex life cycle of this human pathogen [11]. How-
ever, in P. infestans, expression profiling did not reflect
synchronized changes in time as it was observed in P.
falciparum phaseograms, thus rendering difficult the
study of physiological changes of the infection stages of
P. infestans’ life cycle. Notably, most of the genes sam-
pled in this study, showed a rather drastic transition
from growing on artificial-medium (0 hpi) to growing on
leaf tissue. However, during leaf infection, from 12 to 72
hpi drastic transcriptional changes did not occur. Des-
pite having a few variations throughout the expression
profile, hierarchical clustering of the expression data dis-
criminated two distinct periods during the infection:
from 12 to 36 hpi and from 48 to 72 hpi. These distinct
periods can be associated with two phases of the life
cycle of the pathogen when infecting the host plant: the
biotrophic and necrotrophic phases. Transcription fac-
tors within the GRNs changed their expression levels
and gained or lost interactions throughout the infection
process. This reflects the role of TFs in controlling dif-
ferent aspects of the infection process despite showing
only slight changes in their expression level. When
comparing the transcriptional patterns between the two
cultivars, again, very few genes were differentially
expressed. Most of these genes were annotated as Myb
-like DNA-binding proteins. The role of the Myb tran-
scription factor during early infection of Phytophthora
sojae was demonstrated by Zhang et al. [66], where the
loss of PsMYB1 resulted in abnormal sporangial devel-
opment and affected zoospore-mediated plant infection.
More studies on the role of Myb transcription factors on
the biology of infection of P. infestans are needed to
understand the tight transcriptional control of a compat-
ible and incompatible interactions.
On the other hand, the networks allowed us to evalu-

ate aspects of transcription, which are beyond the raw
expression changes as was shown when exploring the
changes in gene expression using the GRN in each en-
vironment/host. As mentioned above, the most signifi-
cant changes in the expression values for most of the
TFs were observed between the oomycete growing in
culture medium and in-planta but differences in the ex-
pression ratios of the TFs of the pathogen when infect-
ing Col2 or Col3 were not significant. However, when
using the GRNs, for example, highly connected nodes,
and gene modules in the GRNs did not necessarily agree
with drastic changes in expression profiles, thus highly
expressed genes do not necessarily have high centrality
and hierarchical clustering groups of genes do not cor-
respond to network communities. Additionally, genes
that show changes in expression in different hosts do
not show highly different centrality. Our comparison of

the two networks, showed that despite having small
changes in gene expression, a high number of changes
occurred in the establishment of connections inside the
GRN for each host. The fact that only about 30% of the
interactions of one network were preserved in the other
network, suggest that the system shows several changes
comparing a compatible and an incompatible inter-
action. Although the number of modifications was much
less than expected between two random networks, it is
possible to speculate that the rewiring of P. infestans
GRN is subjected to several constraints and that the
process has been evolutionarily optimized. If we con-
sider that any operation of rewiring is possible, the ex-
pected value for the Hamming distance would be very
close to those of two random networks. However, the
control of the transcription regulation is not random, as
this value is much lower. Editions to the network struc-
ture, although many, should be precise to keep the bal-
ance and functionality of the network [4]. It is important
to note that these differences are not seen when observ-
ing the raw expression values directly and that through
network reconstruction it is possible to establish differ-
ences in the infection process in the two different hosts.
At the same time, preserved topological features (such

as modularity and the large fraction of genes which re-
main affiliated to a community) indicate that there are
core regulatory functions preserved between two differ-
ent environments. Thus, there is a tight control in the
regulation of the transcriptional program in a compat-
ible and incompatible interaction. Just a relatively small
subset of changes is required to have a completely differ-
ent behavior, compatible (Col2) vs incompatible inter-
action (Col3), without drastic changes in TF expression
levels, compared to the random case. Large differences
in expression levels in one gene may be balanced by
smaller changes in other components in the GRN. How-
ever, our reconstruction was not able to distinguish rear-
rangements occurring at higher levels in the whole GRN.
A larger sample of genes is needed to search for evidence
that may support larger transcriptional rewiring.
Community organization has been proposed as a

property indicative of functional units in complex net-
works [22, 58]. Our analysis of the modular organization
of the networks showed that different modules are
highly conserved. This suggests that a small rewiring of
the regulatory network could have a large impact on the
functional organization of the network [22, 38]. Our re-
sults on the intersection of the two cultivars’ networks
showed the presence of a fourth community. This could
indicate the presence of core circuits on the GRN since
these circuits are very active transcriptionally during the
infection process. Testing the functional activity of these
genes should be of primary importance, as these may
play an important role in the stability of the network
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and information flow between different higher-level
modules. These modules could be responsible for inter-
action compatibility, as the pathogen tends to preserve
these even after heavy rewiring. The effect of plant re-
sistance may be better understood as a network rewiring.
The effect of incompatibility (plant resistance) may be
better understood as a network rewiring. The ‘rewired’
genes, may be targeted in the early stages of infection by
the pathogen. If this control was exerted at the protein
interaction level, it would not be detected at the mRNA
level. As a response, the pathogen may shift the regula-
tory interactions of these genes while keeping a func-
tional structure. The genes that show variation among
the different modules may act as the emissaries of the
transcriptional state of the plant and thus, could prove
to be of high interest.
Expression profiling of P. infestans has been helpful in

the discovery and characterization of the effector genes
and in distinguishing between different stages of the in-
fection [32, 16]. Also, transcriptomic studies have helped
to determine particular genes involved in host defense
suppression as well as control of internal signaling [34].
However, there is still a major barrier to efficiently assess
the pathogenic behavior of Phytophthora, and to fully
understand phenomena such as host specificity or hemi-
biotrophy. Network biology proposes that data coming
from large experiments can be analyzed in several differ-
ent layers. A regulatory network built from transcrip-
tional data may be interpreted from its basic properties
to more complex levels all of which may give different
insights depending on the context [5, 6, 22, 58]. We have
shown that subtle changes in transcript abundance, do
not necessarily point to high levels of similarity on the
network level. The topological properties of the network
may prove to be a better point of comparison for data-
sets in which conventional analysis may not yield high
differences.
Complex behavior such as hemibiotrophy, may be ex-

plained via the effect of regulatory events occurring at dis-
tinct times. The regulatory capacities of the TFs inside a
network may be best explained by the information that
these transmit to other elements of the network. Small dif-
ferences in network rewiring and conserved levels of ex-
pression, may be explained by the effect of each individual
TFs, in terms of its information flow inside the network.
The information flow can be assessed by estimating the
betweenness centrality; genes PITG_10768 (zinc finger
C2H2 superfamily) and PITG_08960 (Myb-like DNA
binding protein) showed the highest betweenness central-
ity in Col2 and Col 3 sub-networks respectively. These
genes are constantly down-regulated and this agrees with
the hypothesis that shifts in physiological behavior are
controlled via negative regulation in Phytophthora [34,
40]. These nodes, with high betweenness centrality, have a

high influence over the network, as shown be simulation
of an infection process [39]. If the activation of a physio-
logical state is mediated by the selective shut down of par-
ticular transcription factors, then particular regulators
may be acting in each case to control the response to dif-
ferent environments.
The preservation of modules, despite heavy rewiring of

the network, may indicate that these circuits have large
biological importance and play key roles in the physi-
ology of infection. In organisms such as P. infestans,
analytical tools that elucidate the process via study of
the mRNA, can be greatly expanded via network recon-
struction. Using this framework, differences in the be-
havior of an organism in different environments can be
found, as shown in the rewiring for the sub-networks in
different environments. Additionally, although expres-
sion profiling may be a powerful tool to determine major
genes involved in the infection process, it is limited to
clearly discriminate possible mechanism and hypothesis
underlying host-pathogen interactions, network analysis
broaden the analytical power of this data sets as it allows
to determine modules and to narrow the number of can-
didate genes for experimental validation [5]. Unlike or-
ganisms like P. falciparum [11], gene expression changes
in P. infestans are less directly indicative of regulatory
function changes. This is the first study to use network
reconstruction as a way to overcome the limitations of
gene expression profiling. Some of the ideas discussed
here are widely used in other fields [1, 6, 22, 39] and the
incorporation of these tools into the study of
plant-pathogen interactions can open a window to better
understand the behavior of pathogens and to propose ef-
fective alternatives for their control.

Conclusions
Here we presented an algorithmic solution to the prob-
lem of network reconstruction in time series data. This
analytical perspective makes use of the dynamic nature
of time series data as it relates to intrinsically dynamic
processes such as transcription regulation, where mul-
tiple elements of the cell (e.g. transcription factors) act
simultaneously and change over time. We applied the al-
gorithm, GRNTE, to study the regulatory network of P.
infestans during its interaction with two hosts which dif-
fer in their level of resistance to the pathogen. Although
the gene expression analysis did not show differences
between the two hosts, the results of the GRN analyses
indicated rewiring of the genes’ interactions according to
the resistance level of the host. This suggests that
different regulatory processes are activated in response
to different environmental cues. Applications of our
methodology showed that it could reliably predict where
to place edges in the transcriptional networks and
sub-networks. The experimental approach used here can
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help provide insights on the biological role of these in-
teractions on complex processes such as pathogenicity.
The code used is available at https://github.com/jccas-
trog/GRNTE under GNU general public license 3.0.
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Additional file 1: Table S1. Primer sequences for TFs genes in P.
infestans assayed in this study. Forward and reverse primers were
designed by QuantPrime [2]. Expected annealing temperature is also
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Additional file 2: Figure S1. PCR amplification for testing primer
viability. cDNA extracted from P. infestans in PDA media was amplified at
45 PCR cycles. Observed fragment size x to expected fragment size
(~ 50-70 bp) when observed in 2% agarose gel. Some primer dimers can
be observed. (PDF 387 kb)

Additional file 3: Table S2. Mean expression values for 48 TFs from P.
infestans during the interaction with S. tuberosum group Phureja Col3
and Col2. Relative expression is calculated comparing RT-PCR
measurements to time 0 h.p.i. for both Col2 and Col3. Expression
profiles are also compared between the two hosts to observe
differences during the interaction specific of cultivar. (XLSX 26 kb)

Additional file 4: Figure S2. Expression profile of Col2 compared to
Col3. Heatmap representing the expression profiles were compared for
the two cultivars. For each transcript each time point is compared to the
same timepoint in the other cultivar (e.g., Col2 PITG_05317 12 h.p.i. is
compared to Col3 PITG_05317 12 h.p.i.) Although only minor changes in
expression are observed Genes overexpressed in Col2 and a clear
separation between early and late infection can be observed by
hierarchical clustering. (PDF 189 kb)

Additional file 5: Network S1. Network file for the sub-network of
P.infestans when interacting with S. tuberosum Col2, as observed in Fig. 5.
Network in XML format, can be visualized in Cytoscape. (XML 28 kb)

Additional file 6: Network S2. Network file for the sub-network of P.
infestans when interacting with S. tuberosum Col3, as observed in Fig. 5.
Network in XML format, can be visualized in Cytoscape. (XML 27 kb)

Additional file 7: Figure S3. Expression is unrelated to degree. Node
degree is computed for each node in the network and plotted against it
mean expression value in Col2 (A) and in Col3 (B). No correlation is
observed. (PDF 179 kb)

Additional file 8: Network S3. Network file for the subnetwork of P.
infestans extracted from the intersection of nodes and edges between
networks for infection in Col2 and Col3 as observed in Fig. 6. Network in
XML format, can be visualized in Cytoscape. (XML 16 kb)
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