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Abstract
Background: Many biological soft tissues are hydrated porous hyperelastic materials,
which consist of a complex solid skeleton with fine voids and fluid filling these voids.
Mechanical interactions between the solid and the fluid in hydrated porous tissues
have been analyzed by finite element methods (FEMs) in which the mixture theory was
introduced in various ways. Althoughmost of the tissues are surrounded by deformable
membranes that control transmembrane flows, the boundaries of the tissues have
been treated as rigid and/or freely permeable in these studies. The purpose of this
study was to develop a method for the analysis of hydrated porous hyperelastic tissues
surrounded by deformable membranes that control transmembrane flows.

Results: For this, we developed a new nonlinear finite element formulation of the
mixture theory, where the nodal unknowns were the pore water pressure and solid
displacement. This method allows the control of the fluid flow rate across themembrane
using Neumann boundary condition. Using the method, we conducted a compression
test of the hydrated porous hyperelastic tissue, which was surrounded by a flaccid
impermeable membrane, and a part of the top surface of this tissue was pushed by a
platen. The simulation results showed a stress relaxation phenomenon, resulting from
the interaction between the elastic deformation of the tissue, pore water pressure
gradient, and the movement of fluid. The results also showed that the fluid trapped by
the impermeable membrane led to the swelling of the tissue around the platen.

Conclusions: These facts suggest that our new method can be effectively used for the
analysis of a large deformation of hydrated porous hyperelastic material surrounded by
a deformable membrane that controls transmembrane flow, and further investigations
may allow more realistic analyses of the biological soft tissues, such as brain edema,
brain trauma, the flow of blood and lymph in capillaries and pitting edema.

Keywords: Finite element method, Large deformation, Pore water pressure, Mixture
theory, Membrane, Hydrated poroelastic material

Background
Many body parts represent hydrated soft tissues that resembles a water filled sponge, con-
sisting of the complex solid skeleton with multiple fine voids and fluid that fills the voids.
Capillaries form a network of blood-filled vessels throughout the body, while cells contain
various organelles and intracellular fluid filling the remaining space and the extracellular
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space is filled with extracellular fluid. In the head, the subarachnoid space (SAS) between
the skull and the brain is filled with a trabecular network and cerebrospinal fluid (CSF)
[1–5] (Fig. 1). Most of these tissues are surrounded and partitioned by membranes, and
transmembrane flows are controlled by various mechanisms such as valves, barriers, and
channels. Solids and fluids interact mechanically, especially through the pore pressures of
fluids confined by membranes. The SAS collapse after CSF draining [5] suggests that the
pore pressure of the CSF confined in the SAS stabilizes a weak skeleton. SAS thickness
can change with the CSF flow along the membrane, which allows the brain to approach
the skull. Here, the resistance of the trabeculae and membranes slow down the CSF flow,
reducing brain acceleration and protecting the brain. While pore pressures protect the
brain in SAS, they might harm it as well. Transmembrane fluid flow disorders can cause
cerebral edema, defined as an increase in the brain internal fluid contents: intracellular
fluid (cytotoxic edema), interstitial fluid (vasogenic edema), and CSF (interstitial edema
or hydrocephalic edema). Consistent with the Monroe-Kellie doctrine, cerebral edemas
lead to the development of severe conditions, such as cerebral ischemia, intracranial pres-
sure (ICP) elevation, and intracranial compartmental shifts, resulting in the compression
of vital brain structures (herniation) [6].
Finite element method (FEM) is an effective tool for the investigation and prediction

of these phenomena. However, the complex micro-level solid-fluid boundaries in the
hydrated soft tissues require microscopically fine meshes, making FEM analysis unre-
alistic. Therefore, FEMs based on the classical consolidation theory (or more rigorous
and versatile mixture theory) have been developed. According to the biphasic theory,
which is a mixture theory considering a two-phase mixture of solid and fluid phases,
the movement of each microscopic component is treated separately. By considering the
averaged interactions between them, the mixture is then macroscopically analyzed. Since
hydrated biological tissues generally experience large deformations, Oomens et al. [7]
developed a nonlinear mixed finite element formulation of mixture theory by using pres-
sure and solid displacement as the nodal unknowns. To assume the solid phase to be

Fig. 1 Diagrams of hydrated soft tissues in head. The subarachnoid space (SAS) is located between the
arachnoid and the pia mater, and it contains a trabecular network, capillaries, and cerebrospinal fluid (CSF)
The arachnoid is generally parallel to the pia mater, which adheres to the brain surface, except for the
covering of brain sulci. Brain contains with a cellular network, capillaries, and extracellular fluid
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hyperelastic, Suh et al. [8] developed a new nonlinear penalty finite element formula-
tion by using solid displacement and fluid velocity as the nodal unknowns. Levenston
et al. [9] described two newer three-field (solid displacement, fluid velocity, and pres-
sure) mixed finite element formulations and demonstrated the improved performances
of the formulations over an analogous two-field (solid displacement and fluid velocity)
penalty formulation. These FEMs have been developed to treat more complicated phe-
nomena [10–13] involving multi-physics phenomena such as charged hydrated tissues
[14–19]. In these studies, most of the boundaries of the tissues were treated as rigid
and/or freely permeable. Despite the importance of the transmembrane flow control by
deformable membrane we mentioned above, these studies didn’t analyze the tissues with
the boundaries of deformable membranes that control the transmembrane flows.
The aim of the present study was to develop an FEM for the analysis of hydrated

biological soft tissues surrounded by deformable membranes which control the trans-
membrane flows. The transmembrane flow is regarded as the flow velocity component
perpendicular to the membrane (Fig. 2). In the FEMs formulated by Suh et al. [8] and
Levenston et al. [9], the fluid velocity vector at each node is divided into a set of three
scalar nodal unknowns, that is, a set of axis components. By setting any axis perpendicu-
lar to the membrane, the axis component coincides with the transmembrane flow, which
is the flow velocity component perpendicular to the membrane (Fig. 2), and can be pro-
vided as the Dirichlet boundary condition. However, the deformable membrane generally
rotates during large deformations while the axes are fixed. Thus, these FEMsmight not be
applied to deformablemembranes. Therefore, in this study, we developed a new nonlinear
FEM based on the mixture theory by using pressure and solid displacement as the nodal
unknowns and controlling the transmembrane flow volume using Neumann boundary
condition.

Methods
Preliminaries of continuummixture theory

Although the finite element formulations of the mixture theory have been developed to
be applicable for multi-physics phenomena, such as charged hydrated tissues [14–19], we

Fig. 2 The flow components under the deformation. Red bold solid lines represent the flows at the
membrane. Blue bold dashed lines represent the transmembrane flow, a flow velocity component
perpendicular to the membrane. By setting the z-axis along the normal vector of the membrane, the
transmembrane flow coincides with the flow velocity z-component wz in the initial states. However, when a
large deformation occurs, the normal vector of the membrane does not coincide with one of the axes x, y
(not illustrated) or z, and the transmembrane flow does not coincide with the axis component of the flow
velocity wx , wy (not illustrated) or wz
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focused on the biphasic theory [7–13]. Within the framework of the biphasic theory, a
mixture can be treated as one continuum. Two constituents of the mixture are assumed
to be macroscopically continuous and to occupy the whole mixture space. Therefore, they
occupy the same physical space at the same time (Fig. 3).
In the absence of body and inertial forces, the momentum equation of the mixture is

∇x · σ = 0 (1)

where ∇x represents the gradient operator with respect to the current configuration and
σ is the Cauchy stress tensor for the mixture (total stress). For a fully saturated mixture
with incompressible constituents, the Cauchy stress is

σ = −pI + σ E (2)

where p is the fluid (pore) pressure, I is the rank-two identity tensor, and σ E is the stress
induced by solid deformation [7–10]. The stress σE corresponds to the so-called effective
stress described in the classical consolidation theory [7, 10, 20].
In the following equations, α ∈ {s, f } denotes a quantity related to a particular con-

stituent α (s: solid and f : fluid). The original micro-volume, d�α
0 , is related to the current

volume d�t as:

d�t = Jαd�α
0 , (3)

where the Jacobian Jα is the determinant of the deformation gradient tensor, Fα (Fig. 4).
They are defined as

dxα = Fα · dXα (4)

Jα ≡ detFα , (5)

when the original infinitesimal line segment dXα deforms to dxα in the current config-
uration. Since α is intrinsically incompressible, the true volume of α is constant during
the deformation. Then, the current and original volume fractions φα and φα

0 can be
defined as:

Fig. 3 True and apparent configurations of a solid-fluid mixed material according to the biphasic theory. In
the true configuration, the space d�t can be divided in the solid space d�s

T and the fluid space d�f
T . In the

biphasic theory, these discontinuous spaces are assumed to be macroscopically continuous and to occupy
the whole mixture space d�t . Therefore, two constituents occupy the same physical space at the same time
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Fig. 4 The kinematics of two phases constituting a mixed material. In the solid phase, the current
micro-volume d�t is related to the original volume d�s

0 by the solid deformation gradient tensor F s . In the
fluid phase, it is associated with the original volume d�f

0 by the fluid deformation gradient tensor F f .
Generally, d�s

0 and d�f
0 don’t coincide

φα = d�α
T

d�t
, φα

0 = d�α
T

d�α
0
, (6)

where d�α
T is the true volume of α in d�t of the mixture (Fig. 3). By using the Eq. (3), φα

can be related to the initial volume fraction φα
0 as follows:

φα = φα
0
Jα

. (7)

Incompressible condition

In the following equations, thematerial and spatial time derivative of an arbitrary quantity
A are represented by Ȧ and ∂A/∂t, respectively. Then, the incompressible condition of α
can be represented as:

ρ̇α
T = 0, (8)

where ρα
T is the true density of α. The α-velocity field vα is defined as:

vα ≡ ẋα , (9)

where xα is the position vector of α.
The total mass of α in the volume space �t , denoted bymα , can be written as:

mα =
∫

�t
ρα
Tφαd�t =

∫
�α
0

ρα
TφαJαd�α

0 , (10)

where �α
0 denotes the original volume space of α occupying �t at current time. There-

fore, using Eq. (8) and the well-known relationship J̇α = Jα∇x · vα , the principle of the
conservation of mass can be rewritten as:

ṁα = ρα
T

∫
�α
0

(
φ̇αJα + φαJα∇x · vα

)
d�α

0 = ρα
T

∫
�t

(
φ̇α + φα∇x · vα

)
d�t = 0. (11)
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As this equation holds for any arbitrary parts, we obtained the relationship

φ̇α + φα∇x · vα = 0 (12)

that can be rewritten as:
∂φα(x, t)

∂t
+ ∇x · (φαvα) = 0. (13)

The total sum of this equation related to the solid and the one related to fluid phases
is [8, 9]

∇x · (φsvs + φf vf ) = 0 (14)

since

φs(x, t) + φf (x, t) = 1 (15)

for a fully saturated mixture. This equation can be rewritten again [7, 10]:

∇x · (
vs + w

) = 0, (16)

where the relative fluid velocity w is defined as:

w = φf
(
vf − vs

)
. (17)

Finite element formulation

In the following equations, xs, d�s
0, Js, and F s are abbreviated to x, d�0, J, and F ,

respectively. The solid displacement u can be defined as

u = x − Xs, (18)

and vs can be rewritten as

vs = u̇. (19)

By considering the original solid configuration as the reference configuration of the
mixture [9], the right Cauchy-Green tensor C and the Lagrangian strain E for the mixture
can be defined as

C = FT · F (20)

E = 1
2
(C − I), (21)

where T indicates transposition. The first and second Piola-Kirchhoff stresses Π and S
are related to the total Cauchy stress σ by:

Π = JF−1 · σ (22)

S = JF−1 · σ · F−T (23)

The second Piola-Kirchhoff stress SE can be defined for the stress induced by solid
deformation using the same relation:

SE = JF−1 · σE · F−T . (24)

Then,

S = −pJC−1 + SE . (25)

The boundary conditions were specified on a reference surface �0 for the mixture as a
whole. The boundary conditions for the solid displacement and the surface traction are
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prescribed on �u
0 and �t

0, respectively. Here, �u
0 and �t

0 represent the complementary
portions of �0:

�0 = �u
0 ∪ �t

0 (26)

�u
0 ∩ �t

0 = ∅. (27)

Likewise, the boundary conditions for the fluid pressure and the outward flow through
the current surface are prescribed on �

p
t and �w

t , respectively. Here, �p
t and �w

t represent
the complementary portions of the current whole surface �t :

�t = �
p
t ∪ �w

t (28)

�
p
t ∩ �w

t = ∅. (29)

Generally, the solid and fluid boundary partitions do not need to coincide.
By using the Piola transformation (Appendix 1), Eq. (1) can be transformed into

∇χ · Π = 0, (30)

where ∇χ represents the gradient operator with respect to the reference configuration.
An integral formulation can be obtained by multiplying Eq. (30) by an admissible dis-
placement field ǔ and integrating the result over a reference volume �0 of the mixture:

∫
�0

(∇χ · Π) · ǔ d�0 = 0. (31)

Another integral formulation is obtained using a different admissible displacement field
ǔ + δu. After some tensor manipulations and application of the Gauss theorem, the
difference between these equations is replaced by

∫
�0

S : δEd�0 =
∫

�t
0

(
ΠT · N

)
· δud�0 (32)

where δE is defined consistently with δu, and N is the outward unit normal vector on the
reference surface.
The integral formulation of Eq. (16) can be obtained by multiplying the equation and an

admissible pressure field p̌ and integrating the result over a current volume �t :∫
�t

p̌∇x · (u̇ + w) d�t =
∫

�t

[
p̌∇x · u̇ + ∇x · (

p̌w
) − ∇xp̌ · w]

d�t = 0. (33)

By obtaining another integral formulation using a different admissible pressure field
p̌ + δp, and considering the difference between two equations,

∫
�t

[
δp∇x · u̇ − ∇xδp · w]

d�t = −
∫

�w
t

δp w · n d�t (34)

is obtained by using the Gauss theorem. Here, the term w · n in the right hand represents
the outward flow through the surface per unit area. Since the surface of themixture is cov-
ered by the membrane, the outward flow through the surface, that is, the transmembrane
flow is determined by the permeability of the membrane, which is given as the boundary
condition in this study. Assuming that the motion of a fluid inside the mixture follows
Darcy’s law, w in the left hand can be obtained by

w = −κ · ∇x p, (35)
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where κ is the Darcy permeability tensor of the mixture, and this equation can be
replaced by∫

�t

[
δp∇x · u̇ + ∇xδp · κ · ∇x p

]
d�t = −

∫
�w
t

δp q̃ d�t . (36)

where q̃ is the given outward flow.

Linearizations

The set of Eqs. (32) and (36) can be discretized by finite element implementations.Within
the n-th element obtained by subdividing the observed continuum into nel elements, the
displacement of the solid phase, u, can be interpolated as follows:

u =
nu∑
i=1

N (i)
u u(i), (37)

where nu is the total number of nodes for u in the element, N (i)
u is the shape function of

i-th node (see Appendix 1 for details), and u(i) is the i-th nodal displacement. In the same
way, the fluid pressure, p can be interpolated as

p =
np∑
i=1

N (i)
p p(i), (38)

where np is the total number of nodes for p in the element, N (i)
p is the shape function of

i-th node (see Appendix 1 for details), and p(i) is the i-th nodal pressure. Their virtual
values, δu and δp, can be interpolated using N (i)

u and N (i)
p , respectively:

δu =
nu∑
i=1

N (i)
u δu(i), δp =

np∑
i=1

N (i)
p δp(i). (39)

The solid displacement is isoparametric with the element coordinates:

x =
nu∑
i=1

N (i)
u x(i). (40)

By using the coefficients of u(i), E, S, and t̃(≡ ΠT ·N) at matrix notation, the following
vectors can be defined at an arbitrary point:

{u} =
{
u(1)
1 u(1)

2 u(1)
3 u(2)

1 u(2)
2 u(2)

3 . . . u(nu)
1 u(nu)

2 u(nu)
3

}T
(41)

{E} = {E11 E22 E33 2E12 2E23 2E31}T (42)

{S} = {S11 S22 S33 S12 S23 S31}T (43)

{t̃} = {
t̃1 t̃2 t̃3

}T . (44)

By defining the vectors {δu} and {δE} in the same way, matrix [B] can be obtained as a
matrix that satisfies the following relationship:

{δE} =[B] {δu}. (45)

Then, by defining the matrix [Nu] as

[Nu]=
⎡
⎢⎣
N (1)
u N (2)

u · · · N (nu)
u

N (1)
u N (2)

u · · · N (nu)
u

N (1)
u N (2)

u · · · N (nu)
u

⎤
⎥⎦ , (46)
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Equation (32) can be rewritten as:
nel∑
n=1

{δu}T
∫

�e
0

[B]T {S}d�0 =
nel∑
n=1

{δu}T
∫

�e
0

[Nu]T {t̃} d�0, (47)

where �e
0 and �e

0 denote the parts of �0 and �t
0 included in the n-th element.

The vector of pressure nodal value can be defined as:

{p} =
{
p(1) p(2) . . . p(np)

}T
, (48)

where vector {δp} is defined in the same way. The 1 × np matrix [Np] can be defined as:

[Np]=
[
N (1)
p N (2)

p · · · N (np)
p

]
. (49)

By using the coefficients of x at matrix notation, the matrix [ z] is defined as:

[z]=

⎡
⎢⎢⎢⎢⎣

∂N (1)
p

∂x1
∂N (2)

p
∂x1 · · · ∂N (np)

p
∂x1

∂N (1)
p

∂x2
∂N (2)

p
∂x2 · · · ∂N (np)

p
∂x2

∂N (1)
p

∂x3
∂N (2)

p
∂x3 · · · ∂N (np)

p
∂x3

⎤
⎥⎥⎥⎥⎦ , (50)

Then, by defining [ κ] as the coefficient matrix of κ , Eq. (36) leads to the following
equation:

nel∑
n=1

{δp}T
∫

�e
t

(
[Np]T ∇x · u̇+[ z]T [ κ] [ z] p

)
d�t =

nel∑
n=1

{δp}T
∫

�e
t

[Np]T q̃ d�t (51)

where �e
t and �e

t denote the parts of �t and �w
t included in the n-th element.

By defining {δū} and {δp̄} as vectors of all nodal values, Eqs. (47) and (51) can be
rewritten as:

{δū}T {Fint} = {δū}T {Fext} (52)

{δp̄}T {Λint} = {δp̄}T {Λext} (53)

where the equivalent nodal vectors {Fext}, {Fint}, {Λext}, and {Λint} represent external
force, internal force, external outward flow, and internal outward flow, respectively. Here,
the external outward flow {Λext} is the value provided as the Neumann boundary con-
dition representing the characteristics of the membrane which surrounded the mixture.
For spatial integration, the Gauss integration can be used. As {δū} and {δp̄} are arbitrary
vectors,

{Fint} = {Fext}, {Λint} = {Λext}. (54)

Since these systems of equations are generally nonlinear, we solved them by using
an iterative method, Newton-Raphson, within each time increment �t. By using the
backwards Euler algorithm, u̇ at t + �t can be replaced:

u̇t+�t = ut+�t − ut
�t

, (55)

where the subscripts indicate time. The algorithm of the iterative method is presented in
Fig. 5. When the solutions at previous time step t are known and represented as ut and pt ,
they are adopted as the initial predictors u(0) and p(0) for the iterative scheme to obtain
the solution at time t + �t:

u(0) = ut , p(0) = pt . (56)
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Fig. 5 Algorithm of the iterative method. Solid arrows indicate that the value of the start point is assigned to
the value of the end point. Dashed arrow indicates that the value of the start point is used to calculate the
value of the end point

The k-th predictors u(k) and p(k) are

u(k) = u(k−1) + �u(k), p(k) = p(k−1) + �p(k) (57)

where �u(k) and �p(k) are the k-th incremental values. By arranging �u(k) and �p(k)

at all nodes in a row as the vectors {�ū}(k) and {�p̄}(k), respectively Eq. (54) can be
linearized as:

[Kuu] {�ū}(k)+[Kup] {�p̄}(k) = {Fext} − {Fint}(k−1) (58)
1
�t

[Gpu] {�ū}(k)+[Kpp] {�p̄}(k) = {Λext} − {Λint}(k−1), (59)
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where thematrices in the left hand represent the stiffness matrices. The vectors {Fint}(k−1)

and {Λint}(k−1) are {Fint} and {Λint}, respectively, calculated using the predictors obtained
at the previous iteration, u(k−1) and p(k−1). For the k-th iteration, the system of equations
that is obtained by coupling these two systems of equations is solved for {�ū}(k) and
{�p̄}(k):[

[Kuu] [Kup]
1
�t [Gpu] [Kpp]

] {
{�ū(k)}
{�p̄(k)}

}
=

{
{Fext}
{Λext}

}
−

{
{Fint}(k−1)

{Λint}(k−1)

}
(60)

The iteration continues until a convergence criterion is satisfied, and the converged solu-
tion is assumed as the solution at the time step t + �t. For this present analysis, the
following convergence criterion of the norm of the incremental vector was used:∣∣∣∣∣

�ū(k)

�p̄(k)

∣∣∣∣∣ < TOL

∣∣∣∣∣
�ū(1)

�p̄(1)

∣∣∣∣∣ (61)

where TOL is a user-specified tolerance with the value of 10−5 in this study.

Results
We conducted stress relaxation analysis using the described analysis method. For the
drained solid constituent, we chose a linear isotropic constitutive model and assumed
homogeneous samples, although a more realistic model can be employed. We assumed
that the drained solid skeleton is a hyperelastic material, which has the elastic potential
functionW :

SEij = ∂W
∂Eij

, (62)

where the coefficients of SE and E at matrix notation were used. We employed the
following hyperelastic energy function:

W = λ

2
(trE)2 + μ tr(E2) (63)

where λ and μ represent Lamé’s constants. Here, SE is linear to E:

SE = λ(trE)I + 2μE. (64)

The hyperelastic properties dominate the solid displacements, fluid velocities, and the
pore water pressures throughout the deformation process. Although the dense solid con-
stituting the skeleton is incompressible, the skeleton is compressible because it is porous
and contains compressible voids. Thus, we assumed that Poisson’s ratio of the skeleton is
0.0. We also assumed that the skeleton is homogeneous with Young’s modulus = 0.3 kPa
(i.e., λ =0.0 and μ =0.15 kPa), an initial solid volume fraction φs

0 =0.2, and a permeabil-
ity κ = κI (κ = 8.0 m4/N-s). As indicated in Eqs. (35) and (36), the permeability κ affects
the fluid and solid velocities, w and u̇, resulting in a viscous behavior. With smaller κ , the
fluid velocity inside themixture becomes lower. Except specific conditions, the lower fluid
velocity makes solid velocity lower. In general, this kind of viscous behavior may absorb
a shock of impact by reducing accelerations of objects. The viscous behavior can protect
the brain from the hit of skull in the SAS when considering the trabecular network filled
with CSF as the hydrated soft tissue.
One of the simplest tests to study the behavior of the hydrated soft tissues is the one-

dimensional confined compression test [7–9], where a tissue is surrounded by a rigid and



Hirabayashi and Iwamoto Theoretical Biology andMedical Modelling           (2018) 15:21 Page 12 of 18

impermeable chamber, and the permeable platen is loaded at the top. However, the aim
of the present study was to develop a method for the analysis of tissues surrounded by
deformable membranes that control transmembrane flows. Therefore, we covered the top
surface of the tissue by the flaccid impermeable membrane, i.e., set to {Λext} = 0, which
has not ever been represented using the FEMs formulated by Suh et al. [8] and Levenston
et al. [9] by the reason mentioned previously (Fig. 6). The permeability of the membrane,
which is given as the boundary condition in this study, changes the total volume of the
mixture by determining the transmembrane flow. It may result in an edema. Although the
membrane is assumed to be flaccid, it cannot deform when the top surface is uniformly
loaded because the tissue cannot deform due to its incompressibility. Thus, we conducted
a three-dimensional test, where the platen covered only the central part of the top surface.
The platen was compressed at the velocity of 6m/s during 1ms of the compression period,
and maintained at that compression level, 6 mm, during the following hold period. The
finite element meshes used in the analyses represent 1/4 of the tissue (Fig. 7). The platen
axially pushed the areas surrounded by bold lines. At the other area of the top surface,
the load perpendicular to the surface was kept at 0, i.e., ΠT · N = 0. The displacements
perpendicular to the surface were confined at the sides and base. We prepared two types
of meshes, Mesh A and Mesh B, which consisted of 1200 and 4800 5/4c displacement-
pressure elements, respectively. Three different sets of time steps and mesh types used
for the numerical examples are presented in Table 1.
Time histories of the reaction forces on the platen and the total volumes of the analyzed

tissues are shown in Fig. 8. The results obtained in cases where Mesh A was used, i.e.,
Case 1 and Case 2, were shown to be consistent. Additionally, these results were in quite
good agreement with those obtained in Case 3 using Mesh B, in terms of the total volume
history and converged reaction force. However, the peak value of the reaction force in
Case 3 was 66% of those obtained in Case 1 and Case 2. Although this inconsistency
suggests the necessity of the finer mesh, which requires a huge amount of calculation or
an effective matrix solver, we employed the direct matrix solver and did not explore this
issue in the present study.We treated themesh refinement and the quantitative discussion

Fig. 6 Confined compression test. The tissue of 100 mm× 100 mm× 20 mm size, which is surrounded by a
flaccid impermeable membrane, is in a rigid chamber. The tissue is compressed by a platen covering the
central part of the top surface
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Fig. 7 Finite element meshes. The axisymmetric finite element mesh, which represents 1/4 of the tissue,
consists of 1200 (Mesh A) or 4800 (Mesh B) elements. The platen covered the areas surrounded by bold lines,
which may bulge with the mesh during deformation

as future tasks and discussed just the qualitative behaviors observed in all of the three
analyses.
In Case 2, according to the pore pressure gradient caused by the compression during

the compression period (Fig. 9), fluid moved out from the compressed area to the sur-
rounding areas (Fig. 10). As shown in Fig. 11, the solid volume fraction φs increased in the
area under the platen due to the outflow of fluid, and decreased under the surface around
the platen because of the fluid block and accumulation by the impermeable membrane.
The accumulated fluid led to the swelling of the tissue around the platen at the end of the
compression period (1 ms). During the hold period, the movement of the fluid relaxed
the pore water pressure gradient (Fig. 9), which resulted in the reduction of the reaction
force (Fig. 8) and the fluid velocity (Fig. 10). Afterwards, the reaction force converged to
the value derived from the elastic deformation of the solid phase, showing a typical stress
relaxation (Fig. 8) until the fluid stopped. The similar behaviors were observed in other
two analyses.
The total volume decreased to 93.3% at the end of the compression period (Fig. 8),

against the expectation that the total volume is maintained due to the impermeable mem-
brane covering the entire tissue. Additionally, the surface around the platen sank during
the hold period, while the total volume remained stable and no counter flow occurred,
i.e., the fluid flow to compressed area from the surrounding areas.

Discussion
Here, based on the mixture theory, we performed the finite element formulation of a
hyperelastic porous solid filled with fluid, which flowed according to the pore water pres-
sure gradient and interacted with the deformation of the solid. In the method developed
and presented here, only the solid displacements and the pore water pressures are treated
as the nodal unknowns and the fluid velocities are not regarded as such. Therefore, the

Table 1 Time stepts and mesh types used for the numerical examples

Parameter Case 1 Case 2 Case 3

�t 0.1 ms 0.2 ms 0.2 ms

Mesh type Mesh A Mesh A Mesh B
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Fig. 8 Time histories of the platen reaction force and the total volume of the analyzed tissue. The total
volumes are normalized using the original volumes

Fig. 9 The color contour of the pore water pressure at 1 ms and 2 ms in Case 2
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Fig. 10 The distributions of the pore water flow velocities at 1 ms and 2 ms in Case 2. Arrow colors indicate
flow speeds

fluid flow volume across the membrane can be directly given as the Neumann bound-
ary condition. Our new method enables us to analyze a large deformation of hydrated
tissue surrounded by a deformable membrane that controls transmembrane flow. While
Oomens et al. [7], who also used the set of the solid displacements and the pore water
pressures for the nodal unknowns, employed a rate-type constitutive equation for the
solid phase, we assumed that the drained solid skeleton is a hyperelastic material that has
elastic potential function.
Using our new method, we analyzed the hydrated soft tissues surrounded by flaccid

impermeable membranes. Our new method has the following three limitations based on
the simulation results. Firstly, we could neither validate our proposed method using a
simple problem with an analytical solution, such as one-dimensional compression, nor
compare our results with the results obtained by previously presented numerical methods
since there are no studies on numerical methods of the hydrated biological soft tissues
surrounded by deformable membranes that control the transmembrane flows. Further
studies are needed for validation of our proposed study using some sort of analytical solu-
tions or experimental data. Secondly, although the whole tissue was surrounded by the
fully impermeable membrane, the total volume decreased to 93.3% by the end of the com-
pression period, showing that the results contain numerical errors. The errors should be
investigated and corrected in the future. Thirdly, the peak values of the reaction force
were shown to depend on the mesh. This is probably because too coarse mesh failed to
capture the nonlinear pressure gradient around the membrane, generating the inconsis-
tency of the reaction force. Further investigation is necessary for the problem of mesh
dependency.
Despite above mentioned limitations of our new method, the fluid extruded by platen

was trapped by the impermeable membrane and it led to the swelling of the tissue around

Fig. 11 Vertical sectional view of the tissues at 1 ms and 7 ms in Case 2. The colors indicate the solid volume
fraction of the element. Red line indicates the initial height of the tissue
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the platen during the compression period, while the total volume was well maintained
during the hold period, suggesting the ability of our method to reproduce a deformable
membrane that controls transmembrane flow.
Fluid flowed according to the pore water pressure gradient caused by the compression,

resulting in the relaxation of the gradient. Afterwards, the reaction force and the fluid
velocity were reduced and converged to the constant values. As a result, the reaction force
showed a typical stress relaxation although the constitutive equation of the solid skele-
ton did not contain the viscoelastic component and the permeability was constant. This
viscoelastic behavior can play important roles in the body. For example, the viscoelas-
ticity of SAS can protect the brain by absorbing shocks. As the behavior involves the
volume changes of elements with the total volume preserved by the interactions between
elements via the movement of the fluid, it is impossible to reproduce this viscoelastic
behavior by substituting an equivalent viscoelastic body for the mixture material used in
this study.

Conclusions
To analyze the hydrated soft tissues surrounded by deformable membranes that con-
trol transmembrane flows, which are observed in most of the tissues, we developed a
new nonlinear FEM based on mixture theory using the pore water pressure and solid
displacement as the nodal unknowns, and controlled the transmembrane flows across a
deformable membrane with the Neumann boundary condition. The results obtained by
our new method demonstrated that our new method can effectively analyze large defor-
mation of hydrated tissues surrounded by a flaccid impermeable membrane. Although
the proposed method has some limitations on the validation, numerical errors, and mesh
dependency, it is confirmed that the proposed method can reproduce the viscoelastic
behavior characterized in hydrated biological soft tissues that the fluid trapped by the
impermeable membrane led to the swelling of the tissue around the platen. Further devel-
opments of this method may allow the analysis of the biological phenomena such as brain
edema, brain trauma, the flow of blood and lymph in capillaries and pitting edema.

Appendix 1
Piola transformation

The Piola transformation is a fundamental operation relating two descriptions in contin-
uum mechanics, and can be performed on any index of tensors [21]. Let A be a tensor
defined by

A = JF−1 · a (65)

where A is an arbitrary tensor. When n represents the outward unit normal vectors of the
micro surface d�t on the current configuration, the Nanson’s formula can be denoted as:

nd�t = JF−T · Nd�0, (66)

where N represents the outward unit normal vectors of the micro surface d�0 on the
reference configuration. Using these equations, the following relationship is obtained:

aT · nd�t = JaT · F−T · Nd�0 = AT · Nd�0. (67)
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By using the Gauss theorem on the reference configuration, Eq. (67), the Gauss theorem
on the current configuration, and Eq. (3) in turn, the following relationship can be
obtained:

∫
�0

∇χ ·Ad�0 =
∫

�0
AT ·Nd�0 =

∫
�t
aT ·nd�t =

∫
�t

∇x · ad�t =
∫

�0
J∇x · ad�0.

(68)

As this equation holds for any arbitrary parts, we obtained the relationship

∇χ · A = J∇x · a. (69)

Appendix 2
Shape functions in a 5/4c displacement-pressure element

As the continuity Eq. (36) involved the second derivative of the pressure field, C0 conti-
nuity was required for the pressure field. In addition, the mixed formulation requires a
suitable combination of the displacement and pressure interpolations in order to obtain
a robust element. In the present analysis, 5/4c (P1+/P1) displacement-pressure element,
which is in the family of MINI elements, is used. This is a tetrahedral first-order ele-
ment with a linear continuous interpolation. The pressure can be interpolated by 4 nodes
located at vertices. For the interpolation of the displacement, a bubble node located at the
centroid was added as the 5th node.
With the surfaces of the original tetrahedron, a point P in the tetrahedron forms 4

subtetrahedrons. By defining the volume ratios of the subtetrahedrons to the original
tetrahedron as ri, (i = 1 to 4), the volume coordinate of the P can be defined as (r1, r2, r3).
By using the volume coordinate, the shape functions of the displacement and the pressure
are defined as

N (1)
u = r1 − 64r1r2r3(1 − r1 − r2 − r3)

N (2)
u = r2 − 64r1r2r3(1 − r1 − r2 − r3)

N (3)
u = r3 − 64r1r2r3(1 − r1 − r2 − r3)

N (4)
u = (1 − r1 − r2 − r3) − 64r1r2r3(1 − r1 − r2 − r3)

N (5)
u = 256r1r2r3(1 − r1 − r2 − r3) (70)

N (1)
p = r1

N (2)
p = r2

N (3)
p = r3

N (4)
p = 1 − r1 − r2 − r3. (71)
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