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Assessing parameter identifiability in
compartmental dynamic models using a
computational approach: application to
infectious disease transmission models
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Abstract

Background: Mathematical modeling is now frequently used in outbreak investigations to understand underlying
mechanisms of infectious disease dynamics, assess patterns in epidemiological data, and forecast the trajectory of
epidemics. However, the successful application of mathematical models to guide public health interventions lies in
the ability to reliably estimate model parameters and their corresponding uncertainty. Here, we present and illustrate a
simple computational method for assessing parameter identifiability in compartmental epidemic models.

Methods: We describe a parametric bootstrap approach to generate simulated data from dynamical systems to
quantify parameter uncertainty and identifiability. We calculate confidence intervals and mean squared error of
estimated parameter distributions to assess parameter identifiability. To demonstrate this approach, we begin
with a low-complexity SEIR model and work through examples of increasingly more complex compartmental
models that correspond with applications to pandemic influenza, Ebola, and Zika.

Results: Overall, parameter identifiability issues are more likely to arise with more complex models (based on
number of equations/states and parameters). As the number of parameters being jointly estimated increases,
the uncertainty surrounding estimated parameters tends to increase, on average, as well. We found that, in
most cases, R0 is often robust to parameter identifiability issues affecting individual parameters in the model.
Despite large confidence intervals and higher mean squared error of other individual model parameters, R0
can still be estimated with precision and accuracy.

Conclusions: Because public health policies can be influenced by results of mathematical modeling studies, it
is important to conduct parameter identifiability analyses prior to fitting the models to available data and to
report parameter estimates with quantified uncertainty. The method described is helpful in these regards and
enhances the essential toolkit for conducting model-based inferences using compartmental dynamic models.
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Background
Mathematical modeling is commonly applied in outbreak
investigations for analyzing mechanisms behind infectious
disease transmission and explaining patterns in epidemio-
logical data [1, 2]. Models also provide a quantitative frame-
work for assessing intervention and control strategies and
generating epidemic forecasts in real time. However, the
successful application of mathematical modeling to investi-
gate epidemics depends upon our ability to reliably estimate
key transmission and severity parameters, which are critical
for guiding public health interventions. In particular,
parameter estimates for a given system are subject to
two major sources of uncertainty: noise in the data and
assumptions built in the model [3]. Ignoring this uncer-
tainty can result in misleading inferences and potentially
incorrect public health policy decisions.
Appropriate and flexible approaches for estimating

parameters from data, evaluating parameter and model
uncertainty, and assessing goodness of fit are gaining
increasing attention [4–8]. For instance, model parameters
can be estimated by connecting models with observed
data through various methods, including least-squares
fitting [9], maximum likelihood estimation [10, 11], and
approximate Bayesian computation [12, 13]. An import-
ant, yet often overlooked step in estimating parameters is
examining parameter identifiability – whether a set of
parameters can be uniquely estimated from a given
model and data set [14]. Lack of identifiability, or non-
identifiability, occurs when multiple sets of parameter
values yield a very similar model fit to the data. Non-
identifiability may be attributed to the model structure
(structural identifiability) or due to the lack of informa-
tion in a given data set (practical identifiability), which
could be associated with the number of observations,
spatial-temporal resolution (e.g., daily versus weekly data),
and observation error. A parameter set is considered
structurally identifiable if any set of parameter values can
be uniquely mapped to a model output [15]. As such,
structural identifiability is the first step in understanding
which model parameters can be estimated from data of
certain state(s) of the system at a specific spatial-temporal
resolution. Structurally identifiable parameters may still be
non-identifiable in practice due to a lack of information in
available data. The so-called “practical identifiability” con-
siders real-world data issues: amount of noise in the data
and sampling frequency (e.g., data collection process) [14].
Several methods have been proposed to examine struc-

tural identifiability of a model without the need of
experimental data; these include Taylor series methods
[15, 16], differential algebra-based methods [17, 18], and
other mathematical approaches [15, 19]. These methods
tend to work better in the context of simple rather than
complex models. Model complexity, in general, is a func-
tion of the number of parameters necessary to characterize

the states of the system and the spectrum of dynamics
that can be recovered from the model. Model complexity
affects the ability to reliably parameterize the model given
the available data [3], so there is a need for flexible, math-
ematically-sound approaches to address parameter iden-
tifiability in models of varying complexity. Here, we
present a general computational method for quantifying
parameter uncertainty and assessing parameter identifiability
through a parametric bootstrap approach. We demonstrate
this approach through examples of compartmental epidemic
models with variable complexity, which have been pre-
viously employed to study the transmission dynamics
and control of various infectious diseases including
pandemic influenza, Ebola, and Zika.

Methods
Compartmental models
Compartmental models are widely used in epidemiological
literature as a population-level modeling approach that
subdivides the population into classes according to their
epidemiological status [1, 20]. Compartmental dynamic
models are specified by a set of ordinary differential equa-
tions and parameters that track the temporal progression
of the number of individuals in each of the states of the
system [3, 21]. Dynamic models follow the general form:

_x1 tð Þ ¼ f 1 x1; x2;…; xh;Θð Þ
_x2 tð Þ ¼ f 2 x1; x2;…; xh;Θð Þ

⁞

_xh tð Þ ¼ f h x1; x2;…; xh;Θð Þ
Where _xi is the rate of change of the system states

(where i = 1, 2, …, h) and Θ = (θ1, θ2, …, θm) is the set of
model parameters.
The basic reproductive number (denoted R0) is often a

parameter of interest in epidemiological studies, as it is a
measure of potential for a given infectious disease to spread
within a population. Mathematically, it is defined as the
average number of secondary infections produced by a
single index case in a completely susceptible population
[22]. R0 represents an epidemic threshold for which values
of R0 < 1 indicate a lack of disease spread, and values of
R0 > 1 are consistent with epidemic spread. In the midst of
an epidemic, R0 estimates provide insight to the intensity of
interventions required to achieve control [23]. R0 is a
composite parameter value, as it depends on multiple model
parameters (e.g., transmission rate, infectious period), and
while R0 is not directly estimated from the model, it
can be calculated by relying on the uncertainty of indi-
vidual parameters.
A simple and commonly utilized compartmental model is

the SEIR (susceptible-exposed-infectious-removed) model
[1]. We apply our methodology to this low-complexity
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model and work through increasingly more complex
models as we demonstrate the approach for assessing
parameter identifiability.

Model 1: Simple SEIR (pandemic influenza)
We analyze a simple compartmental transmission model
that consists of 4 parameters and 4 states (Fig. 1). We apply
this model to the context of the 1918 influenza pandemic
in San Francisco, California [23]. Individuals in the model
are classified as susceptible (S), exposed (E), infectious (I),
or recovered (R) [1]. We assume constant population size,
so S + E + I + R =N, where N is the total population size.
Susceptible individuals progress to the exposed class at
rate βI(t)/N, where β is the transmission rate, and I(t)/
N is the probability of random contact with an infec-
tious individual. Exposed, or latent, individuals move to
the infectious class at rate k, where 1/k is the average
latent period. Infectious individuals recover (move to
recovered class) at rate γ, where 1/γ corresponds to the
average infectious period.
The transmission process can be modeled using the

following system of ordinary differential equations (where
the dot denotes time derivative):

_S tð Þ ¼ −βS tð ÞI tð Þ=N
_E tð Þ ¼ βS tð ÞI tð Þ=N−kE tð Þ

_I tð Þ ¼ kE tð Þ−γI tð Þ
_R tð Þ ¼ γI tð Þ
_C tð Þ ¼ kE tð Þ

8>>>><>>>>:
The auxiliary variable C(t) tracks the cumulative number

of infectious individuals from the start of the outbreak. It is
not a state of the system of equations, but simply a class to
track the cumulative incidence cases; meaning, individuals
from the population are not moving to class C. The number
of new infections, or the incidence curve, is given by _CðtÞ.
For this model, there is only one class contributing to

new infections (I), so R0, or the basic reproductive number,

is simply the product of the transmission rate and the aver-

age infectious period: R0 =
β
γ .

Model 2: SEIR with asymptomatic and hospitalized/
diagnosed and reported
We use a simplified version of a complex SEIR model that
consists of 8 parameters and 6 system states (Fig. 2). This
model was originally developed for studying the transmis-
sion dynamics of the 1918 influenza pandemic in Geneva,
Switzerland [24]. In the model, individuals are classified as
susceptible (S), exposed (E), clinically ill and infectious (I),
asymptomatic and partially infectious (A), hospitalized/
diagnosed and reported (J), or recovered (R). Hospitalized
individuals are assumed to be as infectious as individuals
in the I class. Again, constant population size is assumed,
so S + E + I +A + J + R =N. Susceptible individuals progress
to the exposed class at rate β[I(t) + J(t) + qA(t)]/N,
where β is the transmission rate, and q is a reduction
factor of transmissibility in the asymptomatic class (0 <
q < 1). A proportion, ρ, of exposed/latent individuals (0
< ρ < 1) become clinically infectious at rate k, while the
rest (1- ρ) become partially infectious and asymptomatic
at the same rate k. Asymptomatic cases progress to the
recovered class at rate γ1. Clinically ill and infectious
individuals are diagnosed at a rate α or recover without
being diagnosed at rate γ1. Diagnosed individuals recover
at rate γ2.
The transmission process can be modeled using the

following system of ordinary differential equations:

_S tð Þ ¼ −βS tð Þ I tð Þ þ J tð Þ þ qA tð Þ½ �=N
_E tð Þ ¼ βS tð Þ I tð Þ þ J tð Þ þ qA tð Þ½ �=N−kE tð Þ

_A tð Þ ¼ k 1−ρð ÞE tð Þ−γ1A tð Þ
_I tð Þ ¼ kρE tð Þ− αþ γ1ð ÞI tð Þ

_J tð Þ ¼ αI tð Þ−γ2 J tð Þ
_R tð Þ ¼ γ1 A tð Þ þ I tð Þð Þ þ γ2 J tð Þ

_C tð Þ ¼ αI tð Þ

8>>>>>>>><>>>>>>>>:

Fig. 1 Model 1: Simple SEIR – Population is divided into 4 classes: susceptible (S), exposed (E), infectious (I), and recovered/removed (R). Class C
represents the auxiliary variable C (t) and tracks the cumulative number of infectious individuals from the start of the outbreak. This is presented
as a dashed line, as it is not a state of the system of equations, but simply a class to track the cumulative incidence cases; meaning, individuals
from the population are not moving to class C. Parameter(s) above arrows denote the rate individuals move between classes. Parameter descriptions
and values are found in Table 1
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In the above system, C(t) represents the cumulative
number of diagnosed/reported cases from the start of the
outbreak, and _CðtÞ is the incidence curve of diagnosed
cases.
For this model, there are three classes contributing to

new infections (A, I, J), so the reproductive number is
the sum of the contributions from each of these classes:
R0 = R0

A + R0
I + R0

J, where:
R0

A = (fraction of asymptomatic cases) x (transmission
rate) x (relative transmissibility from asymptomatic cases)
x (mean time in asymptomatic class)
R0

I = (fraction of symptomatic cases) x (transmission
rate) x (mean time in clinically infectious class)
R0

J = (fraction of symptomatic cases that are hospital-
ized) x (transmission rate) x (mean time in hospital) [24]
Here, R0 ¼ β½ð1−ρÞð qγ1Þ þ ρð 1

γ1þα þ α
ðγ1þαÞγ2Þ].

Model 3: The Legrand et al. model (Ebola)
We analyze an Ebola transmission model [25] comprised
of 15 parameters and 6 states (Fig. 3). This model subdi-
vides the infectious population into three stages to account
for transmission in three settings: community, hospital,
and unsafe burial ceremonies. Individuals are classified as
susceptible (S), exposed (E), infectious in the community
(I), infectious in the hospital (H), infectious after death at
funeral (F), or recovered/removed (R). Constant population
size is assumed, so S + E + I +H + F + R =N. Susceptible
individuals progress to the exposed class at rate
(βII(t) + βHH(t) + βFF(t))/N where βI, βH, and βF repre-
sent the transmission rates in the community, hospital,
and at funerals, respectively. Exposed individuals become
infectious at rate α. A proportion, 0 < θ < 1, of infectious

individuals are hospitalized at rate γh. Of the proportion
of infectious individuals that are not hospitalized (1-θ), a
proportion, 0 < δ1 < 1, move to the funeral class at rate γd,
and the rest (1- δ1) move to the recovered/removed
class at rate γi. A proportion, 0 < δ2 < 1, of hospitalized
individuals progress to funeral class at rate γdh ¼ 1

1
γd
− 1
γh

.

The remaining proportion (1- δ2) are recovered/removed
at rate γih ¼ 1

1
γi
− 1
γh

. δ1 and δ2 are calculated such that δ

represents the case fatality ratio (Table 3). Individuals in
the funeral class are removed at rate γf.
The transmission process is modeled by the following

set of ordinary differential equations:

_S tð Þ ¼ −S tð Þ βI I tð Þ þ βHH tð Þ þ βF F tð Þ� �
=N

_E tð Þ ¼ S tð Þ βI I tð Þ þ βHH tð Þ þ βF F tð Þ½ �=N−αE tð Þ
_I tð Þ ¼ αE tð Þ− θγh þ δ1 1−θð Þγd þ 1−δ1ð Þ 1−θð Þγi

� �
I tð Þ

_H tð Þ ¼ θγhI tð Þ− 1−δ2ð Þγ ih þ δ2γdh
� �

H tð Þ
_F tð Þ ¼ δ1 1−θð ÞγdI tð Þ þ δ2γdhH tð Þ−γ f F tð Þ

_R tð Þ ¼ 1−δ1ð Þ 1−θð Þγ iI tð Þ þ 1−δ2ð Þγ ihH tð Þ þ γ f F tð Þ
_C tð Þ ¼ αE tð Þ

8>>>>>>>>><>>>>>>>>>:
Here, C(t) represents the cumulative number of all

infectious individuals, and _CðtÞ is the incidence curve
for infectious cases.
The basic reproductive number is the sum of the

contributions from each of the infectious classes (I, H, F):
R0 = R0

I + R0
H + R0

F, where:
R0

I = (transmission rate in the community) x (mean time
in infectious class)
R0

H = (fraction of hospitalized cases) x (transmission
rate in the hospital) x (mean time in hospital class)

Fig. 2 Model 2: SEIR with asymptomatic and hospitalized/diagnosed and reported – Population is divided into 6 classes: susceptible (S), exposed
(E), clinically ill and infectious (I), asymptomatic and partially infectious (A), hospitalized/diagnosed and reported (J), and recovered (R). Class C
represents the auxiliary variable C(t) and tracks the cumulative number of newly infectious individuals. Parameter(s) above (or to the left of) arrows
denote the rate individuals move between classes. Parameter descriptions and values are found in Table 2
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R0
F = (fraction of cases that have traditional burial

ceremonies) x (transmission rate at funerals) x (mean
time in funeral class)

Here, R0 ¼ βI
Δ þ

γhθ
γdhδ2þγihð1−δ2Þ

βH
Δ þ γdδ1ð1−θÞβ F

γ f Δ

þ γdhγhδ2θβ F
γ f ðγ ihð1−δ2Þþγdhδ2ÞΔ ;

where Δ = γhθ + γd(1 − θ)δ1 + γi(1 − θ)(1 − δ1) [25].

Model 4: Zika model with human and mosquito populations
The last example is a compartmental model of Zika
transmission dynamics that includes 16 parameters and
9 states and incorporates transmission between two pop-
ulations – humans and vectors (Fig. 4). This model was

designed to investigate the impact of both mosquito-
borne and sexually transmitted (human-to-human) routes
of infection for cases of Zika virus [26]. In the human popu-
lation, individuals are classified as susceptible (Sh), asymp-
tomatically infected (Ah), exposed (Eh), symptomatically
infectious (Ih1), convalescent (Ih2), or recovered (Rh).
The mosquito, or vector, population is broken into sus-
ceptible (Sv), exposed (Ev), and infectious (Iv) classes.
Note that the subscript ‘h’ is used for humans and ‘v’ is
used for vectors. Constant population size is assumed
in both populations, so Sh + Ah + Eh + Ih1 + Ih2 + Rh = Nh

and Sv + Ev + Iv = Nv.
A proportion 0 < θ < 1 of susceptible humans move

to the exposed class at rate ab(Iv(t)/Nh) + β[(αEh(t) +
Ih1(t) + τIh2(t))/Nh)] where a is the mosquito biting

Fig. 4 Model 4: Zika Model with human and mosquito populations – The human population (subscript h) is divided into 5 classes: susceptible
(Sh), asymptomatically infected (Ah), exposed (Eh), symptomatically infectious (Ih1), convalescent (Ih2), or recovered (Rh). Class C represents the
auxiliary variable C(t) and tracks the cumulative number of newly infectious individuals. The mosquito, or vector, population (subscript v; outlined in
dark blue) is divided into 3 classes: susceptible (Sv), exposed (Ev), and infectious (Iv) classes. Parameter(s) above arrows denote the rate individuals/
vectors move between classes. Parameter descriptions and values are found in Table 4

Fig. 3 Model 3: The Legrand et al. Model – Population is divided into 6 classes: susceptible (S), exposed (E), infectious in the community (I),
infectious in the hospital (H), infectious after death at funeral (F), or recovered/removed (R). Class C represents the auxiliary variable C(t) and tracks
the cumulative number of newly infectious individuals. Parameter(s) above arrows denote the rate that individuals move between classes.
Parameter descriptions and values are found in Table 3
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rate, b is the transmission probability from an infectious
mosquito to a susceptible human, β is the transmission
rate between humans, α is the relative (human-to-human)
transmissibility from exposed humans to susceptible,
and τ is the relative transmissibility from convalescent
humans compared to susceptible. Exposed individuals
progress to symptomatically infectious at rate κh and
then progress to the convalescent stage at rate γh1. Con-
valescent individuals recover at rate γh2. The remaining
proportion of susceptible individuals (1 - θ) become
asymptomatically infected at the same rate, ab(Iv(t)/Nh)
+ β[(αEh(t) + Ih1(t) + τIh2(t))/Nh]. Asymptomatic humans
recover at rate γh and do not contribute to new infections
in this model.
Susceptible mosquitos move to the exposed class at

rate ac[(ρEh(t) + Ih1(t))/Nh], where c is the transmission
probability from a symptomatically infectious human to a
susceptible mosquito, and ρ is the relative human-to-mos-
quito transmission probability from exposed humans to
symptomatically infected. Exposed mosquitos become in-
fectious at rate κv. Mosquitos also leave the population at
rate μv, where 1/μv is the mosquito lifespan.
The transmission process, including both populations,

is represented by the set of differential equations below:

_Sh tð Þ ¼ −ab Iv tð Þ=Nhð ÞSh tð Þ
−β αEh tð Þ þ Ih1 tð Þ þ τIh2 tð Þð Þ=Nh½ �Sh tð Þ

_Eh tð Þ ¼ θ
�
ab Iv tð Þ=Nhð ÞSh tð Þ þ β

��
αEh tð Þ þ Ih1 tð Þ

þτIh2 tð ÞÞ=Nh�Sh tð Þ�−κhEh tð Þ
_Ih1 tð Þ ¼ κhEh tð Þ−γh1Ih1 tð Þ
_Ih2 tð Þ ¼ γh1Ih1 tð Þ−γh2Ih2 tð Þ
_Ah tð Þ ¼ 1−θð Þ½abðIvðtÞ=Nh�ShðtÞ þ β½αEhðtÞ

þ Ih1ðtÞ þ τIh2 tð ÞÞ=Nh�ShðtÞ�−γhAh tð Þ
_Rh tð Þ ¼ γh2Ih2 tð Þ þ γhAh tð Þ
_Sv tð Þ ¼ μvNv−ac ρEh tð Þ þ Ih1 tð Þð Þ=Nh½ �

�Sv tð Þ−μvSv tð Þ
_Ev tð Þ ¼ ac ρEh tð Þ þ Ih1 tð Þð Þ=Nh½ � � Sv tð Þ

− κv þ μvð ÞEv tð Þ_Iv tð Þ ¼ κvEv tð Þ−μvIv tð Þ
_C tð Þ ¼ κhEh tð Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
C(t) represents the cumulative number of symptom-

atically infectious human cases, and _CðtÞ contains the
incidence curve for symptomatic human cases.
For this example, we have two transmission processes to

consider when calculating R0: sexual transmission (Rhh)
and mosquito-borne (Rhv). The human population has
three classes contributing to new infections: exposed,
symptomatically infectious, and convalescent, so:

Rhh ¼ αθβ
κh

þ θβ
γh1

þ τθβ
γh2

The mosquito population only has one infectious class
(Iv); the reproductive number is given by:

Rhv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2bρcmθ
κhμv

þ a2bcmθ
γh1μv

� �
� κv
κv þ μv

s
:

The overall basic reproductive number, considering both
transmission routes, is given by the following eq. [26]:

R0 ¼
Rhh þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
hh þ 4R2

hv

q
2

Simulated data
For each model we simulate 200 epidemic datasets (directly
from the corresponding set of ordinary differential equa-
tions) with Poisson error structure using the daily time
series data of case incidence, or total number of new cases
daily. Parameters for each model are set at values based
on their corresponding application: the 1918 influenza
pandemic in San Francisco (Model 1) [23], 1918 pandemic
influenza in Geneva (Model 2) [24], 1995 Ebola in Congo
(Model 3) [25], and 2016 Zika in the Americas (Model 4)
[26]. As explained below, the simulated data are generated
using a bootstrap approach, and we then use these data to
study parameter identifiability within a realistic parameter
space for each model. Parameter descriptions and their cor-
responding values for each model are given in Tables 1, 2, 3
and 4.

Parameter estimation
To estimate parameter values, we fit the model to each
simulated dataset using nonlinear least squares estimation.
The lsqcurvefit function in Matlab (Mathworks, Inc.) is
used to find the least squares best fit to the data. This

process searches for the set of parameters Θ̂= (θ̂1, θ̂2,…, θ̂m)
that minimizes the sum of squared differences between the
simulated data and the model solution [3]. The model solu-

tion f ðti; Θ̂Þ represents the best fit to the time series data.

Table 1 Parameter descriptions and values for Model 1

Parameters Description Value

N Population size 500,000

β Transmission rate (per day) 0.56

1/κ Mean latent period (days) 1.9

1/γ Mean infectious period (days) 4.1

R0 Basic reproductive number 2.3

Parameter values are consistent with pandemic influenza in San Francisco,
1918 [23]
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For this method, the initial parameter predictions affect
the solution for the model as local minima occur. While
we know the true parameter values (used to generate the
data), this is unrealistic for a real-world modeling scenario.
We vary the initial guesses of the parameter values to vary
according to a uniform distribution in the range of +/− 0.1
around the true value. Another approach would consist of
repeating the least squares fitting procedure several times
with different initial parameter guesses and selecting the
best model fit.

For each model, the sets of parameters are denoted by
Θi, where i represents the number of parameters being
jointly estimated. We begin with estimating one model
parameter, while fixing the rest, and then increase the
number of parameters jointly estimated by one until all
parameters of interest are included. Population size, N,
is always fixed to the true value. Also, while R0 is not
being directly estimated from the model, it is a composite
parameter that can be calculated using individual param-
eter estimates.
For each model described above, we explore parameter

identifiability for the following sets of parameters. Here,
the symbol ^ is used to indicate an estimated parameter,
while the absence of this symbol indicates that the par-
ameter is set to its true value from the simulated data.
(i) Model 1: Simple SEIR

Θi : Θ1 ¼ β̂; κ; γ
n o

Θ2 ¼ β̂; κ; γ̂
n o

Θ3 ¼ β̂; κ̂; γ̂
n o

Table 2 Parameter descriptions and values for Model 2

Parameters Description Value

N Population size 500,000

β Transmission rate (per day) 0.8

1/κ Latent period (days) 1.9

γ1 Recovery rate for asymptomatic individuals
(1/days)

1/4.1

γ2 Recovery rate for infectious individuals
recovering without hospitalization (1/days)

1/2.3

α Rate of diagnosis for hospitalized individuals
(days)

0.555

ρ Proportion of latent individuals progressing
to infectious class (vs. asymptomatic class)

0.6

q Reduction factor in transmissibility for
asymptomatic cases

0.4

R0 Basic reproductive number 1.89

Parameter values are consistent with pandemic influenza in Geneva, 1918 [24]

Table 3 Parameter descriptions and values for Model 3

Parameters Description Value

N Population size 200,000

βI Transmission rate in the community (per day) 0.084

βH Transmission rate in the hospital (per day) 0.1134

βF Transmission rate at traditional funerals (per day) 1.093

1/α Incubation period (days) 7

θ Proportion of cases hospitalized 0.80

1/γh Time from symptom onset to hospitalization
(days)

5

1/γd Time from symptom onset to death (days) 9.6

1/γi Time from symptom onset to the end
of infectiousness for survivors (days)

10

δ Case fatality ratio 0.81

δ1 δ1 ¼ δγi
δγiþð1−δÞγd

0.80

δ2 δ2 ¼ δγih
δγihþð1−δÞγdh

0.80

1/γih Infectious period for survivors (days) 5

1/γdh Time from hospitalization to death (days) 4.6

1/γf Time from death to funeral (days) 2

R0 Basic reproductive number 2.685

Parameter values are consistent with the 1995 Ebola outbreak in the
Democratic Republic of Congo [25]

Table 4 Parameter descriptions and values for Model 4

Parameters Description Value

Nh Population size (humans) 200,000

Nv Population size (mosquitos) 1,000,000

a Mosquito biting rate (number of bites per
mosquito per day)

0.5

b Probability of infection from an infectious
mosquito to a susceptible human (per bite)

0.4

β Transmission rate from symptomatically infected
humans to susceptible humans (per day)

0.05

α Relative human-to-human transmissibility of
exposed humans to symptomatic humans

0.6

τ Relative human-to-human transmissibility
of convalescent to symptomatic humans

0.3

Proportion of symptomatic infections 0.18

1/κh Intrinsic incubation period in humans (days) 5

1/γh1 Duration of acute phase (days) 5

1/γh2 Duration of convalescent phase (days) 20

1/γh Duration of asymptomatic infection (days)

1/μv Mosquito lifespan (days) 14

c Transmission probability from a symptomatically
infected human to a susceptible mosquito
per bite

0.5

ρ Relative human-to-mosquito transmission
probability of exposed humans to
symptomatically infected humans

0.1

1/κv Extrinsic incubation period in mosquitos (days) 10

R0 Basic reproductive number 1.486

Parameter values are consistent with the 2016 Zika outbreak in Brazil,
Colombia, and El Salvador [26]
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(ii) Model 2: SEIR with asymptomatic and hospital-
ized/diagnosed and reported

Θi : Θ1 ¼ β̂; κ; γ1; γ2; α; ρ; q
n o

Θ2 ¼ β̂; κ; bγ1; γ2; α; ρ; qn o
Θ3 ¼ β̂; κ; bγ1; γ2; α̂; ρ; qn o
Θ4 ¼ β̂; κ; bγ1; γ2; α̂; ρ̂; qn o
Θ5 ¼ β̂; κ; bγ1; γ2; α̂; ρ̂; q̂n o

(iii) Model 3: The Legrand Model (Ebola)

Θi : Θ1 ¼ β̂I ; βH ; βF ; α; θ; γh; γd; γi; δ; γ ih; γdh; γ f

n o
Θ2 ¼ β̂I ; β̂H ; βF ; α; θ; γh; γd; γi; δ; γ ih; γdh; γ f

n o
Θ3 ¼ β̂I ; β̂H ; β̂F ; α; θ; γh; γd; γi; δ; γ ih; γdh; γ f

n o
Θ4 ¼ β̂I ; β̂H ; β̂F ; α; θ; γ̂h; γd; γi; δ; γ ih; γdh; γ f

n o
Θ5 ¼ β̂I ; β̂H ; β̂F ; α; θ; γ̂h; γ̂d; γi; δ; γ ih; γdh; γ f

n o
Θ6 ¼ β̂I ; β̂H ; β̂F ; α; θ; γ̂h; γ̂d; γ̂ i; δ; γ ih; γdh; γ f

n o
Θ7 ¼ β̂I ; β̂H ; β̂F ; α; θ; γ̂h; γ̂d; γ̂ i; δ; γ ih; γdh; γ̂ f

n o
(iv) Model 4: Zika model with human and mosquito

populations

Θi : Θ1 ¼ a; b; β̂; α; τ; θ; κh; γh1; γh2; γh; μv; c; ρ; κv
n o

Θ2 ¼ a; b; β̂; α; τ; θ; κh; γ̂h1; γh2; γh; μv; c; ρ; κv
n o

Θ3 ¼ a; b; β̂; α; τ; θ; κh; γ̂h1; γ̂h2; γh; μv; c; ρ; κv
n o

Θ4 ¼ a; b; β̂; α; τ; θ; κh; γ̂h1; γ̂h2; γ̂h; μv; c; ρ; κv
n o

Θ5 ¼ a; b; β̂; α̂; τ; θ; κh; γ̂h1; γ̂h2; γ̂h; μv; c; ρ; κv
n o

Θ6 ¼ a; b; β̂; α̂; τ̂; θ; κh; γ̂h1; γ̂h2; γ̂h; μv; c; ρ; κv
n o

Bootstrapping method
We use the parametric bootstrap approach [3, 27, 28] for
simulating the error structure around the deterministic
model solution in order to evaluate parameter identifiability.
This computational approach involves repeatedly sampling
observations from the best-fit model solution. Here we use a
Poisson error structure, which is the most popular distribu-
tion for modeling count data [3]. The step-by-step approach
to quantify parameter uncertainty is as follows:

1. Obtain the deterministic model solution (total
daily incidence series) using nonlinear least-squares
estimation (Section 2.3).

2. Generate S replicate datasets, assuming Poisson
error structure:

Using the deterministic model solution f ðti; Θ̂Þ,
generate S (for our examples, S = 200) replicate

simulated datasets f �Sðti; Θ̂Þ. To incorporate Poisson

error structure, we use the incidence curve, _CðtÞ, as
follows. For each time point t, we generate a new
incidence value using a Poisson random variable
with mean= _CðtÞ. This new set of data represents an
incidence curve for the system, assuming the time
series follows a Poisson distribution centered on the
mean at time points ti.

3. Re-estimate model parameters: For each simulated
dataset, derive the best-fit estimates for the parameter
set using least-squares fitting (Section 2.3). This
results in S estimated parameter sets: Θ̂i where
i = 1, 2, …, S.

4. Characterize empirical distributions and construct
confidence intervals: Using the set of S parameter
estimates, we can characterize the empirical
distribution and construct confidence intervals
for each estimated parameter. Also, for each set
of estimated parameters, R0 is calculated to obtain a
distribution of R0 values as well.

Parameter identifiability
When a model parameter is identifiable from available
data, its confidence interval lies in a finite range of
values [29, 30]. Using the bootstrapping method outlined
in Section 2.4, we obtain 95% confidence intervals from
the distributions of each estimated parameter. A small
confidence interval with a finite range of values indicates
that the parameter can be precisely identified, while a
wider range could be indicative of lack of identifiability.
To assess the level of bias of the estimates, we calculate
the mean squared error (MSE) for each parameter. MSE

is calculated as: MSE ¼ 1
S

PS
i¼1 ðθ−bθiÞ2 where θ repre-

sents the true parameter value (in the simulated data),

and bθi represents the estimated value of the parameter
for the ith bootstrap realization.
When a parameter can be estimated with low MSE

and narrow confidence, this suggests that the parameter
is identifiable from the model. On the other hand, larger
confidence intervals or larger MSE values may be sug-
gestive of non-identifiability.

Results
Model 1: Simple SEIR
Additional files 1, 2 and 3: illustrate the empirical distribu-
tions of the estimated parameters, where Additional file 1:

represents the results for Θ̂1(β only), Additional file 2: for
Θ̂2 (β and γ), and Additional file 3: for Θ̂3 (β, γ, and κ).
The figures also show the original simulated data and the
200 simulated datasets for each estimated parameter set.
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Estimating only β (Θ1), results in precise (small confi-
dence interval range) and unbiased (small MSE) esti-
mates of β. Similarly, estimating β and γ (Θ2) provides
precise and unbiased estimates for both parameters. The
precision of the estimates can be seen in Fig. 5: the con-
fidence intervals for the estimates (represented by red
vertical lines) remain close to the true parameter value
(blue horizontal dotted line). The MSE plot (Fig. 6)
shows an MSE value of < 10− 7 for β in Θ1 and values of
< 10− 4 for both β and γ in Θ2.
Simultaneously estimating all 3 parameters, β, κ,

and γ (Θ3), results in wider confidence intervals and
larger MSE than the two previous subsets. The con-
fidence intervals for β (0.516, 0.636) and γ (0.223,
0.277) have a narrow range and enclose the true
values of the parameters. The MSE for these two are
larger compared to the previous subsets, though all
MSE values are < 10− 2. The confidence interval for κ
has a slightly larger range (0.440, 0.613), though this
correlates with a small latent period difference of
less than a day. Also, the MSE for κ is comparable to the
other parameters. This indicates that all three parameters
can be identified from daily incidence data of the epidemic
curve with Poisson error structure.
Moreover, R0 can be estimated precisely with un-

biased results. Despite the larger confidence intervals
for the other parameters estimated in Θ3 (compared
to Θ1, Θ2), the range around R0 is still very precise:
(2.286, 2.317). Similarly, MSE for R0 is < 10− 4 for all
runs. This indicates that the estimates of R0 are ro-
bust to variation or bias in the other parameter esti-
mates – we will continue to explore this theme in
the proceeding models.

Model 2: SEIR with asymptomatic and hospitalized/
diagnosed and reported
Estimating β only (Θ1) or β and γ1 (Θ2) provides precise
estimates with small MSE (Figs. 7 & 8). For each Θi

(where i > 2), each additional parameter being estimated
corresponds with, on average, a larger confidence inter-
val range and higher MSE for each estimated parameter.
Essentially, for each parameter, the uncertainty grows
with the number of other parameters being jointly esti-
mated. Θ3, estimating β, γ1, and α, provides estimates of
β and γ1 with relatively small confidence ranges (95% CI:
(0.717, 0.851), (0.192, 0.286), respectively) and MSE
values (MSE = 0.0016, 7.15*10− 4, respectively); however,
estimates for α produce a wider range of values (0.386,
0.748), as well as an MSE value over 5 times higher than
the other parameters (MSE = 0.0089), though still < 10− 2.
Results for Θ4 and Θ5 indicate that none of the parame-

ters can be well-identified from case incidence data while
simultaneously estimating > 3 parameters. For each, mul-
tiple parameters have MSE values > 10− 2 (Fig. 8), and the
confidence intervals are comparatively wide. Additionally,
the confidence intervals for ρ (Θ4: (0.602, 0.858); Θ5:
(0.608, 0.763)) do not include the true value of 0.60.
Looking at confidence intervals and MSE (Figs. 7 & 8)

for R0, we find again that R0 is identifiable across each
Θi. The confidence intervals for R0 all have a range < 0.2,
and the MSE values for each Θi are < 10− 2. These R0-
results are consistent with those in Model 1, despite the
identifiability issues of other parameters seen here in
Model 2. This is an important result, indicating that even
when identifiability issues exist in other model parameters,
we can still provide reliable estimates of R0 without having
to know the true values of the other parameters. It also

Fig. 5 Model 1–95% confidence intervals (vertical red lines) for the distributions of each estimated parameter obtained from the 200 realizations
of the simulated datasets. Mean estimated parameter value is denoted by a red x, and the true parameter value is represented by the
blue dashed horizontal line. Θi denotes the estimated parameter set, where i indicates the number of parameters being jointly estimated
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shows that while noise in the data may affect parameter
estimation for some parameters, composite parameters,
like R0, can still be accurately calculated from the
same data.

Model 3: The Legrand model (Ebola)
Estimated parameter sets Θ1 and Θ2 (βI only, βI and βH re-
spectively) result in unbiased (MSE < 10− 3), precise esti-
mates of the parameters (Figs. 9 & 10). However, when
jointly estimating all three β values (Θ3), only βI is identifi-
able – the confidence interval is a finite range: (0.038,
0.102) and the estimates are unbiased (MSE = 2.71*10− 4).
Parameters βH (0, 0.614) and βF (0.097, 1.341) both

have wide confidence intervals indicating uncertainty
suggestive of non-identifiability. Estimating four param-
eters (Θ4), only βH is identifiable with a small range
and bias; whereas, the remaining three parameter esti-
mates have larger confidence intervals (Fig. 9).
For Θi where i > 4, none of the parameters can be identified

from the model/data. Each parameter (for runs Θ5 – Θ7) has
either a large confidence range and/or comparatively large
MSE. Some parameters have MSE values < 10− 2 (Fig. 10),
but the wide range of uncertainty around these parame-
ters is still indicative of non-identifiability (Fig. 9).
Remarkably, R0 can be precisely estimated with unbiased

results for parameter sets Θ1 – Θ4 (Figs. 9 & 10). When

Fig. 7 Model 2–95% confidence intervals (vertical red lines) for the parameter estimate distributions obtained from the 200 realizations of the
simulated datasets. Mean estimated parameter value is denoted by red x, and the true parameter value is represented by the blue dashed horizontal
line. Θi denotes the estimated parameter set, where i indicates the number of parameters being jointly estimated

Fig. 6 Model 1 – Mean squared error (MSE) of the distribution of parameter estimates (200 realizations) for each estimated parameter set Θi,
where i indicates the number of parameters being jointly estimated. Note that the y-axis (MSE) is represented with a logarithmic scale
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simultaneously estimating five or more parameters, how-
ever, the associated uncertainty of all the parameters
results in non-identifiability of R0. For Θ5, for example, R0

estimates vary widely in the range (0.683, 2.821) with an
MSE of 0.467. As previously mentioned, R0 is a threshold
parameter (epidemic threshold at R0 = 1), so given the
confidence interval including the critical value 1, we would
not have the ability to distinguish between the potential for
epidemic spread versus no outbreak.

Model 4: Zika model with human and mosquito
populations
For this complex model, we find again that when esti-
mating only 1 or 2 parameters (Θ1, Θ2), the parameters
can be recovered precisely with unbiased results (Figs. 11

& 12). When jointly estimating more than two parameters
(Θi: i > 2), non-identifiability issues arise. It can be seen
that the confidence intervals and MSE for β and γh1 are
very small, and thus they are identifiable. However, all of
the confidence intervals and MSE values for each of the
other parameters (Θi: i > 2) are representative of non-iden-
tifiability. The parameter estimates have a large amount of
uncertainty, represented by the large confidence intervals,
and are also biased estimates of the true value: MSE > 10− 2

for all.
In terms of R0, we can see that this composite parameter

of interest is identifiable for all Θi (Figs. 11 & 12). Despite
the large confidence intervals associated with some parame-
ters (ex: Θ6 – γh2: (0.047, 0.573)), when estimating more
than two parameters, R0 can still be estimated with low

Fig. 8 Model 2 – Mean squared error (MSE) of the distribution of parameter estimates (200 realizations) for each estimated parameter set Θi, where i
indicates the number of parameters being jointly estimated. Note that the y-axis (MSE) is represented with a logarithmic scale

Fig. 9 Model 3–95% confidence intervals (vertical red lines) for the parameter estimate distributions obtained from the 200 realizations of
the simulated datasets. Mean estimated parameter value is denoted by red x, and the true parameter value is represented by the blue
horizontal line. Θi denotes the estimated parameter set, where i indicates the number of parameters being jointly estimated
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uncertainty: (Θ6 – R0: (1.480, 1.486)). The R0 estimates have
little error, as MSE < 10− 4 for all Θi. This is consistent with
the previous models in that R0 estimates are robust to the
uncertainty and bias of the other estimated parameters.

Discussion
In this paper we have introduced a simple computational
approach for assessing parameter identifiability in com-
partmental models comprised of systems of ordinary dif-
ferential equations. We have demonstrated this approach
through various examples of compartmental models of in-
fectious disease transmission and control. Using simulated
time series of the number of new infectious individuals,
we analyzed the identifiability of model characterizing
transmission and the natural history of the disease. This

type of analysis based on simulated data provides a crucial
step in infectious disease modeling, as inferences based
on estimates of non-identifiable parameters can lead to
incorrect or ineffective public health decisions. Param-
eter identifiability and uncertainty analyses are essential
for assessing the stability of the parameter estimates.
Hence, it is important for researchers to be mindful
that a good fit to the data does not imply that parameter
estimates can be reliably used to evaluate hypotheses
regarding transmission mechanisms. Moreover, quanti-
fying the uncertainty surrounding parameter estimates
is key when making inferences that guide public health
policies or interventions.
Our bootstrap-based approach is sufficiently general to

assess identifiability for compartmental modeling

Fig. 10 Model 3 – Mean squared error (MSE) of the distribution of parameter estimates (200 realizations) for each estimated parameter set Θi,
where i indicates the number of parameters being jointly estimated. Note that the y-axis (MSE) is represented with a logarithmic scale

Fig. 11 Model 4–95% confidence intervals (vertical red lines) for the parameter estimate distributions obtained from the 200 realizations of the
simulated datasets. Mean estimated parameter value is denoted by red x, and the true parameter value is represented by the blue horizontal
line. Θi denotes the estimated parameter set, where i indicates the number of parameters being jointly estimated
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applications. We have shown that this method works well
for models of varying levels of complexity, ranging from a
simple SEIR model with only a few parameters (Model 1)
to a complex, dual-population compartmental model with
a total of 16 parameters (Model 4). Other methods exist
to conduct parameter identifiability analyses. Some methods,
such as Taylor series methods [15, 16] and differential
algebra-based methods [17, 18], require more mathematical
analyses, which becomes increasingly complicated as model
complexity increases. Other methods rely on constructing
the profile likelihood for each of the estimated parameters
to assess local structural identifiability [11, 14, 31, 32]. In this
method, one of the parameters (θi) is fixed across a range of
realistic values, and the other parameters are refit to the data
using the likelihood function of θi. Thus, identifiability of
the parameters is determined by the shape of the resulting
likelihood profile. Depending on the assumptions of the
error structure in the data and as models become increas-
ingly more complex, derivation of the likelihood profile and
confidence intervals becomes increasingly more difficult.
Overall, our analyses indicate that parameter identifiability

issues are more likely to arise with more complex models
(based on number of equations/states and parameters). For
example, a set of 3 parameters (Θ3) can be estimated with
low uncertainty and bias from a simple model, like Model 1;
however, for more complex models (Model 3, Model 4),
estimating only 3 parameters from a single curve of case
incidence resulted in lack of identifiability for at least one of
the parameters in the set (Θ3). Also, for Θi (recall: i repre-
sents number of parameters being jointly estimated), as i in-
creases, the uncertainty surrounding estimated parameters
tended to increase, on average, as well (Fig. 7). One strategy
to resolve parameter identifiability issues consists of restrict-
ing the number of parameters being jointly estimated while

fixing other parameter values and conducting sensitivity
analyses.
Importantly, we found that R0 is a robust composite

parameter, even in the presence of identifiability issues
affecting individual parameters in the model. In Model
4, despite large confidence intervals and larger MSE for
the estimated parameters, R0 estimates were contained in
a finite confidence interval with little bias (Figs. 11 & 12).
For example, for parameter set Θ6, only two of the esti-
mated parameters could be reliably identified from the
data, yet R0 could be identified with little uncertainty or
bias. These findings are in line with the identifiability
results of R0 for a vector-borne disease model (similar to
Model 4), even when other model parameters could not
be properly estimated [14]. R0 is often a parameter of
interest, as R0 values have been related to the size or
impact of an epidemic [1]. Moreover, R0 estimates can be
used to characterize initial transmission potential, assess
the risk of an outbreak, and evaluate the impact of
potential interventions, so it is beneficial to know we
can reliably obtain R0 estimates, despite lack of iden-
tifiability in other parameters.
It is important to emphasize that our methodology is

helpful to uncover identifiability issues which could arise
from 1) the lack of information in the data or 2) the
structure of the model. We also note that our examples
assess identifiability of parameters by relying on the en-
tire curve of incidence data of a single epidemic. Future
work could include identifiability analyses in the context
of limited data using different sections of the trajectory
of the outbreak. We also assume that only one model
variable (state) is observed, so future analyses could in-
corporate more than one observed variable to potentially
improve the identifiability of parameters without changing

Fig. 12 Model 4 – Mean squared error (MSE) of the distribution of parameter estimates (200 realizations) for each estimated parameter set Θi, where i
indicates the number of parameters being jointly estimated. Note that the y-axis (MSE) is represented with a logarithmic scale
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the model. For example, for Model 3 (Ebola), the inci-
dence curves of new hospitalized cases and new deaths
could provide additional information that better constrain
parameter estimates, thereby improving parameter iden-
tifiability results.

Conclusions
For modeling studies, we recommend conducting com-
prehensive parameter identifiability analyses based on
simulated data prior to attempting to fit the model to
data. It is important to emphasize that lack of identifia-
bility could be due to lack of information in the data or
the structure of the model. The analyses also help guide
the set of parameters in the model that can be jointly
estimated – identifiability issues may not arise until any
given number of parameters are being simultaneously esti-
mated. If the analysis indicates non-identifiability of certain
parameters, may have to be assessed in sensitivity analyses
(rather than estimated) to address the identifiability issue.
In summary, the ability to make sound public health

decisions regarding an infectious disease outbreak is cru-
cial for the general health and safety of a population.
Knowledge of whether a parameter is identifiable from a
given model and data is invaluable, as estimates of non-
identifiable parameters should not be used to inform
public health decisions. Further, parameter estimates
should be presented with quantified uncertainty. The
methodology presented in this paper adds to the essential
toolkit for conducting model-based inferences.

Additional files

Additional file 1: Model 1 – Θ1 (estimating β only): The histograms
display the empirical distributions of the parameter estimates using 200
bootstrap realizations, where the solid red horizontal line represents the
95% confidence interval for parameter estimates, and the dashed red
vertical line indicates the true parameter value. Note, κ and γ are set to
their true values in the data. The bottom left graph shows the data from
the model (blue circles), and 200 realizations of the epidemic curve
assuming a Poisson error structure (light blue lines). The solid red line
corresponds to the best-fit of the model to the data, and the dashed red
lines correspond to the 95% confidence bands around the best fit. (TIF
5423 kb)

Additional file 2: Model 1 – Θ2 (estimating β and γ): The histograms
display the empirical distributions of the parameter estimates using 200
bootstrap realizations, where the solid red horizontal line represents
the 95% confidence interval for parameter estimates, and the dashed
red vertical line indicates the true parameter value. Note, κ is set to
the true value from the data. The bottom left graph shows the data
from the model (blue circles), and 200 realizations of the epidemic
curve assuming a Poisson error structure (light blue lines). The solid
red line corresponds to the best-fit of the model to the data, and
the dashed red lines correspond to the 95% confidence bands
around the best fit. (TIF 5423 kb)

Additional file 3: Model 1 – Θ3 (estimating β, κ, and γ): The
histograms display the empirical distributions of the parameter
estimates using 200 bootstrap realizations, where the solid red horizontal
line represents the 95% confidence interval for parameter estimates, and
the dashed red vertical line indicates the true parameter value. The bottom

left graph shows the data from the model (blue circles), and 200 realizations
of the epidemic curve assuming a Poisson error structure (light blue lines).
The solid red line corresponds to the best-fit of the model to the data, and
the dashed red lines correspond to the 95% confidence bands around the
best fit. (TIF 5423 kb)
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