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Abstract

Background: In mathematical epidemiology, age-structured epidemic models have
usually been formulated as the boundary-value problems of the partial differential
equations. On the other hand, in engineering, the backstepping method has recently
been developed and widely studied by many authors.

Methods: Using the backstepping method, we obtained a boundary feedback control
which plays the role of the threshold criteria for the prediction of increase or decrease
of newly infected population. Under an assumption that the period of infectiousness is
same for all infected individuals (that is, the recovery rate is given by the Dirac delta
function multiplied by a sufficiently large positive constant), the prediction method is
simplified to the comparison of the numbers of reported cases at the current and
previous time steps.

Results: Our prediction method was applied to the reported cases per sentinel of
influenza in Japan from 2006 to 2015 and its accuracy was 0.81 (404 correct predictions
to the total 500 predictions). It was higher than that of the ARIMA models with different
orders of the autoregressive part, differencing and moving-average process. In
addition, a proposed method for the estimation of the number of reported cases,
which is consistent with our prediction method, was better than that of the best-fitted
ARIMA model ARIMA(1, 1, 0) in the sense of mean square error.

Conclusions: Our prediction method based on the backstepping method can be
simplified to the comparison of the numbers of reported cases of the current and
previous time steps. In spite of its simplicity, it can provide a good prediction for the
spread of influenza in Japan.
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Background
The spreading mechanism of infectious diseases in population has been studied in terms
of mathematical modeling since the pioneering works by Kermack andMcKendrick [1, 2]
(see Hethcote [3] for a detailed review). In the eradication or reduction of diseases, the
concept of control would play an important role (see, for instance, Anderson and May
[4] and Smith et al. [5]). To design the appropriate control strategies, the prediction of
epidemic size is essentially important. In recent years, Ferguson et al. [6], Hyder et al. [7]
and Riley et al. [8] studied influenza and other diseases from this perspective. On the other
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hand, the qualitative analysis of mathematical models is also important for understanding
the effect of control. Alexander et al. [9] and Mills et al. [10] published their study from
this perspective.
For a long time, age-structured epidemic models have been studied by many authors

(see, for instance, Iannelli [11], Inaba [12], Inaba and Nishiura [13] and Tudor [14]).
Mathematically, these models can be regarded as the boundary-value problems of partial
differential equations. On the other hand, in engineering, the backstepping method has
recently been developed by Smyshlyaev and Krstic [15] to obtain the boundary feedback
control for stabilizing the systems of partial differential equations and has widely been
studied by many authors (see, for instance, Susto and Krstic [16] and Baccoli et al. [17]).
The aim of this study is to make use of the backstepping method for epidemiological con-
siderations. Specifically, we will develop a new method for the prediction of increase or
decrease of infected population.
In the classical theory of the basic reproduction number R0 (see, for instance,

Diekmann et al. [18] and van den Driessche and Watmough [19]), the number of newly
infected individuals produced by a typical infected individual invading into a fully sus-
ceptible population is characterized as the threshold value. That is, if R0 > 1, then the
epidemic size will increase and if R0 < 1, then it will decrease. In our method, a thresh-
old criteria U(t) will be calculated for each time step t as a boundary feedback control. It
will be shown that whether the newly infected population I(t, 0) at each time step t will
exceedU(t) or not determines the increase or decrease of infected population at the next
time step t + 1. That is, if I(t, 0) > U(t) (I(t, 0) < U(t)) at the current time step t, then
the infected population will increase (decrease) at the next time step t + 1. Thus, we can
predict the increase or decrease of infected population by comparing I(t, 0) and U(t) for
each time step.

Methods
Themodel formulation

The meaning of each symbol in our mathematical model is as follows.

• t ≥ 0: the chronological time;
• a ∈ [0, a†]: the class age (that is, the time elapsed since the infection) of infected

individuals;
• a† > 0: the maximum period of infectiousness;
• I(t, a): the infected population of class age a at time t ;
• γ (a) ∈ L1+(0, a†): the per capita recovery rate of infected individuals of class age a.

Under this setting, the class age-structured epidemic model in this paper is formulated
as follows.

(
∂

∂t
+ ∂

∂a

)
I(t, a) = −γ (a)I(t, a), t > 0, 0 < a < a†. (1)

Note that the boundary condition for a = 0 is not considered in (1) unlike usual class
age-structured epidemicmodels. In fact, in this paper, we analytically derive the boundary
feedback controlU(t) by using the backsteppingmethod and compare it with I(t, 0)which
will be obtained from the real data.
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The backstepping method

The aim of this section is to derive the boundary feedback control U(t). Let us consider
the following integral transformation.

w(t, a) := I(t, a) −
∫ a†

a
k(a, σ)I(t, σ)dσ . (2)

Now we seek the integral kernel k(a, σ) such that w(t, a) becomes the solution of the
following target system.⎧⎨

⎩
(

∂
∂t + ∂

∂a
)
w(t, a) = −γ (a)w(t, a) + ψ(a)w(t, a†), t > 0, 0 < a < a†,

w(t, 0) = 0, t > 0,
(3)

whereψ(a) is a positive continuous function on [0, a†] which is chosen such that the oper-
ator describing the target system has the spectrum consisting of stable eigenvalues and
zero eigenvalue, that is, w(t, a) converges to a nontrivial equilibrium w∗(a) as t → +∞.
Therefore, we see that if the integral equation

w∗(a) = I(t, a) −
∫ a†

a
k(a, σ)I(t, σ)dσ (4)

has an equilibrium I∗(a), then I(t, a) converges to I∗(a) as t → +∞. Hence, in what
follows, we will determine the integral kernel k(a, σ) such that (2) satisfies (3) and further
(4) has the equilibrium I∗(a).
Differentiating (2) with respect to t and using (1), we have

∂

∂t
w(t, a)

= ∂

∂t
I(t, a) −

∫ a†

a
k(a, σ)

∂

∂t
I(t, σ)dσ

= ∂

∂t
I(t, a) −

∫ a†

a
k(a, σ)

[
− ∂

∂σ
I(t, σ) − γ (σ )I(t, σ)

]
dσ

= ∂

∂t
I(t, a) − k(a, a)I(t, a) + k(a, a†)I(t, a†)

−
∫ a†

a

[
∂

∂σ
k(a, σ) − γ (σ )k(a, σ)

]
I(t, σ)dσ . (5)

On the other hand, differentiating (2) with respect to a, we have

∂

∂a
w(t, a) = ∂

∂a
I(t, a) + k(a, a)I(t, a) −

∫ a†

a

∂

∂a
k(a, σ)I(t, σ)dσ . (6)

Adding both sides of the Eqs. (5) and (6) and using (1), we have(
∂

∂t
+ ∂

∂a

)
w(t, a) =

(
∂

∂t
+ ∂

∂a

)
I(t, a) + k(a, a†)I(t, a†)

−
∫ a†

a

[(
∂

∂a
+ ∂

∂σ

)
k(a, σ) − γ (σ )k(a, σ)

]
I(t, σ)dσ

= −γ (a)I(t, a) + k(a, a†)I(t, a†)

−
∫ a†

a

[(
∂

∂a
+ ∂

∂σ

)
k(a, σ) − γ (σ )k(a, σ)

]
I(t, σ)dσ

= −γ (a)w(t, a) + k(a, a†)w(t, a†)

−
∫ a†

a

[(
∂

∂a
+ ∂

∂σ

)
k(a, σ) + (γ (a) − γ (σ )) k(a, σ)

]
I(t, σ)dσ .
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Comparing this equation with (3), we see that k(a, σ) should satisfy the following
equation.⎧⎨

⎩
(

∂
∂a + ∂

∂σ

)
k(a, σ) + (γ (a) − γ (σ )) k(a, σ) = 0, a ∈ (

0, a†
)
, σ ∈ (

a, a†
)
,

k(a, a†) = ψ(a), a ∈ [
0, a†

]
.

(7)

Since the operator describing the target system (3) is required to have zero eigenvalue,
ψ(σ) should satisfy∫ a†

0
ψ(σ)e− ∫ a†

σ γ (ρ)dρdσ = 1. (8)

Note that the Eq. (8) corresponds to the situation where the basic reproduction number
R0 is just equal to one (see, for instance, Diekmann et al. [18]). By integrating (7) along
the characteristic line σ − a = const., we obtain

k(a, σ) = ψ(a† + a − σ)e
∫ a†−σ

0 (γ (a†+a−σ−ρ)−γ (a†−ρ))dρ , σ ∈ (a, a†). (9)

Since the kernel k(a, σ) is bounded on the domain 0 ≤ a ≤ σ ≤ a† and w∗(a) is
continuous on [0, a†], the integral Eq. (4) has an equilibrium I∗(a) and the solution I(t, a)
of (1) converges to I∗(a) as t → +∞ under the boundary condition

I(t, 0) =
∫ a†

0
k(0, σ)I(t, σ)dσ

=
∫ a†

0
ψ(a† − σ)e

∫ a†−σ

0 (γ (a†−σ−ρ)−γ (a†−ρ))dρI(t, σ)dσ .

Thus, the boundary feedback control U(t) is given by

U(t) :=
∫ a†

0
ψ(a† − σ)e

∫ a†−σ

0 (γ (a†−σ−ρ)−γ (a†−ρ))dρI(t, σ)dσ (10)

and if I(t, 0) > U(t), then the infected population I(t, a) will increase and diverge, while
if I(t, 0) < U(t), then the infected population I(t, a) will decrease and converge to 0.

Remark onmathematical well-posedness

If we consider the initial condition I0(a) := I(0, a), it should satisfy the following
condition to let (1) have a differentiable solution I(t, a):

I0(·) ∈ H1(0, a†),

I0(0) =
∫ a†

0
ψ(a† − σ)e

∫ a†−σ

0 (γ (a†−σ−ρ)−γ (a†−ρ))dρI0(σ )dσ . (11)

In fact, if the first two conditions are satisfied, we can show the existence of the
differentiable solution I(t, a) by constructing a C0-semigroup generated by the differen-
tiation operator −d/da − γ (a) with the domain {I(·) ∈ H1(0, a†); I(0) = ∫ a†

0 ψ(a† − σ)

e
∫ a†−σ

0 (γ (a†−σ−ρ)−γ (a†−ρ))dρI(σ )dσ }. Since the aim of this paper is to develop a prediction
method, we do not require the observed data to satisfy the condition (11). However, we
remark that this mathematical rigorousness is essentially important from the analytical
point of view.

The prediction method

From the above discussion, we obtain the following prediction guideline.

If I(t, 0) > U(t), then the infected population I(t, a) will increase.
If I(t, 0) < U(t), then the infected population I(t, a) will decrease.

(12)
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In fact, we obtain Fig. 1 for some artificial parameters, which is an example for verifying
the validity of (12).
In what follows, for simplicity, we assume that ψ(a) ≡ ψ and the period of infectious-

ness is same for all infected individuals. To represent this situation, we assume that the
recovery rate is given by the Dirac delta function multiplied by a sufficiently large positive
constant M 	 0: γ (a) = Mδ

(
a − a†

)
. Here, a model function for the Dirac delta func-

tion can be given by the isosceles triangle with heightm > 0 and base a† −2/m < a < a†
(which approaches to δ

(
a − a†

)
as m → +∞). In this case, the survival rate at which an

infected individual of class age a still has infectiousness is given by

�(a) := e−∫ a
0 γ (σ )dσ = e−M

∫ a
0 δ(σ−a†)dσ =

{
1, a < a†,
e−M (≈ 0) , a = a†.

From (8), we have

ψ

∫ a†

0
e−Mdσ = ψe−Ma† = 1

and hence, ψ = eM/a†. Then, from (10), the boundary feedback control U(t) is given by

U(t) = eM

a†

∫ a†

0
eM

∫ a†−σ

0 (δ(−σ−ρ)−δ(−ρ))dρI(t, σ)dσ

= eM

a†

∫ a†

0
e−MI(t, σ)dσ = 1

a†

∫ a†

0
I(t, σ)dσ

= 1
a†

∫ a†

0
I(t − σ , 0)e−M

∫ σ
0 δ(ρ−a†)dρdσ = 1

a†

∫ a†

0
I(t − σ , 0)dσ .

Fig. 1 The decrease and increase of the infected population depending on the newly infected population
I(t, 0). Let a† = 1, γ (a) ≡ 1 and X ∈ (0, 1) be a uniform random variable. For I(t, 0) = U(t) + 0.001X (> U(t)),
the infected population I(t, a) increases and will diverge (upper two figures). For I(t, 0) = max(U(t)−0.001X , 0)
(< U(t)), the infected population I(t, a) decreases and will converge to 0 (lower two figures)
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Let us consider the discrete-time series and let a† = 1. Then, by using the rectangle
approximation at σ = a† = 1, the above equality can be represented as follows.

U(t) ≈ I(t − 1, 0). (13)

Thus, from (12), we can predict that if

(the number of reported cases at the current time step t)
> (the number of reported cases at the previous time step t − 1)

then the number of reported cases at the next time step t + 1 will increase, and if

(the number of reported cases at the current time step t)
< (the number of reported cases at the previous time step t − 1)

then the number of reported cases at the next time step t + 1 will decrease. Although this
prediction method is very simple, its accuracy can be high for the real data of the spread
of influenza in Japan (see the next section).

Results and discussion
Prediction of increase or decrease of infected population for influenza in Japan

In this section, we apply our prediction method proposed above to the real data of
reported cases of influenza in Japan from 2006 to 2015. The data is available in the web-
site of the National Institute of Infectious Diseases, Japan (see [20]). Let the unit time step
be a week.
First, in Table 1, we exhibit the result of our prediction from the week 1 to week 12 in

2015.
In Table 1, it is easy to see that the controlU(t) is equal to the number of reported cases

at the previous week t − 1 as derived in (13). For each time step t ∈ [2, 11], the number
of reported cases is compared to U(t) and if it is greater than U(t), then the prediction
is “Increase” and if it is less than U(t), then the prediction is “Decrease”. In this case, the
number of correct predictions is 9 and the total number of predictions is 10. Hence, the
accuracy of the prediction is 9/10 = 0.90.

Table 1 The actual number of reported cases per sentinel and prediction results for influenza in
Japan from week 1 to week 12 in 2015

Week (t) Number of reported U(t) Prediction Result

cases per sentinel

1 21.46 – – –

2 33.28 21.46 Increase Correct

3 37 33.28 Increase Correct

4 39.42 37 Increase Incorrect

5 29.11 39.42 Decrease Correct

6 19.03 29.11 Decrease Correct

7 12.15 19.03 Decrease Correct

8 8.26 12.15 Decrease Correct

9 5.88 8.26 Decrease Correct

10 4.32 5.88 Decrease Correct

11 3.99 4.32 Decrease Correct

12 3.85 – – –

Accuracy 0.90 (= 9/10)
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Next, we extend our prediction to all weeks from 2006 to 2015. The time series of the
actual number of reported cases per sentinel in this period is illustrated in Fig. 2. In this
case, the accuracy of our prediction for each year is listed in Table 2.
As in the previous example, the prediction is not performed for the first week (t = 1)

and the last week (t = 52). Therefore, the total number of predictions per year is 50. The
accuracy of total predictions is 0.81 and relatively high.

Comparison

Next we compare our prediction method with an alternative prediction method based
on ARIMA (AutoRegressive Integrated Moving Average) models (see, for instance,
Kane et al. [21]). To perform the alternative prediction method, we use the function
“ARIMAProcess” implemented in Wolfram Mathematica 10.3. For each of the weeks in
2006-2015, we iteratively apply the actual data from each of the past 10 weeks (including
the current week) to predict the number of reported cases at each of the next weeks. Note
that we additionally need the data of the last 10 weeks in 2005 to perform the prediction at
the beginning of 2006. If the predicted number for the next week is greater (less) than the
reported number at the current week, then the prediction can be regarded as “Increase”
(“Decrease”). As it is well known, ARIMAmodelsARIMA(p, d, q) can be characterized by
the orders of the autoregressive part p, differencing d and moving-average process q. For
different p, d, q ∈ [0, 1] , p+d+q > 0, we obtain the prediction result as listed in Table 3.
From Table 3, we see that (p, d, q) = (1, 1, 0) is the best choice in this case. Nonetheless,

its accuracy is lower than that of our prediction method (0.79 < 0.81).

Estimation of the number of reported cases

Finally, we perform an estimation of the number of reported cases, which is consistent
with our prediction method. Roughly, we assume that the increase or decrease of newly
infected population at each week follows a linear law. That is,

I(t + 1, 0) ≈ I(t, 0) + k (I(t, 0) − U(t)) , (14)

Fig. 2 The time series of the actual number of reported cases per sentinel of influenza in Japan from 2006 to 2015
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Table 2 The accuracy of our prediction for influenza in Japan from 2006 to 2015

Year Number of correct Number of incorrect Accuracy
predictions predictions

2006 44 6 0.88

2007 42 8 0.84

2008 45 5 0.90

2009 37 13 0.74

2010 35 15 0.70

2011 42 8 0.84

2012 38 12 0.76

2013 41 9 0.82

2014 41 9 0.82

2015 39 11 0.78

Total 404 96 0.81

where k > 0 is a fitting parameter. It is easy to see that (14) is consistent with our predic-
tion method (that is, if I(t, 0) > U(t), then I(t + 1, 0) > I(t, 0) and if I(t, 0) < U(t), then
I(t+1, 0) < I(t, 0)). Using the actual data from 2005 to 2015, we perform an ongoing esti-
mation from the first week of 2006 to the last week of 2015. To minimize the mean square
error between the actual number of reported cases and our estimated values, k is chosen
to be 0.6 (see Fig. 3). In this case, the mean square error of our estimation is 6.17457371,
while that of the best-fitted ARIMA model ARIMA(1, 1, 0) is 9.469997. The estimation
result is shown in Fig. 4. In Fig. 4, it is seen that although three curves take close values,
some values estimated by ARIMA(1, 1, 0) are negative.

Discussion

Although our predictionmethod only need the data from each of the past 2 weeks (includ-
ing the current week), the accuracy of it (0.81) was higher than that of the best-fitted
ARIMA model ARIMA(1, 1, 0) (0.79) which is based on the data from each of the past 10
weeks. Moreover, our estimation method (14) for the number of newly infected popula-
tion was better than ARIMA(1, 1, 0) in the sense of mean square error. From these results,
we conjecture that focusing only on the data in the current and previous weeks can lead
to a good prediction for the spread of influenza in Japan.

Conclusions
In this study, based on the backstepping method in engineering, we developed a new
prediction method for the increase or decrease of newly infected population. Under the
assumption that the period of infectiousness is same for all infected individuals (that is,

Table 3 The accuracy of the alternative prediction based on ARIMA(p, d, q) models for influenza in
Japan from 2006 to 2015 (total 500 predictions)

(p, d, q) Number of correct Number of incorrect Accuracy

predictions predictions

(0, 0, 1) 224 276 0.45

(0, 1, 0) 244 256 0.49

(1, 0, 0) 156 344 0.31

(0, 1, 1) 382 118 0.76

(1, 0, 1) 152 348 0.30

(1, 1, 0) 393 107 0.79

(1, 1, 1) 355 145 0.71
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Fig. 3 The mean square error between the actual number of reported cases per sentinel of influenza in
Japan and the values estimated by our method (14) for 522 weeks from the first week of 2006 to the last
week of 2015 with different fitting parameter k > 0

the recovery rate is given by the Dirac delta function multiplied by a sufficiently large pos-
itive constant), the method was simplified to the comparison of the number of reported
cases at the current and previous time steps. In spite of its simplicity, its accuracy was rel-
atively high (0.81) for the spread of influenza in Japan from 2006 to 2015. Furthermore,
the simple estimation method (14) based on the linear law was proposed and its accuracy
was better in the sense of mean square error than that of the best-fitted ARIMA model
ARIMA(1, 1, 0), which is based on the data from each of the past 10 weeks. From these

Fig. 4 The time series of the actual number of reported cases per sentinel of influenza in Japan (blue) and the
values estimated by our method (green) and ARIMA(1, 1, 0) (red) for 522 weeks from the first week of 2006 to
the last week of 2015
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results, we conjectured that focusing only on the data in the current and previous weeks
can lead to a good prediction for the spread of influenza in Japan.
As future tasks, not limited to influenza in Japan, our prediction method would be

applied to various infectious diseases in various countries. The assumption that the period
of infectiousness is same for all infected individuals might have to be modified for each
case. Our model (1) was based on the SIR epidemic model in which the newly infected
individuals immediately have the infectiousness without latency. To consider more real-
istic situations, we might have to start the discussion from some different models such as
the SEIR and SIRS epidemic models.
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