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Abstract

Background: Mathematical modeling has achieved a broad interest in the field of biology. These models represent
the associations among the metabolism of the biological phenomenon with some mathematical equations such
that the observed time course profile of the biological data fits the model. However, the estimation of the
unknown parameters of the model is a challenging task. Many algorithms have been developed for parameter
estimation, but none of them is entirely capable of finding the best solution. The purpose of this paper is to
develop a method for precise estimation of parameters of a biological model.

Methods: In this paper, a novel particle swarm optimization algorithm based on a decomposition technique is
developed. Then, its root mean square error is compared with simple particle swarm optimization, Iterative
Unscented Kalman Filter and Simulated Annealing algorithms for two different simulation scenarios and a real data
set related to the metabolism of CAD system.

Results: Our proposed algorithm results in 54.39% and 26.72% average reduction in root mean square error when
applied to the simulation and experimental data, respectively.

Conclusion: The results show that the metaheuristic approaches such as the proposed method are very wise
choices for finding the solution of nonlinear problems with many unknown parameters.

Keywords: Biological System Modeling, Iterative UKF, Particle Swarm Optimization, Simulated Annealing

Background
The parameter estimation of a biological model is a crucial
step of a system description. These models are an approxi-
mation of the real phenomenon and some of their param-
eters do not have physical interpretation and their
presence is to compensate the reductions and approxima-
tions in the model. These approximations often stem from
the lack of our knowledge about the biological system.
The modelling of biochemical pathway is possible with

the concurrent measurement of biochemicals. This is
the result of latest developments in data acquisition
technologies which provide us with abundance of time
profiles of metabolites or proteins that can be used for
mathematical modeling of biochemical networks [1].

The first step to mathematically model these phenom-
ena is to specify a comprehensive framework that repre-
sent the underlying structure and convey the thorough
information. The second step is to choose a promising
approach to find a global solution for the unknown pa-
rameters of the model.
Frequently, the problem of biological parameter esti-

mation are said to be NP hard, so they are multi-modal
and ill conditioned i.e. there are more than one true so-
lutions for the estimated parameters that fit the model
and produce the time course information [2]. Many al-
gorithms have been developed to address this problem.
Among these algorithms, the gradient optimization
methods often fail to reach the true solution due to its
high sensitivity to initialization [3]. The heuristic algo-
rithms however have been shown to be able to solve the
NP hard problems and overcome the problem of multi-
modality and achieve the global optimality [4].
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Many researchers have investigated the problem of
parameter estimation in biological systems. As the re-
sults of their works, algorithms with promising out-
comes have been emerged. EKF, IUKF, alternating
regression, simulated annealing, firefly, and genetic algo-
rithms are some example [5–10]. In [11], the author has
developed an improved particle filter method for estima-
tion of the parameters of an S-system, and shows the su-
periority of this method over the ordinary particle filter
algorithm from the accuracy and convergence rate point
of view. Besides this method, Ding and et al. [12] have
used a kalman filter based least square method for state
estimation of canonical state space problem and a de-
composition technique for enhancing the computational
time. In [13], Moles and et al. have compared the global
optimization methods for the problem of biochemical
pathway modeling. In their paper, the authors have
shown that the evolutionary algorithms such as
meta-heuristic methods are the most proper choices for
solving the NP hard problems and preventing from local
solutions. Some other papers have employed the evolu-
tionary algorithms. For example, in [14], the author de-
veloped a hybrid firefly algorithm to estimate the
parameter of a highly complex and nonlinear biological
model. This method uses a neighborhood search by util-
izing the evolutionary methods and compares its results
in aspects of accuracy and computational time with the
firefly and nelder-mead algorithms. In [15], the authors
have demonstrated the capability of the evolutionary al-
gorithms for estimation of the unknown parameters of a
system in a reasonable amount of time. They proposed a
parallel implementation of an enhanced Differential Evo-
lution (DE) using Spark to reduce the computational
time of the search process by including a selected local
search and exploiting the available distributed resources.
In [16], the author has modified the UKF algorithm to
estimate the parameters of an E-coli system. The
method is called Iterative UKF and is designed to pre-
vent from the early saturation of the filter gain. As a re-
sult the estimation error is decreased in comparison
with the ordinary UKF algorithm.
One of the main problems of the parameter estima-

tion of complex and highly nonlinear models is the cap-
ability of the method to estimate the global solution. In
these models, as the fitness function is non-convex, the
number of the local solutions is large. This is the main
reason of the algorithms such as the gradient base
methods and optimal filtering that are unable to find
the global solution, since these algorithms are highly
sensitive to the initialization of the unknown parame-
ters [3]. On the other hand, the evolutionary methods
such as particle swarm optimization are powerful
methods for exploring the search space in order not to
stick in local solutions.

In this paper, a modified PSO algorithm is presented. In
this method, a decomposition technique is employed so
that the algorithm has higher ability for the exploitation
technique near the final solution. The improvement of the
exploitation technique results in minor movements of the
particles near the global solution and prevents from larger
jumps and deterioration of the value of fitness function.
As a result, the method has less mean square error com-
pare with the ordinary PSO algorithm.
The modified PSO algorithm is proposed for estima-

tion of the parameters of a simulated biological model
from a synthetic data [16]. This pathway generated data
is modelled by a canonical model which is made by the
S-system. Then, this algorithm is employed for real data
of the E-coli system [15, 16]. The results of the algo-
rithm are then compared with the IUKF, SA and PSO al-
gorithms in Root Mean Square Error point of view. We
have demonstrated that the novel PSO algorithm is ac-
complished to estimate the true parameters and has less
RMSE compare with the SA and IUKF and the ordinary
PSO algorithm.
This paper is organized as follows. The mathematical

modelling is defined in section II. The parameter estima-
tion methods and the proposed technique are described
in section III. The simulated and experimental results
are presented in section IV and the paper is finally con-
cluded in Section V.

Mathematical modelling
Review stage
Consider a nonlinear dynamical model for a biological
system as below:

_x tð Þ ¼ f x tð Þ; u tð Þ;wð Þ ð1Þ

where x ∈ ℝN is the metabolites, u ∈ ℝm is the concentra-
tion vectors of biomolecules that is the vector of inde-
pendent variables, and w ∈ ℝq is the parameter vector.
The problem is to find a solution for the unknown pa-
rameters that are best fitted to the model.
Different canonical modelling frameworks are available

to describe a biological phenomenon. In this paper,
among some frameworks such as Lotka-Volterra [17],
S-systems [18], and cooperative and saturation models
[19], the S-system is used to express the nonlinear
model of eq. (1)

_xi ¼ αi
YNþm

j¼1

YNþm

k¼1;k≠ j

x
gij
j x

gik
k −βi

YNþm

j¼1

YNþm

k¼1;k≠ j

x
hij
j x

hik
k ; i ¼ 1; 2;…;N ;

ð2Þ

where αi > 0 and βi > 0 are rate coefficients and g and h
are kinetic orders. The number of dependent variables is
N which represents the metabolism and m is the
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number of independent variables that are considered as
inputs to the system.
Considering the eq. 2, we have x = [x1,…, xN]

Tas the
state vector, u = [xN + 1,…, xN +m]

T as the input vector
and w = [α1,…, αNβ1,…, βN, g11,…, gN, N +m, h11,…, hN, N

+m]
Tas the parameter vector, while q =N(2 + 2(N +m)) is

the largest number of the unknown parameters. Many
algorithms have been developed to estimate the un-
known parameters of such nonlinear equations. In sec-
tion III, some of these methods are presented.

Methods
In order to compare the performance of the proposed
method with another heuristic approach, the Simulated
Anealling method is used. Moreover, for the further ana-
lysis of heuristic methods, a non heuristic approach based
on Unscented Kalman filter is applied. These methods be-
sides the proposed algorithm are described in this section.

Iterative Kalman filter (IUKF)
The Unscented Kalman Filter (UKF) is a modified
framework of the Kalman Filter for nonlinear modelling.
In this filter, one or both the process and measurement
equations might be nonlinear and the nonlinear kalman
filter is required. The UKF algorithm employs the un-
scented transform as a nonlinear transformation to com-
pute the statistics of a random variable.
The UKF algorithm is briefly explained as follow:
Consider the discrete state space model of eq. I:

x k þ 1½ � ¼ F x k½ �;u k½ �;wð Þ; ð3Þ

By the definition ofy[k] = x[k + 1], k = 0, …, N − 1, the
above equation can be rewritten as the following nonlin-
ear process equation:

y k½ � ¼ F x k½ �;u k½ �;wð Þ; ð4Þ

where x and u are the inputs, y is the output and w is
the unknown parameter with dimension q that is to be
estimated. To estimate the parameters, the following
state space representation is defined as follows:

w k þ 1½ � ¼ w k½ � þ r k½ �
y k½ � ¼ F x k½ �; u k½ �;w k½ �ð Þ þ e k½ �; ð5Þ

where the first model is the process equation, driven by
r as the process noise. The latter is the measurement
equation driven by the input and the measurement noise
e. the UKF algorithm is able to estimate the parameter w
based on the following pseudo code:
1. Initialize the unknown parameter and the covari-

ance matrix

ωb 0½ � ¼ E ω½ �
Pω 0½ � ¼ E ω−ωb 0½ �ð Þ ω−bω 0½ �ð ÞT

h i ð6Þ

2. Assuming the parameter vector ω with mean ω and
covariance Pω a set of 2q + 1 sigma vectors W are ob-
tained through the following equations

P−
ω k½ � ¼ Pω k−1½ � þ Rr k−1½ �W kjk−1½ �

¼ bω− k½ �; bω− k½ � þ γ
ffiffiffiffiffiffiffiffiffi
P−
ω k½ �

q
; bω− k½ �−γ

ffiffiffiffiffiffiffiffiffi
P−
ω k½ �

qh i
; ð7Þ

where γ ¼ ffiffiffiffiffiffiffiffiffiffiffi
q þ λ

p
, λ = ε2(q + ϗ) − q is a scaling param-

eter, and ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðq þ λÞPωÞ
p

i represents the ith column of the
matrix. The constant 10−4 < ε < 1 controls the sigma
points spread around ω . ϗ is also a scaling parameter,
which is regularly fixed to 0 or 3 − q and q is the dimen-
sion of parameters [14].
3. The sigma points are transformed with the nonlin-

ear process F

D kjk−1½ � ¼ F x k½ �; u k½ �;W kjk−1½ �ð Þ ð8Þ
4. The mean and covariance of the transformed sigma

point of step 3 are calculated as follows

db k½ � ¼
X2q

i¼0
W mð Þ

i Di kjk−1½ � ð9Þ

P
db; db k½ � ¼

X2q

i¼0
W cð Þ

i Di k k−1j½ �−db k½ �� Di k k−1j½ �−db k½ ��T þ Re k½ �;
hh

ð10Þ

Where W ðmÞ
i ¼ W ðcÞ

i ¼ 1
2ðλþqÞ, W

ðmÞ
0 ¼ W ðcÞ

0 ¼ λ
ðλþqÞ.

5. The cross covariance matrix of the measurement
and parameter vectors are calculated

Pω;db k½ � ¼
X2q

i¼0
W cð Þ

i W i kjk−1½ �−ωb − k½ �½ � Di kjk−1½ �−db k½ ��T
h

ð11Þ
6. The kalman gain, parameters and the covariance

matric is then updated

K k½ � ¼ P
ω;db k½ �P−1

db; db k½ � ð12Þ

ωb k½ � ¼ Proj ωb k½ � þ K k½ � d k½ �−db k½ �
� �h i

ð13Þ

Pω k½ � ¼ P−
ω k½ �−K k½ �P

db; db k½ �KT k½ � ð14Þ

In [16], the authors have shown that the convergence
rate of the UKF algorithm is small and the filter might not
converge to the true parameters. The main reason is the
early saturation of the kalman gain resulting from the as-
signment of not suitable initial values. Thus, the small fil-
ter gain results in small changes in the estimation of
parameters and the algorithm converge very slowly.
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To remedy this problem, the authors have developed
the IUKF algorithm. In this algorithm, after applying the
UKF algorithm, RMSE is calculated through the follow-
ing equation

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn−1

k¼0
y k½ �−yb k½ �ð Þ2

r
ð15Þ

where y[k] is the true measurement and ŷ½k� is the esti-
mated output. If MSE is smaller than a threshold value
δE or the iteration number of the algorithm is large
enough the algorithm will stop, otherwise the UKF algo-
rithm will be initialized with the final estimate of the pa-
rameters and their covariance which produces better
initial values for the UKF algorithm. If the difference of
two consecutive RMSE is less than a threshold value δR,
the covariance matrix resets to the first initial value pre-
venting from small changes in covariance matrix.

Simulated annealing
SA algorithm is a meta-heuristic algorithm introduced by
Scott Kirkpatrick and et al. [20]. This algorithm is based
on heating and cooling of the materials, starting with a
prior solution and improves it in a repetitive process to
reach the optimized solution for the problem. It consists
of an inner and outer loop. The inner loop displaces the
last solution in a solution space with a local search and
updates the obtained solution based on a probabilistic
criterion. The outer loop decreases the temperature of the
process consistently. This temperature affects the
performance of the inner loop. In the beginning with high
temperature, the algorithm performs well in searching the
solution space and prevents from the local solution in
non-convex problems. By decreasing the temperature, it
demonstrates a good capability in exploration.
At the first iterations that the temperature is high, in the

contrary to the non-proper value of the cost function, the
probability of a bad solution in the inner loop is high. This
property prevents the algorithm from convergence in local
responses. In the last iterations of the outer loop with the
loose of temperature, the probability of a bad solution is
decreased and the most proper solution is chosen with
high probability.

Particle swarm optimization
Particle Swarm Optimization, also called PSO, is a popula-
tion based stochastic optimization method intruduced by
Kennedy and Eberhart [21]. PSO simulates the activities of
school of birds, swarms of insects or groups of fish, in
which individuals are called particles and the population is
named a swarm. In this method, a position P and a vel-
ocity V are assigned to each particle. These particles are
scattered around in the search-space based on a few pro-
cedures. The particles are scattered following their own

best known position P*, in the search-space as well as the
total swarm’s best known position P�

g . The velocity of the

jth dimension of particle i in iteration t, is obtained as
follow:

V ij tð Þ ¼ W :V ij t−1ð Þ þ c1r1 P�
ij t−1ð Þ−Pij t−1ð Þ

� �
þ c2r2 P�

gj t−1ð Þ−Pij t−1ð Þ
� �

ð16Þ

Where W is the inertia weight and is normally in the
range of 0.9–1.2 [22], c1 and c2 are constants that are set
to 2, and r1 and r2 are randomly generated stochastic pa-
rameters in the interval [0, 1].
The new position of the ith particle is then updated by

the following formula:

Pij tð Þ ¼ Pij t−1ð Þ þ V ij tð Þ ð17Þ

The PSO algorithm is known as a fast simple method,
suitable for non-convex NP-hard problems such as bio-
logical pathway modelling. Despite its great performance
in exploring the solution space, it has weakness in
exploiting the optimal solution when reaching to its
neighborhood. To cope with this deficiency, the re-
searchers usually adopt some heuristics to the algorithm
or hybridize it with some other methods. In this paper, a
novel heuristic is embedded in the PSO algorithm to im-
prove its exploiting capabilities. Here, we apply a decom-
position technique in a sequential platform with the
canonical PSO. The proposed algorithm, named as
DPSO, has a two-phase structure. The first phase is a
standard PSO, where the algorithm finds a solution in
the neighborhood of the optimal one, known as the
Global-Best. In order to enhance the capability of the
first phase in reaching near the optimal solution as close
as possible, the inertia weight in the eq. (16) is linearly
reduced in each iteration of the PSO algorithm, ending
with a final value equal to 0.1. Using this technique pro-
vides the algorithm with more precision in the final iter-
ations, when the particles are in the neighbor of the best
solution. The second phase, utilizes a decomposition
technique as following pseudo-code:
For i = 1: Iteration Number
For j = 1:Param_Number

Table 1 The chosen Parameters of the simulated S-system

True parameters αi gi1 gi2 gi3 gi4 βi hi1 hi2 hi3 hi4

x1 20.0 0 0 −0.8 0 10.0 0.5 0 0 0

x2 8.0 0.5 0 0 0 3.0 0 0.75 0 0

x3 3.0 0 0.75 0 0 3.0 0 0 0.5 0.2

x4 2.0 0.5 0 0 0 6.0 0 0 0 0.8
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– Relocate the position of all the particles as the
global-best

– Scatter the particles in the jth dimension in the
neighbor of the global-best

– Find the optimal value of the jth dimension using
the PSO algorithm

– Update the global-best

endfor.
endfor.
As described in the above pseudo-code, the second

phase of the algorithm has an inner loop where it
tries to find the optimal value of all the decision
variables, considering the values of the others as
constant values, using the canonical PSO. In the sec-
ond phase, we needed to be more precise in our
searching method. So, we concentrated the ability of
the PSO algorithm from a multi-dimensional search
space to a single-dimension exploitation: by decom-
posing the problem into each decision variable, the
PSO was able to search the optimal value of each
decision variable near the vicinity of the best found
solution at hand, while considering other decision
variables as fixed values. This searching technique is
repeated for all decision variables. In the outer loop,
the whole procedure is repeated to insure evading
from a local solution. Using this technique allows

the method to exploit the optimal solution with
higher levels of accuracy, resulting in a reliable high
quality solution.

Results
Simulations
In this section, we demonstrate the capability of the
modified PSO algorithm with two synthetic simulations.
In the first simulation, no additive noise has been
assumed. In the second simulation, additive white
Gaussian noise with SNR = 20 is considered. The data
are generated through the following model:

_x1 ¼ α1x
g12
3 xg155 −β1x

h11
1

_x2 ¼ α2x
g21
1 −β2x

h22
2

_x3 ¼ α3x
g32
2 −β3x

h33
3 xh344

_x4 ¼ α4x
g41
1 −β4x

h44
4

ð18Þ

and the parameters are as follows:

ω ¼ ½α1; α2; α3; α4; β1; β2; β3; β4; g13; g15; g21; g32; g41;
h11; h22; h33; h34; h44�;

ð19Þ

Table 1 shows the chosen parameters of the above model.
Four random initial values are generated to produce

the four synthetic metabolisms. The time profiles of
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Fig. 1 time profile of the four synthetic states: Four random initial values are generated to produce the four synthetic metabolisms according to
eq. 18. These data is used for estimation of the parameters of the assumed model. RMSE is then computed between the data obtained by the
estimated model and the true data
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these four synthetic states are obtained from eq. (18)
and shown in Fig. 1.
Tables 2 through 5 depict the results obtained from

IUKF, SA, PSO and the proposed DPSO algorithms.
In these tables, the average of estimated parameters
and the corresponding average RMSE for each algo-
rithm in 1000 simulations are presented. As it is ob-
vious from the tables, DPSO algorithm has higher
capabilty for estimating the unknown parameters in
both simulation scenarios. The RMSE of the proposed
method is less than the other three algorithms. These
simulations demonstrate the enhancement of the ex-
ploitation phase in the PSO algorithm employing the
proposed technique compared with the ordinary PSO
and also the capability of the method for estimation
of more precise parameters compared with the IUKF
and SA algorithms. Figure 2 illustrates the value of
RMSEs of noise free and noisy scenarios in each 1000
simulation runs for each algorithm in Tables 2, 3, 4
and 5.
The mean percentage improvement of DPSO algo-

rithms over SA, IUKF and PSO methods is 60.06%
and 48.72% with respect to noise free and noisy
scenarios.

Real data
In order to compare the performance of the algorithms
in an experimental scenario, a real dataset is utilized
from the Cad system. The Cad system is one of the
conditional stress response modules in E. coli, which is
induced only at low pH and a lysine-rich environment
[23, 24]. The following S-system can be used to model
this phenomenon

d CadA½ �
dt

¼ α1 CadBA½ �g12−β1 CadA½ �h11
d CadBA½ �

dt
¼ α2 Lys½ �g24 Hþ½ �g25−β2 CadBA½ �h22

d Cadav½ �
dt

¼ α3 CadA½ �g31 Cadav½ �g33 Lys½ �g34
d Lys½ �
dt

¼ −β4 CadA½ �h31 Cadav½ �h33 Lys½ �h34

ð20Þ

The description and the parameters of the model have
obtained from [16]. The parameters of this system have
been estimated by the above mentioned methods. Then,
these parameters will be used to generate the time profiles
of the states of the Cad system in eq. (20). To compare
the results of the algorithms, the RMSE is calculated as
the error of the generated time profiles and the real

Table 2 The estimated parameters of two simulations for IUKF algorithm
True parameters αi gi1 gi2 gi3 gi4 βi hi1 hi2 hi3 hi4 RMSE

IUKF noise free measurement 0.5698

x1 20.4897 0 0 −0.3092 0 10.488 0.9954 0 0 0

x2 7.5180 1.5027 0 0 0 3.4884 0 1.7552 0 0

x3 3.4989 0 1.7556 0 0 2.4842 0 0 1.5019 0.7053

x4 2.4902 0.9887 0 0 0 6.4926 0 0 0 1.294

IUKF noisy measurement with SNR 20 0.6853

x1 19.6459 0 0 −0.1437 0 9.643 1.6490 0 0 0

x2 9.1521 1.1415 0 0 0 3.6681 0 1.4249 0 0

x3 3.6506 0 1.8956 0 0 3.6517 0 0 1.1638 0.8546

x4 2.6518 1.6585 0 0 0 7.6445 0 0 0 1.4447

Table 3 The estimated parameters of two simulations for SA algorithm
True parameters αi gi1 gi2 gi3 gi4 βi hi1 hi2 hi3 hi4 RMSE

SA noise free measurement 0.7471

x1 21.6611 0 0 −0.1552 0 10.65 1.1561 0 0 0

x2 8.6545 1.1575 0 0 0 3.629 0 1.4052 0 0

x3 3.6379 0 1.4034 0 0 3.6475 0 0 1.1439 0.8504

x4 1.6503 1.1432 0 0 0 6.6653 0 0 0 1.4568

SA noisy measurement with SNR 20 0.9762

x1 18.8551 0 0 0.05911 0 9.8271 1.3714 0 0 0

x2 8.8778 1.3444 0 0 0 4.8634 0 1.5988 0 0

x3 3.8245 0 1.6078 0 0 5.8395 0 0 1.3836 1.0416

x4 2.8509 1.3273 0 0 0 6.8551 0 0 0 1.6388

Mosayebi and Bahrami Theoretical Biology and Medical Modelling  (2018) 15:17 Page 6 of 10



datasets obtained by the measurements. Table 6 shows the
resultant RMSEs.
The generated time profiles obtained by the estimated

parameters along with the true time profiles are depicted
in Fig. 3.
The proposed decomposition technique is applied on

the ordinary PSO to have smaller movements near the
global solution and prevent from larger jumps that de-
teriorate the results. Therefore, as it is explained earlier,
the DPSO algorithm has higher capability in exploitation
step compared with the ordinary PSO algorithm. In the
real dataset experiment, the RMSE of DPSO algorithm is
0.741 revealing the capability of the proposed method in
comparison to IUKF and SA and PSO algorithms. For
this real data experiment, the percentage improvement
of DPSO algorithm over SA, IUKF and PSO methods is
29.36%, 33.78%, 17.02%, respectively.

Discussion
Four different algorithms have been discussed in this
paper. IUKF has an analytical approach and it pro-
vides the solution under the mathematics of kalman

filter. However, the heuristic approaches are very
popular in the literature for the nonlinear problems
with large number of parameters. Therefore, two
metaheuristic approaches are considered besides
IUKF. SA and PSO algorithms are two powerfull
methods for finding the best solution in NP hard
problems. The proposed DPSO algorithm is developed
to have higher capability in exploitation step. As a re-
sult this algorithm has less RMSE compared with the
other three algorithm due to smaller jumps near the
global solution. The results show the superiority of
DPSO algorithms over the other three methods in
RMSE point of view.
In simulations, a model with 17 parameters is consid-

ered and two scenarios with different SNR have been ana-
lysed. RMSE is computed with the estimated and the true
parameters. The RMSE of DPSO is less than the other
three algorithms as it is expected.
In real experiment scenario the data of CAD system

is used to estimate the paramters of an assumed model
for the time profile of the involved metabolisms. The
model is similar to the one in simulation scenarios and
the parameters are estimated. The DPSO method has

Table 4 The estimated parameters of two simulations for the PSO algorithm
True parameters αi gi1 gi2 gi3 gi4 βi hi1 hi2 hi3 hi4 RMSE

PSO noise free measurement 0.4040

x1 20.3569 0 0 −0.4444 0 10.3510 0.8602 0 0 0

x2 8.3541 0.858 0 0 0 3.3464 0 1.1024 0 0

x3 3.3513 0 1.1049 0 0 3.3478 0 0 0.8554 0.5437

x4 2.3560 0.8419 0 0 0 6.3490 0 0 0 1.148

PSO noisy measurement with SNR 20 0.5160

x1 16.0762 0 0 −0.3411 0 7.4571 0.9537 0 0 0

x2 8.4461 1.9448 0 0 0 3.4396 0 1.1908 0 0

x3 1.453 0 1.1971 0 0 3.4558 0 0 0.9496 0.6451

x4 2.4434 0.9482 0 0 0 8.4386 0 0 0 1.2565

Table 5 The estimated parameters of two simulations for the DPSO algorithm

True parameters αi gi1 gi2 gi3 gi4 βi hi1 hi2 hi3 hi4 RMSE

DPSO noise free measurement 0.2291

x1 20.2023 0 0 −0.5991 0 10.2041 0.7005 0 0 0

x2 8.1990 0.6944 0 0 0 3.2005 0 0.9511 0 0

x3 3.2062 0 0.9527 0 0 3.2002 0 0 0.6936 0.3995

x4 2.1953 0.7009 0 0 0 6.1974 0 0 0 0.9952

DPSO noisy measurement with SNR 20 0.3722

x1 21.326 0 0 −0.4736 0 10.3255 0.8217 0 0 0

x2 8.3162 0.8279 0 0 0 3.3227 0 1.0783 0 0

x3 3.3122 0 1.0662 0 0 3.3331 0 0 0.8197 0.5247

x4 2.3317 0.8094 0 0 0 5.3346 0 0 0 1.1281
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less RMSE between the true data and the data obtained
from the model with the estimated parametrs. This ac-
curacy is obtained as a result of more running time

compared with the PSO and SA algorithms. However,
this time is not a significant problem because this
methods are offline and a model is estimated to be used
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Fig. 2 the RMSEs of 1000 simulation runs for noise free and noisy scenarios. The figures in left column represent the noise free scenario in a IUKF,
c SA, e PSO, g DPSO. The figures in the right column correspond to noisy scenario in b IUKF, d SA, f PSO and h DPSO
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for further analysis. The running time of each algorithm
is 343, 305, 287 and 416 s for IUKF, SA, PSO and
DPSO algorithms, respectively.

Conclusion
In this paper, a PSO based algorithm is suggested to esti-
mate the unknown parameters of the nonlinear biological
models. The proposed method is compared against IUKF,
SA and the ordinary PSO algorithm. The results show the
superiority of the DPSO algorithm compared with the
other three methods. The results of the simulation and ex-
perimental scenarios reveal the capability of the proposed
algorithm for estimation of the unknown parameters of a
nonlinear biological system.
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Fig. 3 : the estimated time profile of the true data set with the three algorithms: a IUKF, b SA, c PSO, d DPSO: the red color shows the estimated
time course and the squares represent the true data points. DPSO algorithm has less RMSE compared with the other algorithms and it can be
inferred from the figure. The estimated time profile of DPSO method follows the variations of the true values more precisely

Table 6 The RMSE of the three algorithms in real data
experiment

Algorithms IUKF SA PSO DPSO

RMSE 1.049 1.119 0.893 0.741
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