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Abstract

Background: Mathematical modeling has become a tool used to address many emerging diseases. One of the
most basic and popular modeling frameworks is the compartmental model. Unfortunately, most of the available
compartmental models developed for Zika virus (ZIKV) transmission were designed to describe and reconstruct only
past, short-time ZIKV outbreaks in which the effects of seasonal change to entomological parameters can be
ignored. To make an accurate long-term prediction of ZIKV transmission, the inclusion of seasonal effects into an
epidemic model is unavoidable.

Methods: We developed a vector-borne compartmental model to analyze the spread of the ZIKV during the
2015–2016 outbreaks in Bahia, Brazil and to investigate the impact of two vector control strategies, namely,
reducing mosquito biting rates and reducing mosquito population size. The model considered the influences of
seasonal change on the ZIKV transmission dynamics via the time-varying mosquito biting rate. The model was
also validated by comparing the model prediction with reported data that were not used to calibrate the model.

Results: We found that the model can give a very good fit between the simulation results and the reported Zika
cases in Bahia (R-square = 0.9989). At the end of 2016, the total number of ZIKV infected people was predicted to
be 1.2087 million. The model also predicted that there would not be a large outbreak from May 2016 to December
2016 due to the decrease of the susceptible pool. Implementing disease mitigation by reducing the mosquito biting
rates was found to be more effective than reducing the mosquito population size. Finally, the correlation between the
time series of estimated mosquito biting rates and the average temperature was also suggested.

Conclusions: The proposed ZIKV transmission model together with the estimated weekly biting rates can reconstruct
the past long-time multi-peak ZIKV outbreaks in Bahia.
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Background
The Zika virus (ZIKV) was first recovered from a Rhesus
monkey during a research study on Yellow fever in Zika
Forest, Uganda in 1947 [1]. The virus was subsequently
isolated from Aedes mosquitoes and humans in 1948
and 1954, respectively [1, 2]. ZIKV is a Flavivirus belong-
ing to the family of Flaviviridae [3]. The virus is closely re-
lated to many other well-known notorious pathogen
causing encephalitis viruses such as Dengue, Japanese

encephalitis and West Nile virus [4]. Two species of mos-
quitoes, namely, Aedes aegypti and Aedes albopictus, were
identified as the main vectors for ZIKV transmission [5].
Epidemiologically, ZIKV cases were only sporadically

recorded in some African and Southeast Asian countries
until the late 2000s [6]. In 2013, the first large scale out-
breaks of ZIKV was observed in French Polynesia with
the evidence of ZIKV related Guillain–Barré syndrome.
Over 19,000 suspected cases were estimated during this
epidemic [7]. Since then, the expansion of the outbreaks
seems unstoppable. The situation was worse when the
virus reached and became well-established in Latin
America; Brazil is one of the most affected countries.
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The number of suspected cases in Brazil was estimated
at 440,000 to 1,300,000 in 2015 [8]. Anxiously, the in-
crease of microcephaly incidence was unexpectedly ob-
served in the outbreaks [9]. Hence, the World Health
Organization (WHO) decided to elevate the ZIKV epi-
demic status to the level of “a Public Health Emergency of
International Concern (PHEIC)” on February 1, 2016 [10].
Aedes aegypti and Aedes albopictus seem to have dif-

ferent biological lifestyles, feeding preferences, and sus-
ceptibilities to ZIKV [11, 12]. Aedes aegypti extensively
feeds on human blood [13] whereas Aedes albopictus
feeds on a more variety of host species [14]. Both species
are diurnal feeders providing high chance to expose and
bite humans. Aedes aegypti basically breeds in manmade
containers such as jars and old tires while Aedes albopictus
may also extend the breeding sites to some other natural
water holders, for examples, tree holes and coconut shells
[15]. The eggs of Aedes aegypti can survive the dry period
over 8 months [14]. However, cold egg diapause is poorly
known for this species. In contrast, the evidences were ob-
vious that Aedes albopictus found in temperate environ-
ment can produce diapausing eggs and survive hard winter
resulting in a wider geographical distribution [16].
Weather and climate conditions are known to affect

the transmission dynamics of vector-borne diseases
through the modulation of entomological parameters,
e.g., mosquito population abundance, lifespan, biting
rates, and extrinsic incubation period (the time required
for development of virus inside a mosquito) [17–22]. In
particular, temperature is believed to be a major driver
of ZIKV transmission [17, 19]. Both field and laboratory
experiments demonstrate that survival of both Aedes
aegypti and Aedes albopictus is affected by temperature
[23]. Data gathered from the literature also reveal that
biting rate respond strongly to change in temperature
[17]. In addition, a computational analysis also showed
that the basic reproduction number of vector-borne dis-
eases is very sensitive to change in the mosquito biting
rate [24]. Therefore, to make an accurate long-term pre-
diction of ZIKV transmission, the inclusion of seasonal
effects into an epidemic model is unavoidable.
Mathematical modeling has become a tool used to

address many emerging diseases. One of the most basic
and most popular modeling frameworks is the com-
partmental model. The model divides the population
of interest based on their health status [25], for ex-
ample, susceptible (S), exposed (E), infectious (I) and
recovered (R). The compartmental model has been
employed in the study of transmission dynamics in
many vector-borne diseases such as Dengue [26, 27]
and Malaria [28]. In the ZIKV study, this modeling
architecture has also been constructed [29–33]. Unfor-
tunately, most of the available mathematical models
developed for ZIKV transmission were designed to

describe and reconstruct only past, short-time ZIKV
outbreaks in which the effects of seasonal change to
entomological parameters can be ignored [30–33]. Al-
though a more sophisticated stochastic individual-based
model incorporating high-resolution demographic, human
mobility, and temperature data exists [34], it requires time
to develop and implement this kind of complicated model.
For a more comprehensive review of mathematical models
developed for ZIKV transmission, we refer the reader to
the recent work by Wiratsudakul et al. (2018) [35].
The present work, therefore, aimed to construct a sim-

ple vector-borne compartmental model that can recon-
struct the past long-time ZIKV transmission and project
the future spread of ZIKV. Since it was found that the
transmission of a vector-borne disease is most sensi-
tive to change in the mosquito biting rate [24], we
therefore integrated effects of seasonal change with
mosquito biting rates in the model. Values of un-
known entomological parameters were also estimated
with a computational parameter estimation algorithm.
The effectiveness of two vector control strategies,
namely, reducing mosquito biting rates (e.g., via repel-
lents) and reducing mosquito population size (e.g., via
adulticides, larvicides), were investigated. Finally, a
possible correlation between the estimated mosquito
biting rates and temperature was also discussed.

Methods
Mathematical model
Figure 1 describes the compartmental classifications
used to simulate ZIKV transmission dynamics. The
model divides the population into two subpopulations,
namely, the human and mosquito vector populations. A
modeling study shows that either considering both
Aedes aegypti and Aedes albopictus as competent ZIKV
vectors or considering Aedes aegypti as the only compe-
tent vector give similar modelling results [34]. To sim-
plify the model, we therefore consider Aedes aegypti as
the only competent ZIKV vector. Within each subpopu-
lation, a compartmental model is employed to simulate
ZIKV transmission while an interaction between sub-
populations occurs through the mosquito bites. Human
population is classified into the following 4 epidemio-
logical classes: susceptible (Sh), exposed (Eh), infectious
(Ih), and recovered (Rh), whereas mosquito vector popu-
lation is divided into the following 3 epidemiological
classes: susceptible (Sv), exposed (Ev), and infectious (Iv).
When an infectious mosquito bites a susceptible human,
ZIKV can be transmitted to the human under the
mosquito-to-human force of infection λh. After being in-
fected, the susceptible human progresses to the exposed
class. Humans in this class have already acquired the in-
fection, but are not yet infectious and cannot transmit
ZIKV to a mosquito. Exposed humans become infectious
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at a rate υh, which is inversely proportional to the intrin-
sic incubation period. During this stage of infection, they
can transmit ZIKV to a susceptible mosquito through
biting. These infectious individuals then recover from
the disease and have lifelong immunity at a rate that is
inversely proportional to the infectious period, γh. In this
model, we assumed that the dynamics of human birth and
death are much slower than the dynamics of the epidemic.
Therefore, they are omitted. Thus, the human population
size (Nh) is constant, that is, Sh + Eh + Ih + Rh =Nh.
Similarly, susceptible mosquitoes can be infected

under the human-to-mosquito force of infection λv if
they bite an infectious human. After being infected, the
susceptible mosquitoes transition to the exposed class.
These exposed mosquitoes can then become infectious
at a rate υv, which is inversely proportional to the extrin-
sic incubation period. Unlike humans, the infectious
mosquitoes are assumed to remain infectious for life.
Mosquitoes in all epidemiological classes die at a natural
death rate, μv, that is inversely proportional to the mos-
quito lifespan. In this model, we assume that ZIKV does
not affect the mosquito lifespan [24]. All newborn mos-
quitoes are assumed to be susceptible and enter the sus-
ceptible class at a birth rate hv.
Based on the law of mass action, the dynamics of

ZIKV transmission are described by the following ordin-
ary differential equations:

dSh
dt

¼ −λh tð ÞSh

dEh

dt
¼ λh tð ÞSh−υhEh

dIh
dt

¼ υhEh−γhIh

dRh

dt
¼ γhIh

dSv
dt

¼ hvNv−λv tð ÞSv−μvSv

dEv

dt
¼ λv tð ÞSv−υvEv−μvEv

dIv
dt

¼ υvEv−μvIv

where Nv = Sv + Ev + Iv is the mosquito population size.
Following [24, 36], the forces of infection are assumed to
be

λh ¼ σvσhNv

σvNv þ σhNh
βhv

Iv
Nv

λv ¼ σvσhNh

σvNv þ σhNh
βvh

Ih
Nh

where σv represents the number of times a mosquito can
bite humans per unit time, and σh describes the max-
imum number of mosquito bites that a human can sup-
port per unit time. If an infectious mosquito bites a
susceptible human, ZIKV can be successfully transmitted
to a human with a probability βhv, whereas if a suscep-
tible mosquito bites an infectious human, ZIKV can be
transmitted to a mosquito with a probability βvh. The de-
scriptions and values of all parameters used in the model
are summarized in Table 1.

Estimated time series of weekly mosquito biting rates
We estimated the time series of weekly biting rates that
best fit the modeling results to the reported data. The
estimation was performed by dividing the model simula-
tion into several consecutive weekly time-window simu-
lations. The model searched for a weekly biting rate that
gives the best fit between the simulation result and the
corresponding weekly reported data. Mathematically, we
searched for a value of weekly biting rate (σv) that

Sh Eh Ih Rh

Sv Ev Iv

h h h

v v

hv µv

Fig. 1 Schematic of the ZIKV transmission model. The solid arrows represent transitions between epidemiological classes, whereas the dash
arrows represent interactions between humans and mosquitoes. Susceptible humans (Sh) can be infected if they are bitten by infectious mosquitoes.
Infected humans immediately become exposed (Eh) and then transition to the infectious class (Ih) after the intrinsic incubation period. Finally, infectious
humans move to recovered class (Rh). Mosquitoes enter the susceptible class at a birth rate hv and die at a natural death rate μv. If susceptible mosquitoes
(Sv) bite infectious humans, they are moved to the exposed (Ev) class and then become infectious (Iv)
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minimizes |Csim − Crep|, which is the absolute difference
between number of weekly reported cases (Crep) and
number of weekly cases simulated from the model
(Csim). The number of weekly simulated cases was calcu-
lated using the equation Csim ¼ dIh

dt þ dRh
dt . Possible values

of weekly biting rates that the model can search for is
uniformly distributed in the interval [0, 1] with 0.01
resolution. Only the value of biting rate that yields the
best simulation result was recorded. The simulation result,
i.e., the number of humans and mosquitoes in each epi-
demiological class, for the current weekly time-window
was then used as an initial condition for the next weekly
time-window simulation. The search process was repeated
until the complete time series of the weekly biting rates
was obtained.

Data
The reported weekly Zika cases were derived from the
data presented in the literature [29, 37]. To minimize
consequences that may have resulted from the difference
in spatial temperature profiles, the ZIKV transmission
dynamics were simulated in the smallest possible spatial
scale, i.e., city or state. Since the first reported Zika case
in Brazil was in the state of Bahia [38] and the outbreaks
in Bahia show the most prominent state-level outbreaks
(about 64% of ZIKV infections in Brazil occurred in
Bahia) [29], we therefore used the Bahia outbreak data
to calibrate the model. The total number of reported
cases, which is the sum of the laboratory-confirmed
cases and the suspected cases, was used in the present
work. The reported weekly Zika cases in Bahia from 1st
January 2015 to 18th May 2016 were used in estimating
the time series of weekly biting rates [29]. Since there
was no officially released data of Zika cases in the state

of Bahia after May 2016, we therefore used official infor-
mation at the national level to compare with the model
prediction during June 2016 – December 2016. The num-
bers of weekly Zika cases in Brazil during June 2016 – De-
cember 2016 were derived from reference [37]. Data
presented in [37] was only in graphical forms, the
WebDigitizer tool (https://automeris.io/WebPlotDigitizer/)
was used to extract the approximate number of reported
cases. Because ZIKV transmission dynamics in Bahia and
Brazil are different in terms of population size and spatio-
temporal scale, e.g., the peak value of weekly Zika cases in
Brazil is 21,235 while the peak value of weekly Zika cases in
Bahia is 6823 [29, 37], for a more appropriate comparison
with the model prediction, we therefore rescaled the num-
ber of weekly Zika cases in Brazil by the ratio of peak values
of Zika cases in Bahia and Brazil, i.e., 6823/21,235 = 0.32.
This rescaling makes the two data sets to have the same
maximum value. The monthly average temperature in
Bahia was derived from reference [39].

Results
Time series of weekly mosquito biting rates
The reported weekly Zika cases in Bahia were used to
estimate the time series of weekly biting rates. The re-
ported data begin in the 1st week of 2015 and end in the
22nd week of 2016. The reported data shows two epi-
sodes of epidemics in Bahia (Fig. 2a). The first epidemic
peak appears around May 2015, and the second peak oc-
curs around March 2016. As seen in Fig. 2a, the pro-
posed biting rate estimation algorithm provides a very
good fit of the simulation results and the reported data
(R-square = 0.9989). Based on the estimation algorithm,
the weekly biting rates were found to be in the range of
0.01–0.35 bites per day (Fig. 2b, bars). In order to reduce
variation in estimated weekly biting rates that may have

Table 1 Descriptions and values of all parameters used in the model

Parameter Definition Value Reference

σh Maximum number of bites a human can sustain 19 bites/day [24]

σv Mosquito biting rate See estimation in result section

βhv Probability of pathogen transmission from an
infectious mosquito to a susceptible human

0.7 [29]

βvh Probability of pathogen transmission from an
infectious human to a susceptible mosquito

0.7 [29]

υh Human progression rate from exposed state
to infectious state

1/5.5 per day [29]

υv Mosquito progression rate from exposed state
to infectious state

1/8.2 per day [29]

γh Human recovery rate 1/6 per day [29]

hv Mosquito birth rate 1/14 per day [24]

μv Mosquito natural death rate 1/14 per day [24]

Nh Human population size in Bahia, Brazil 15,276,566 [29]

Nv Mosquito population size 10–250 million Assumed

Suparit et al. Theoretical Biology and Medical Modelling  (2018) 15:11 Page 4 of 11

https://automeris.io/WebPlotDigitizer


resulted from random variation in weekly reported data,
monthly average biting rates are also presented (Fig. 2b
and c), solid lines). Unless stated otherwise, the simula-
tions reported assume that the mosquito population size
is 50 million. However, a sensitivity analysis of the mos-
quito population size was also performed. By changing
the assumed initial number of mosquitoes, we found
that a 25-fold change in the number of mosquitoes re-
sults in approximately a 4-fold change in the estimated
biting rates (Fig. 2c). This indicates that the ZIKV trans-
mission dynamics are less sensitive to the change in the
mosquito population size than the change in mosquito
biting rate.

Projected ZIKV infections and model validation
The projection of ZIKV infections in Bahia was done by
assuming that the time series of weekly biting rates are
yearly periodic [40, 41]. In this section, we therefore use
the time series of weekly biting rates from May 2015 to
December 2015 to project the ZIKV transmission during
May 2016 to December 2016. We also validated our
model by comparing the model projections with re-
ported data that were not used for its calibration. The
projection results are shown in Fig. 3. It can be clearly
seen in Fig. 3a that the model predicts no large outbreak

after May 2016, a finding supported by epidemiological
surveillance in Brazil [37]. Specifically, the model pre-
dicts that there will be 43 average weekly cases during
June–December 2016. This number is close to 157 aver-
age weekly cases calculated using the rescaled Brazil data
(green line in Fig. 3a) [37]. The predicted numbers of
humans in exposed, infectious, and recovered classes are
shown in Fig. 3b. Note that the numbers of humans
shown in Fig. 3b were multiplied with the under report
factor of 11.5% [31]. At the end of 2016, the cumulative
number of infected people was predicted to be 1.2087
million. We then further investigated if the observed de-
crease in weekly cases after May 2016 occurred due to
the depletion of the susceptible pool. We performed a
sensitivity analysis in which the seasonal variation of bit-
ing rates in year 2016 was removed. This was accom-
plished by replacing the time series of estimated biting
rates in year 2016 with its average value (0.12 bite/day).
As shown in Fig. 3c, it can be clearly seen that despite
the seasonal variation in biting rates had been removed,
the model still predicts a decrease in weekly cases after
the large outbreaks in year 2015. We therefore suspect
that the decrease in number of infections in Bahia after
May 2016 may be due to the depletion of susceptible
individuals.

Fig. 2 Model fitting and mosquito biting rates. a The fit of the simulation results and the reported data with R-square = 0.9989. The weekly
reported data of Zika cases in Bahia were adapted from the data presented in reference [29]. The simulation results obtained by searching for the
best weekly biting rates are shown as a red solid line (○). b The estimated weekly biting rates (bars) overlaid with monthly average biting rates
(line). c Plots of the monthly average biting rates obtained using the mosquito population size of 10, 50, and 250 million
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Effects of reducing mosquito biting rate
We further used the developed ZIKV transmission
model and the estimated parameters to investigate the
effectiveness of two vector control strategies, namely, re-
ducing mosquito biting rates and reducing mosquito
population size. To investigate the effects of temporarily
reducing mosquito biting rates, the ZIKV transmission
model was simulated with reduced mosquito biting rates
during a specified period while keeping other parameters
unchanged. Figure 4a shows the percentage of reduction
in number of cumulative ZIKV cases when the mosquito
biting rates were reduced for 30 days during a different
period. We found that the biting rate reduction strategy

yields the best result when implemented during the
2nd - 4th months of 2015, which is approximately the
period in which the epidemic reaches its first peak.
Implementing the biting rate reduction strategy after
this period will lower the intervention effectiveness.
From the results, we can see that, for example, redu-
cing the mosquito biting rates by 10% for 30 days can
reduce the cumulative number of ZIKV cases up to
20%. In addition, Fig. 4b shows effects of implementing
the biting rate reduction strategy for a different length of
time beginning with the first month of 2015; reducing the
mosquito biting rate by 10% for 3 months is enough to
reduce the number of total infections by half.

Fig. 3 Model projections. a The predicted number of weekly ZIKV infection cases from 1 January 2015 to 31 December 2016 in Bahia (○), and the
rescaled weekly reported ZIKV cases from June 2016 – December 2016 in Brazil (□) [37]. b Predicted number of humans in the exposed (□),
infectious (○) and recovered (△) classes. Note that the number of humans in each epidemiological class was obtained by multiplying with the
under report factor of 11.5% [31]. c The predicted number of weekly ZIKV infection cases when the seasonal variation of biting rates in year 2016
was removed
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Effects of reducing mosquito population size
Since reducing the number of mosquitoes can also de-
crease the number of contacts between humans and
mosquitoes, this may also reduce the epidemic impact.
Hence, to investigate the effects of temporarily reducing
mosquito population size, we employed similar method-
ology as in the previous section. The ZIKV transmission
model was simulated with a reduced mosquito population
size during a specified period while other parameters
remained unchanged. Figure 5a shows the percentage of
reduction in total ZIKV infections when the mosquito
population size was reduced for a duration of 30 days with

at a different start time; reducing the mosquito population
size by 10% can reduce the number of infections by a
maximum of 10%. Implementing the intervention strategy
at a different time results in different intervention effect-
iveness. We found that the intervention yields the best re-
sult when it was completed during the 2nd - 4th months
of 2015. Obviously, implementing the vector control strat-
egy for a longer time can further decrease the total num-
ber of infections. Figure 5b shows the percentage of
reduction in the number of ZIKV cases when the mos-
quito population size was reduced for a different length of
time, starting in the first month of 2015.

Fig. 4 Effects of reducing the mosquito biting rates. a The percentage of reduction in the total number of ZIKV cases when the intervention was
implemented for 30 days starting at different times. The x-axis indicates a month (from 1st - 11th month of 2015), in which the vector control
began. Each curve shows the result when different percentage of biting rate reduction was implemented. b The percentage of reduction in total
number of ZIKV cases when the intervention was started in January 2015 and was implemented for a different duration. The x-axis indicates the
length of time in which the intervention was implemented, and each curve shows the result when different percentages of biting rate reduction
were implemented

Fig. 5 Effects of reducing the mosquito population size. a The percentage of reduction in total number of ZIKV infections when the mosquito
control strategy was implemented for a duration of 30 days and started at a different time. The x-axis indicates a month (from the 1st - 11th
month of 2015) in which the intervention was started. Each curve shows the result when different percentages of population size reduction were
implemented. b The percentage of reduction in total number of ZIKV cases when the intervention was started at January 2015 and was implemented
for a different length of time. The x-axis indicates the length of time in which the intervention was implemented, and each curve shows the result
when different percentages of mosquito population size reduction were implemented
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Correlation between mosquito biting rates and
temperature
To see the correlation between the estimated mosquito
biting rates and the average temperature, the monthly
average biting rates and the monthly average temperature
in Bahia during January 2015 – December 2015 are plot-
ted and compared on the same graph (Fig. 6). The trend
of monthly average biting rates qualitatively agrees with
the trend of monthly average temperature; the values
reach maximum and minimum points at roughly the same
times. Quantitatively, the Pearson correlation coefficient
between the monthly average biting rates and monthly
average temperature was found to be 0.6404 with the
p-value of 0.0249 and the Spearman’s rank correlation co-
efficient was 0.5980 with the p-value of 0.0400. In these
results, both Pearson correlation coefficient and Spear-
man’s rank correlation coefficient indicate that there is a
moderate positive relationship between the monthly aver-
age biting rates and monthly average temperature. In
addition, the p-values for both correlation coefficients are
less than the significance level of 0.05, which indicates that
the correlation coefficients are significant. Both correl-
ation coefficients were calculated using the command corr
in MATLAB R2017a.

Discussion
We proposed a mathematical model and used computer
simulations to describe ZIKV transmission in Bahia. The
aims of the simulations were to reconstruct the past
long-time multi-peak ZIKV outbreaks and project the

future spread of ZIKV, as well as to investigate the impact
of the vector control strategies. Climate factors are known
to affect the transmission dynamics of vector-borne
diseases [17–22], to accurately reconstruct long-time
multi-peak ZIKV outbreaks and to make an accurate
long-term prediction of ZIKV transmission, the inclusion
of seasonal effects into the epidemic model is unavoidable.
Although climate conditions can affect to several entomo-
logical parameters including larval carrying capacity, ex-
trinsic incubation period, mosquito lifespan, and biting
rate [17–22], however, a mathematical analysis shows that
a vector-borne disease transmission is most sensitive to
change in the mosquito biting rate [24]. We therefore hy-
pothesized that seasonal changes in mosquito biting rates
mainly contributed to the two ZIKV epidemic peaks in
Bahia during the years 2015–2016. To reconstruct the
ZIKV transmission in Bahia, we therefore estimated the
time series of mosquito weekly biting rates that best fit
the modeling results to the reported data from 1st
January 2015 to 18th May 2016. The time variations of
the estimated mosquito biting rates were also compared
with the seasonal changes of the average temperature
in Bahia. In contrast to previous ZIKV transmission
models [29–33], we believe that our Zika epidemic
model is the first compartmental model that can accur-
ately simulate two peaks of ZIKV outbreaks in Bahia
(please see reference [35] for a comprehensive review
of ZIKV transmission models).
The model fitting results (Fig. 2a) show that the pro-

posed ZIKV transmission model together with the esti-
mated time series of weekly biting rates give a very good
fit between the simulation results and the reported data
(R-square = 0.9989). Although seasonal environmental
factors can affect to several entomological parameters
[17–22], our modeling results suggested that only as-
suming the mosquito biting rates to be dependent on
seasonal climate may be sufficient for modeling pro-
poses. This may be because the transmission of vector
borne diseases is most sensitive to the mosquito biting
rate [24]. Note, however, that our estimated mosquito
biting rates may already implicitly compensate for the ef-
fects of seasonal changes on other entomological param-
eters. In addition, since we considered Aedes aegypti as
the only competent ZIKV vector in our model, the esti-
mated biting rates may also compensate for the absence
of the Aedes albopictus vector [34]. Since the actual
mosquito population size in Bahia is not available, we
also varied the mosquito population size in the simula-
tions. We found that the dynamics of ZIKV transmission
is less sensitive to the change in the mosquito popula-
tion size than the change in the mosquito biting rate.
The 25-fold change in the number of mosquitoes is
equivalent to an approximate 4-fold change in biting
rates (Fig. 2c).

Fig. 6 Correlation between monthly average biting rate and monthly
average temperature. The monthly average biting rates and monthly
average temperature in Bahia during January 2015 – December 2015
are plotted on the same graph. The left y-axis shows the monthly
average biting rates (shown as black circles), and the right y-axis
indicates the monthly average temperature in degree Celsius
(shown as red squares) [39]
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We also validated our model by comparing the model
projections with reported data that were not used to
calibrate the model. By assuming that the time series of
weekly biting rates are yearly periodic, we then used the
ZIKV transmission model and the estimated parameters
to project the ZIKV infections from May 2016 to De-
cember 2016 (Fig. 3a-b). We found that the model pre-
dicts no large outbreaks during May 2016 to December
2016. This finding agrees with the data from epidemio-
logical surveillance in Brazil [37]. Specifically, the model
predicts that there will be 43 average weekly cases dur-
ing June–December 2016. This number is close to 157
average weekly cases as calculated using the rescaled
Brazil data [37]. The decrease in number of infections in
the model may be largely due to the fact that large out-
breaks in 2015–2016 greatly deplete the pool of suscep-
tible individuals who can be exposed to the disease. The
model suggests that herd immunity may have already
been achieved, a finding supported by a more complex
modelling study [29]. The herd immunity may cause a
delay of more than a decade until further large outbreaks
are possible [29]. However, like other mosquito-borne
viral diseases, we may expect small seasonal oscillations
in ZIKV incidence caused by seasonal temperature vari-
ation [29, 42, 43]. Nevertheless, it is possible that the de-
crease in the number of notified ZIKV cases in 2016 was
caused by a competition of ZIKV and other arboviruses
that share the same invertebrate and vertebrate hosts
[44]. A recent study indicated that the introduction of
chikungunya virus (CHIKV) in the Recife Metropolitan
Region in northeast Brazil helped to suppress the circu-
lation of ZIKV in the area [44]. There is an estimate
that only 11.5% of the total ZIKV infections in the
2013–2014 French Polynesia outbreak were reported
[31]. Considering this, the numbers of human individ-
uals in each epidemiological class predicted from the
model were multiplied with 100/11.5 (Fig. 3b). We
found that at the end of 2016, the total number of in-
fected people was 1.2087 million, which is consistent
with the number from the other estimate [8]. Note,
however, that the actual underreport factor in the Bahia
outbreak may be different from that of the French
Polynesia outbreak.
In this work, two vector control strategies, namely, re-

ducing mosquito biting rates (e.g., via repellents) and re-
ducing mosquito population size (e.g., via adulticides,
larvicides, or other methods) were investigated. We
found that the mitigation strategy that affects the more
sensitive parameters have a larger impact on the magni-
tude of the epidemic. Specifically, we found that redu-
cing the mosquito biting rates by 10% for 30 days can
reduce ZIKV infections up to 20% (Fig. 4); however, re-
ducing the mosquito population size by 10% for 30 days
can reduce the number of infections by a maximum of

10% (Fig. 5). Implementing the vector control strategy at
a different time also results in different intervention ef-
fectiveness. We found that either reducing the mosquito
biting rate or reducing the mosquito population size
yields the best result when implemented during the first
peak of the epidemic.
Several studies have examined the impacts of tem-

perature on the transmission of vector borne diseases
[17, 21, 22]. In this work, the correlation between the
estimated time series of mosquito biting rates and aver-
age temperature was investigated. We found that the
trend of monthly average biting rates qualitatively
agrees with the trend of monthly average temperature
(Fig. 6). Although some studies [29, 34] assumed that sea-
sonal changes may affect several entomological parame-
ters, e.g., larval carrying capacity, extrinsic incubation
period, mosquito lifespan, and biting rate, our modeling
results suggested that only assuming the mosquito biting
rates to be dependent on temperature may be sufficient
for modeling proposes. This may be because the basic
reproduction number of vector borne diseases is most
sensitive to the mosquito biting rate [24].
The ZIKV transmission model presented here also has

some limitations. The model assumes that ZIKV behaves
similarly to other mosquito borne disease viruses, e.g., den-
gue virus and chikungunya virus. We assumed all human
and mosquito individuals are homogeneously mixed and
that all individuals have equal chance of contact; however,
in reality, there may be spatial heterogeneity in contact and
disease transmission [45]. The sexual transmission route of
ZIKV is not considered in the proposed model, but a
mathematical modeling analysis indicated that transmis-
sion contributed by sexual activity is small [30].
Although vector control strategies, e.g., reducing mos-

quito population size and mosquito biting rate, can reduce
ZIKV transmission, adherence to these intervention strat-
egies over the long term in practice can be very difficult to
achieved. A ZIKV vaccine may be the best way to protect
at-risk populations over the long term [46, 47]. It is worth-
while to mention that our ZIKV transmission model may
be extended to incorporate vaccinated compartments and
employed to assess the effectiveness of vaccination strat-
egies. This should be a potential topic for future research.

Conclusions
We constructed a mathematical model for fitting the re-
ported Zika cases in Bahia, Brazil, during the 2015–2016
outbreaks, predicting the possible future spread of ZIKV
and investigating the impact of vector control strategies.
The ZIKV transmission model integrates the effects of
seasonal change into mosquito biting rates, which were
estimated using a computational parameter estimation
algorithm. We found that the ZIKV transmission model
together with the estimated weekly biting rates gives a
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very good fit between the simulation results and the re-
ported data (R-square = 0.9989). The model predicted
the total number of infected people at the end of 2016
to be 1.2087 million, which is close to the estimated
numbers from a previous study [8]. We also found that
implementing the vector control strategy that affects the
most sensitive parameter can have a large impact on the
magnitude of the epidemic, i.e., reducing the mosquito
biting rates by 10% for 30 days can reduce ZIKV infec-
tions up to 20% whereas reducing the mosquito popula-
tion size by 10% for 30 days can reduce the number of
infections by 10% at most. The estimated mosquito bit-
ing rates were also found to be correlated with the aver-
age temperature with the Pearson correlation coefficient
of 0.6404 (p-value: 0.0249) and the Spearman’s rank cor-
relation coefficient of 0.5980 (p-value: 0.0400).
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