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Abstract

Background: One of the major issues in current pharmaceutical development is
potential hepatotoxicity and drug-induced liver damage. This is due to the unique
metabolic processes performed in the liver to prevent accumulation of a wide range
of chemicals in the blood. Recently, we developed a physiologically-based lattice
model to address the transport and metabolism of drugs in the liver lobule (liver
functional unit).

Method: In this paper, we extend our idealized model to consider structural and
spatial variability in two and three dimensions. We introduce a hexagonal-based
model with one input (portal vein) and six outputs (hepatic veins) to represent a
typical liver lobule. To capture even more realistic structures, we implement a novel
sequential diffusion-limited aggregation (DLA) method to construct a morphological
sinusoid network in the lobule. A 3D model constructed with stacks of multiple 2D
sinusoid realizations is explored to study the effects of 3D structural variations. The
role of liver zonation on drug metabolism in the lobule is also addressed, based on
flow-based predicted steady-state O2 profiles used as a zonation indicator.

Results: With this model, we analyze predicted drug concentration levels observed
exiting the lobule with their detailed distribution inside the lobule, and compare
with our earlier idealized models. In 2D, due to randomness of the sinusoidal
structure, individual hepatic veins respond differently (i.e. at different times) to
injected drug. In 3D, however, the variation of response to the injected drug is
observed to be less extreme. Also, the production curves show more diffusive
behavior in 3D than in 2D.

Conclusion: Although, the individual producing ports respond differently, the
average lobule production summed over all hepatic veins is more diffuse. Thus the
net effect of all these variations makes the overall response smoother. We also show
that, in 3D, the effect of zonation on drug production characteristics appears quite
small. Our new biophysical structural analysis of a physiologically-based 3D lobule
can therefore form the basis for a quantitative assessment of liver function and
performance both in health and disease
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Background
The liver is a complex organ that removes chemicals, including drugs, from the blood

through metabolic processes. When such liver detoxification processes are incomplete

or overwhelmed, liver damage can result leading to liver failure. Drug access to hepato-

cytes is governed by transport processes in the well-vascularized liver tissue, and so

structural variability can impact such transport. Therefore, a quantitative understanding

of drug distribution and metabolism in the liver is essential for the ability to predict

both liver performance and damage. We envisage a future generation of algorithms for

anatomically- and physiologically-based liver models that can be then used for the pre-

diction of optimal doses and scheduling of various drugs prior to clinical administra-

tion. This could be especially useful for patients with liver diseases such as

hepatocellular carcinoma or cirrhosis.

Several investigators have recently explored computational fluid models of liver lob-

ule function. Ierapetritou et al. [1] give a comprehensive general overview of the model-

ling approaches and issues that arose up to 2009. More particularly, Rani et al. [2]

developed a detailed computational dynamics model of a small portion of a liver lobule,

focusing on the non-Newtonian characteristics of blood. They considered the flow

along one sinusoid with exit fenestrations fed by a portal vein and hepatic artery seg-

ments and exiting via a hepatic vein segment. The contributions of portal vein (PV)

versus hepatic artery (HA) flows to the overall pressure drop and velocity profiles were

detailed, including regions of Eddie flows and high strain rates near the exit fenestra-

tions. Steady state flows were achieved after 5 × 10−5 s.

Yan et al. [3] developed a physiologically-based, multi-agent model of liver lobule

performance. They used a Monte Carlo selection method to determine properties

of the sinusoidal graph structure, convective-dispersive flow and metabolic interac-

tions. This allowed inclusion of lobule zonation effects plus the metabolic influ-

ences of chemical molecular weight, octanol partition coefficients and protein

binding to predicted drug-liver lobule interactions. They matched lobule outflow

characteristics of 4 cationic drugs (atenolol, antipyrine, labetalol, and diltiazem),

using sucrose as a base flow chemical. Wambaugh and Shah [4] compared the role

of various lobule (sinusoidal) morphologies on drug propagation again using an

agent-based simulation approach. While demonstrating that their model can repro-

duce traditional coarse averaging results (well-mixed and parallel tubes) under

some flow regimes, they emphasized the utility of their random statistical approach

for rapidly metabolized chemicals.

Hoehme et al. [5] employed a combined experimental and computational study of

lobule structural restoration after CCl4 damage over several days as a protocol for liver

regeneration. They used agent-based representations of both hepatocytes and sinusoids

in their computational model and demonstrated that the regeneration process is char-

acterized by a hepatocyte-sinusoid alignment process to correctly restore liver micro-

architecture. Schliess et al. [6] extended this approach to consider ammonia

detoxification during liver damage and regeneration. Here they first proposed a simple

metabolic model considering ammonia, urea, and glutamine components utilizing three

mass balance ordinary differential equations (ODEs) for chemical reactions and two

compartments (periportal and perivenal) such that urea generation is maximized in the

periportal region while glutamine regeneration occurs perivenally. The resulting
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concentrations were interpolated on their spatial-temporal grid as the sizes of the dam-

aged zones change over the regeneration process. They also considered a multi-lobule

pattern to reduce boundary effects. Drasdo et al. [7] summarized both modeling ap-

proaches in a review article.

In previous papers (papers I [8] and II [9]), we proposed a physiologically-based

lattice model to study the transport and metabolism of drugs in the liver lobule. In

these studies, we constructed a simple regular square lattice model that represents

a portion of a liver lobule, see Fig. 1a and b, to explore the dynamics of competing

convective, diffusive, and reactive processes acting on an injected chemotherapeutic

drug paclitaxel. Structural and spatial variations and liver lobule zonation were also

considered and their impacts on the hepatic drug metabolism were discussed. Such

simulations had the useful consequence of interpreting drug concentration levels

found exiting the lobule in terms of their detailed spatial distribution within the

lobule, caused by competing processes. This analysis forms the basis, and a point

of contrast, to the drug distributions obtained when some of these basic assump-

tions on lobule structure are relaxed.

In this paper, we extend our biophysical structural analysis to a full lobule

situation, a hexagonal based model with one central blood in-flow (portal vein)

and six corner located out-flows (hepatic veins), see Fig. 1. We also introduce the

sinusoid network using a sequential diffusion-limited aggregation (DLA) algorithm

(as presented and discussed below, Fig. 3) to gain insight on a more realistic

resulting morphological sinusoid structure, see Fig. 1c. In a nutshell, sequential

means a series of DLA generated pattern steps (5 steps) to generate the desired si-

nusoid structure variations in 2D. Thereafter we repeat this algorithm for various

layers to generate a representative 3D lobule pattern. As a result, individual sinus-

oid layers, although generated by the same DLA algorithm, are not identical

Fig. 1 Various flow network structures. a Schematic diagram of a cross section of hepatic parenchyma
consisting hexagonal lobules, portal and hepatic veins. The lobule contains sinusoids and liver cells
(hepatocytes). The segment represents a typical area studied in our previous papers [8, 9]. b Homogeneous
lattice (segmented area) with high porosity bands (in red) representing sinusoids and lower porosity
regions (in blue) representing tissue containing hepatocytes, as in our previous papers [8, 9]. c 2D lobule
lattice with sinusoids generated via a diffusion limited aggregation algorithm, this paper. d 3D lobule
lattice, this paper
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but exhibit some variability as observed in real lobules. A sensitivity analysis is

conducted by observing drug concentration levels exiting the lobule with their pre-

dicted detail distribution inside the lobule.

The liver lobule functional unit

It is commonly accepted that a single lobule serves as the functional unit of the

liver, the smallest structural unit of the liver with ability to perform all hepatic

functionalities [10]. The classic lobule is a hexagonal cylinder, centered around a

hepatic venule and with portal tracts situated at the corners. The portal lobule

has a similar shape but is centered about a portal tract with the hepatic venules

at the periphery [11]. We shall invoke this second point of view as the basis for

our model development.

Even among the approximately 1.5 million lobules (assuming a liver size of

1500 cm3 and a lobule size of 1 mm3) that make up the human liver, structural

variability of lobule units is the rule. Teutsch and colleagues [12] illustrate this

specific microarchitecture variability and diseased states can be expected to add

additional variability. Here we will attempt to quantify the consequences of such

variability via our computational model.

Methods
2D hexagonal lobule construction

The flow equations describing reactive-convective-diffusive flow in the liver lobule re-

main unchanged from our first two papers. Figure 1a and b illustrate the network

structure of our base case model discussed in papers I [8] and II [9] (which uses a regu-

lar sinusoid pattern). Figure 1c represents our model that we study here, which consists

of a 2D square lattice clipped by hexagonal boundary with DLA constructed sinusoid

network. Figure 1d demonstrates a 3D extension of the lobule model that will be

discussed later.

In this paper, MATLAB [13] has been used to code and generate sinusoid network

using a novel sequential DLA algorithm. We use a standard DLA algorithm that ran-

domly clusters a specified number of particles (here Npar) with particle size (dp × dp in

a pixel2). Figure 2a and b show result of DLA runs for Npar = 14,000 and dp = 1 pixel

and for Npar = 7000 and dp = 2 pixel, respectively.

In order to create a hexagonal lobule comparable to a realistic liver lobule, five steps

are taken:

i) A zero Mdim ×Mdim matrix (field) has been created and the DLA algorithm

has been called to create a DLA pattern with specified Npar and dp. A

particle, valued 1, has been located at a random position in the field by the

DLA algorithm and then performed a random walk (with a desired step size,

here denoted by dp) toward the center of the field. The newer particle will

do the same until it hits another (older) particle, sticks to it and stops. This

will continue for all Npar = 9500 particles. See Fig. 3a. Here Mdim = 256 and

dp = 1.

ii) As shown in Fig. 3a, the central region is very crowded. We overwrite the central

region (here we chose half-the original field) using the DLA algorithm and with
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smaller number of zero-valued particles (blue dots). Here we use Ncen1_par = 1200,

Mdim = 128 and dp = 1. See Fig. 3b.
iii)To fill the central region with sinusoids again (red dots), the DLA algorithm will be

called for the third time with fewer particles, i.e. Ncen2_par = 800. Here Mdim = 128

and dp = 2. See Fig. 3c.

iv) In this step, we determine the six corners of the hexagon to create the out-flowing

wells at these locations. Again the DLA algorithm will be used to create a DLA

pattern around each corner. See Fig. 3d. Here we use the domain size of 1/3 of the

original domain, i.e. Mdim/3, and fewer particles, Ncor_par = 500. Here dp = 1.

v) At the final stage, any point outside the bounding hexagon is removed. Figure 3e

shows the final result if the DLA hexagonal lobule. As shown, hepatocytes are blue

islands that are encompassed by red sinusoids.

This sinusoid generation algorithm is similar in spirit but not in details to that

employed by Wambaugh and Shah [14]. They have used the term “sinusoid morph-

ology” to characterize these investigations, which we will also employ. In recent work,

Hoehme et al. [15] captured realistic lobule sinusoid patterns from image analysis of

confocal microscopy of liver tissue. To check whether our simulated sinusoid pattern is

Fig. 2 Diffusion aggregated runs. a Npar = 14,000 and dp = 1 pixel, b Npar = 7000 and dp =2 pixel. Here blue
dots have value of zero representing no particle is on that site (to be used as hepatocytes) and red dots
have value of 1 representing a particle is on the site (to be used as sinusoids)

Fig. 3 Various steps to create a DLA hexagonal lobule. a Main DLA pattern with Npar = 9500 particles and
size dp = 1 on a domain Mdim = 256, b de-crowding the central region using a DLA pattern, c filling the
central region again with a DLA pattern, d creating corner wells using a DLA pattern, e eliminating exterior
points of the hexagon
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comparable with their result, we perform a population density analysis for several 2D

simulated and real lobules (Wisk S, Rezania V: A comparison between real and DLA

simulated liver lobules using a population density analysis, Submitted). We calculated

the ratio of the area covered by sinusoids to the total area of the lobule for both simu-

lated and real 2D lobule images to optimize values of Npar and dp for corresponding

Mdim. Based on these calculations, we find Npar ≈ 37 Mdim (~9500) and dp = 1 will pro-

duce comparable results (~45 % sinusoid area/total 2D area). A comparison of our

Fig. 3d with their results demonstrates that our DLA algorithm with the chosen param-

eters generates equally physiologically reasonable sinusoid morphology patterns (in

particular, see their Fig. 1d or further details in their SI Appendix, their Fig. 3d).

Extension to a 3D lobule structure

In order to generate an even more realistic survey, we next study a 3-dimensional

lobule. Again our morphological sinusoid generation algorithm is similar in spirit

to that employed by Wambaugh and Shah [14] in their 3D models.

The 3D DLA structure is essentially constructed by stacking several 2D DLA

structures as follows:

i) A vertical dimension Mz-dim will be specified.

ii) Starting from the very bottom layer that has a 2D DLA structure, we skip Mskip

layers to introduce the next layer with a 2D DLA structure (a DLA layer), see

Fig. 4a. This procedure will be repeated to reach to the very top layer which again

is a DLA layer. Here, each DLA layer represents the sinusoidal network. Two of

these layers encompass hepatocyte cells (the skipped layers). The value of Mskip is

chosen based on the average thickness size of a hepatocyte cell.

iii)Then, two DLA layers vertically will be connected at several random locations to

approximate the shape hepatocyte cells, see Fig. 4b.

Fig. 4 Three-Dimensional DLA hexagonal lobule for Mz-dim = 97 and Mskip = 2. a A 2D DLA (sinusoid) layer, b
a skipped (hepatocyte) layer, c 3D cutaway view d 3D clipped view
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iv) The center and the six corners of the hexagon in all layers will be connected to

represent arterial and portal veins.

Since the skipped layers represent the hepatocyte tissue, the value of Mskip will be

determined based on the typical volume of a lobule and hepatocytes. The typical vol-

ume of a human liver lobule is somewhat less than 1 mm3 [12]. Furthermore, a hepato-

cyte has a diameter of 12 – 24 μm and thickness of 25 μm in average and mean

sinusoid thickness is about 5 – 7 μm. Here, we chose a sinusoidal cell as a cube with

dimension of 6 μm and a hepatocyte cell as rectangular cube with dimensions 6 μm

and 12 μm, with thickness of 6 μm in the DLA layers and 12 μm in the skipped layers,

respectively. The area of a hexagon with diameter of d is given by S ¼ 3
ffiffiffi
3

p
d2=8.

In our case, d = 256 × 6 μm= 1536 μm that leads to S = 1.53 × 106 μm2. The 3D lobule

is then composed by stacking up 33 sinusoidal layers and 64 tissue layers (Mz-dim = 97)

that gives an approximate model volume of 1.5 mm3. Here, every two tissue layers are

sandwiched by two sinusoidal layers (Mskip = 2). This choice of tissue/sinusoid grid

thickness represents a compromise between simulation runtime speed and numerical

discretization error.

Figure 4 shows the 3D DLA hexagonal lobule for Mz-dim = 97 and Mskip = 2. Figure 4a

demonstrates a 2D DLA layer representing a sinusoidal layer. Figure 4b shows a hep-

atocyte layer. The red points connect all hepatocyte layers between two DLA layers.

These points approximately determine the boundary of the hepatocyte cells. To con-

struct the third dimension, a DLA layer is created for the bottom, then two hepatocyte

layers (Mskip = 2), and then a new DLA layer will be produced. The procedure repeats

over the whole z-dimension. Figures 4c and d show two different 3D views.

Flow calculation methods

Convection-diffusion-reaction flow calculations are performed on the generated models

utilizing the STARS advanced process simulator [16] as described in our earlier papers.

Here we have chosen paclitaxel (PAC) [17] as our example drug, as it is one of the

most widely used chemotherapy agents, especially active against many human solid tu-

mors [18] (breast cancer, ovarian cancer, lung cancer, etc). Table 1 summarizes our base

Table 1 Base case flow and metabolism parameters

Parameter Characteristic (SI) Unit STARS Unit

Sinusoid Porosity ϕsin 0.7854 0.7854

Sinusoid Permeability Ksin 1.125 μm2 1.140 Darcya

Sinusoid Effective Diffusion Dsin 4.2 × 10−10 m2/s 2.5 × 10−4 cm2/min

Tissue Porosity ϕtis 0.2382 0.2382

Tissue Permeability Ktis 7.35 × 10−2 μm2 7.45 × 10−2 Darcy

Tissue Effective Diffusion Dtis 4.2 × 10−11 m2/s 2.5 × 10−5 cm2/min

Maximum Rate vmax
b 0.06 μM/min 1.08 × 10−9 mole fraction/min

Half Saturation Constant Km
b 10.0 μM 1.8 × 10−7 mole fraction

Linear Rate vmax/Km
b 6.0 × 10−3 min−1 6.0 × 10−3 min−1

Blood Viscosity μ 3.5 × 10−3 Pa-sec 3.5 cpoise
a 1 Darcy = 0.9869 μm2 in engineering permeability units
b PAC kinetic elimination Michaelis-Menten parameters converted from Vaclavikova et al. [17], their Table 4
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case flow and metabolic parameters for PAC (from Vaclavikova et al. [19]) used in these

calculations for a representative human lobule. Cytochrome P450 CYP2C8 or CYP3A4

[20] are the enzymes active in PAC metabolism. Due to the non-regular areal sinusoidal

structures generated here, however, it was found necessary to utilize a higher order

discretization method (“areal 9-point”) to produce the expected smooth profiles on

these grids. A discussion of this (quite standard) discretization method can be found in

the STARS manual.

Results and Discussion
2D drug distribution – comparison to our earlier studies

Similar to previous studies, flow is induced in the lobule lattice by applying a pressure

difference across the central inlet and six corner outlet points. With the chosen lobule

flow parameters for porosity, permeability, and blood viscosity, the steady flow rate is

4.491× 10−6 cm3/min with (0.4077, 0.3011, 0.1950, 0.9682, 0.2251, 2.394) × 10−6 cm3/

min for ports A to F, respectively, as illustrated in Fig. 5. (For steady flows, the inflow

rate equals the total outflow rate.) It is clear that ports D and F have highest outflow

among the others. This is due to the random nature of the DLA simulation for this

realization.

Figure 6 demonstrates the steady state velocity profile throughout the lobule lattice,

illustrating both the diverging/converging nature of the flow near the inlet and outlet

ports (i.e. injector and producers, respectively), as well as the orders of magnitude dif-

ference of the flows in the sinusoids and tissues, respectively. (This plot uses a logarith-

mic colour scale axis). Ports D and F show highest velocities among the ports.

Blood with a relative composition of 1 microgram PAC (1.8 × 10−8 mole fraction) is

infused into the lobule through the central inlet. Assuming nonreactive hepatocytes,

the time required to traverse the lattice is approximately 1 min or less as demonstrated

in Fig. 7. The fastest drug propagation is through ports D and F for this realization.

Similar to our Paper I [8], this production profile is convective flow dominated as the

addition of diffusion minimally alters the production profile (figure not shown).

As indicated in our Paper II [9] concerning variable lattices models with multiple re-

alizations, flow induced by the application of a fixed pressure drop across a lobule

model can be expected to vary significantly for each model realization. This will in turn

Fig. 5 Injected flow (PAC). Steady state flow across the 2D lobule
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impact on the propagation and production characteristics of both non-reactive and me-

tabolized drugs. Thus multiple realizations of the morphological sinusoidal network

generated by our DLA algorithm here induce a similar variability in flow and drug pro-

duction behavior. Table 2 summarizes the flow variability for 16 such realizations. In

what follows, we will focus on the analysis of drug behavior for one such realization.

The spatial progression of the PAC concentration on the lobule lattice without and

with diffusion is demonstrated in Figs. 8 and 9, respectively. The diffusion constants for

PAC and PAC-OH are estimated as 2.5 × 10−4 cm2/min in sinusoid and 2.5 × 10−5 cm2/min

in tissue, respectively. In the absence of diffusion, only a small “pressure-difference-driven

(convective)” transfer from sinusoids to tissue through the space of Disse is occurring. See

our Paper I [8] for details.

Figures 8 and 9 show the increasing levels of injected drug from 0.01 min to 5 min

(0.5 min in case with diffusion). As shown, by 0.01 min, PAC almost reaches the out-

going port F of the lobule.

In case with no diffusion, it takes almost 5 min to fill the lobule (Fig. 8), while PAC

completely covers the lattice after 0.5 min when diffusion is on as demonstrated in

Additional file 1: Figure S1.

Fig. 6 Steady state velocity profile across the 2D lobule. Color bar is in cm/min

Fig. 7 Non-reactive PAC drug propagation across the lobule without diffusion effects
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Reactive flows in 2D

Now we consider the effects of PAC drug metabolism by hepatocytes. Here the base

case reaction parameters of Table 3 of Paper I [8] are employed, and the same injected

PAC concentration (1.8 × 10−8 mole fraction) is considered. With the employed reac-

tion half saturation constant value of 1.8 × 10−7 mole fraction, this injection level im-

plies the Michaelis-Menten model reduces to an almost linear reaction equation.

Table 2 Flow rate variability of multiple 2D DLA sinusoid morphologies

Layer no. SS flow rate (×10−5 cm3/min)

Lyr1 1.824

Lyr4 1.366

Lyr7 1.829

Lyr10 0.776

Lyr13 1.781

Lyr16 1.716

Lyr19 1.399

Lyr22 0.889

Lyr25 1.555

Lyr28 1.225

Lyr31 1.684

Lyr34 1.416

Lyr37 1.251

Lyr40 1.044

Lyr43 1.421

Lyr46 1.983

Average 1.447

STDEV 0.3511

Fig. 8 Non-reactive PAC profiles across the lobule without diffusion. a PAC at 0.01 min, b PAC at 0.1 min, c
PAC at 0.2 min, d PAC at 5 min. Color bar is in mole fraction
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Figure 9 illustrates injected drug and produced drug and metabolite production for

this case. The reaction rate is 6 × 10−3 min−1. Again it is emphasized that both PAC

and PAC-OH have assumed equal diffusive flow contributions, as these are compo-

nents of very similar size. Essentially at this reaction rate, all injected PAC is converted

to metabolite by the lobule hepatocytes. The production profile of PAC-OH here is

similar to the production profile of PAC in the non-reaction case, as shown in Fig. 7,

for most of the ports. That is, the reactive conversion of PAC to PAC-OH occurs rea-

sonably quickly. However, for the two ports with higher flows (ports D and F), less con-

version of PAC to PAC-OH is seen to occur.

Figure 10 shows the PAC and PAC-OH profiles across the lobule lattice at 0.01 min,

0.10 min, and 0.20 min, respectively. The PAC concentrations in the sinusoids and the

PAC-OH concentrations in the tissue are equivalent to the PAC concentrations in both

sinusoids and tissue for the non-reacted case (Fig. 8). Note that after 0.1 min there is

no change in PAC spatial distribution as it converts to PAC-OH before propagating fur-

ther. Figure 10 also shows clearly there is an inlet distance over which the reaction con-

version time is not fast enough to convert the injected PAC.

Fig. 9 Reactive (6 × 10−6 min−1) PAC (solid lines) and PAC-OH (dashed lines) drug propagation across the
lobule, without diffusion effects and base case metabolism

Fig. 10 Reactive (6 × 10−6 min−1) PAC and PAC-OH profiles across the lobule without diffusion effects and
base case metabolism. a PAC at 0.01 min, b PAC at 0.10 min, c PAC at 0.20 min, d PAC-OH at 0.01 min, e
PAC-OH at 0.10 min, f PAC-OH at 0.20 min. Color bar is in mole fraction
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Diffusion, however, has greater impacts on the reactive cases. Figure 11 compares

the overall PAC to PAC-OH conversion for two reactive cases with reaction rate

6 × 10−6 min−1 and 6 × 10−3 min−1, with and without diffusion. (The latter rate is our

base case which has the higher conversion rate.) As shown, at each rate a greater con-

centration of PAC-OH is generated when diffusion is on, as this provides an additional

mechanism to bring PAC molecules to the reactive hepatocyte sites.

3D drug distribution – extension of behaviors

As stated above, the 3-dimensional lobule is constructed by stacking up 33 sinusoidal

layers and 64 hepatocyte layers (Mz-dim = 97) with the approximate volume of 1.5 mm3.

The sinusoidal layers have similar structures (randomly generated though) as the 2D

DLA lobule structure discussed in previous section. The hepatocyte layers are gener-

ated by randomly selected points to mimic hepatocyte cell distribution in a lobule. All

layers are connected through the central region (the portal vein) as well as six corners

of the hexagon (hepatic veins). In this section we are interested in studying the effect of

the third dimension as the blood will be injected from the central vein in all layers

simultaneously.

In 3D, the steady flow rate across the full lobule is 3.00× 10−3 cm3/min as shown in

Fig. 12a, as all volumes have been upscaled from our 2D slice models. As seen in

Fig. 12b and c, in this realization of the 3D lobule, ports A and F have highest outflow

(they are essentially superimposed), then ports B and D (they are essentially superim-

posed), with C and E having the lowest outflow rates. This is again due to the random

nature of the DLA simulation for this realization. However the port-to-port variation in

Fig. 11 Reactive PAC-OH drug propagation across the lobule, with and without diffusion effects. For two
reaction kinetics 6 × 10−6 min−1 (curves with circle) and 6 × 10−3 min−1

Fig. 12 Non-reactive PAC drug propagation across the lobule in 3D. a steady state flows across the 3D
lobule (b) PAC propagation without and (c) PAC propagation with diffusion effects
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flows is significantly less extreme in 3D, as the third dimension provides additional

connecting flow paths to smooth the overall flow pattern.

Figure 13 gives a spatial view (clipped–view) of the increasing levels of the injected

PAC drug from 0.01 min to 1 min across the lobule without diffusion and no reaction.

The drug first clearly follows the high flow paths provided by the morphological sinus-

oid network, and only slowly reaches into the tissue portions of the lobule. A different

spatial view (block–view) is also demonstrated in Additional file 2: Figure S5.

The same two views of non-reactive PAC injection with diffusion added are shown in

Additional file 3: Figure S2 and Additional file 4: Figure S3. In those figures the

sinusoid-tissue transfer rate is much more rapid and PAC drug propagates in a more

uniform fashion as it enters the lobule. Clearly, diffusion has a very significant effect on

the drug propagation details although at later times both cases result in a uniform drug

coverage of the lobule.

Reactive flows in 3D

Now we consider the effects of PAC drug metabolism by hepatocytes across the 3D

lobule. Similar to the 2D case, the same injected PAC concentration (1.8 × 10−8 mole

fraction) is considered.

Figure 14 illustrates injected drug and produced drug and metabolite production for

this case without and with diffusion effects. The reaction rate is 6 × 10−3 min−1. As

before, both PAC and PAC-OH have assumed equal diffusive flow contributions.

Figures 14a and b demonstrate the levels of PAC and PAC-OH, respectively, without

including diffusion effects. As shown, both PAC and PAC-OH have similar concentra-

tions after 1 min in all outlets (i.e. approximately half of injected PAC is metabolized to

PAC-OH). The diffusion, however, alters the latter behavior significantly as depicted in

Fig. 14c and d. All the PAC converted to PAC-OH almost immediately. The variability

Fig. 13 Non-reactive PAC profiles across the lobule without diffusion in 3D – clipped view. a PAC at
0.01 min, b PAC at 0.05 min, c PAC at 0.1 min, d PAC at 1 min. Color bar is in mole fraction
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of the produced PAC-OH concentration per port for this reactive case with diffusion

mirrors the variability of the produced PAC per port for the nonreactive case (Fig. 11,

with or without diffusion).

Figure 15 shows the spatial clipped-view of reactive PAC and PAC-OH distributions

in the 3D lobule at selected times without diffusion effects and with the base case me-

tabolism rate. As time progresses, more PAC is metabolized to PAC-OH but the meta-

bolic rate is low enough that both PAC and PAC-OH distribute throughout the lobule.

This distribution is not uniform throughout the lobule however. For example, there re-

mains an inlet zone with a negligible amount of PAC-OH at all times. The spatial

block-view is also demonstrated in Additional file 5: Figure S6.

As shown in Additional file 6: Figure S4, with diffusion but still utilizing a base case

metabolic rate, the in-situ conversion of PAC to PAC-OH is much more rapid and uni-

form, and results in an almost total drug conversion to PAC-OH throughout the 3D

lobule. There remains only a small inlet region of unconverted PAC.

Fig. 15 Reactive (6 × 10−3 min−1) PAC and PAC-OH profiles across the lobule without diffusion effects and
base case metabolism in 3D – clipped view. a PAC at 0.01 min, b PAC at 0.05 min, c PAC at 0.1 min, d PAC
at 1 min, e PAC-OH at 0.01 min, f PAC-OH at 0.05 min, g PAC-OH at 0.10 min, h PAC-OH at 1 min. Color bar
is in mole fraction

Fig. 14 Reactive (6 × 10−3 min−1) PAC and PAC-OH drug propagation across the lobule in 3D. a PAC
without diffusion, b PAC-OH without diffusion, c PAC with diffusion, d PAC-OH with diffusion
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As in the 2D cases presented earlier, diffusion has greater impact on drug distribution

for the reactive cases. Similar behaviors can be observed for other reaction rates

(e.g. reaction rate 6 × 10−1 min−1) with and without diffusion (not shown).

3D drug distribution with zonation

Zonation is a well-known feature of many metabolic processes in the liver lobule [15],

some processes are up-regulated in the periportal region, while others are up-regulated

in the perivenal region. Here we consider zonation of drug metabolizing enzymes

(in particular cytochrome P450 – CYP2C8), such that higher CYP levels are found

near the perivenal region.

Zonation has been attributed primarily to a non-uniform distribution of O2 across

the lobule [16]. Here we will utilize this experimental observation to predict relative

CYP levels based on a calculated O2 distribution. Appendix A presents details of the

O2 convective-diffusive-reactive flow problem employed to generate the zoned-CYP

distribution.

The resultant initial non-homogeneous distribution of CYP enzymes is imported

into the PAC reaction model in a manner analogous to that employed in our earlier ideal-

ized model of zonation [9]. Here we consider enhanced perivenal enzyme expression (the

“reversed” case of reference [9]) as a reference, where CYP expression is active primarily

near the lobule outlet zone. In our present work, two scenarios are envisioned: (a) a CYP

distribution generated from “normal” levels of O2 injection, and (b) that generated from a

“low concentration” O2 injection level. The result is shown in Figures A3 and A4, which

can be contrasted to Additional file 3: Figure S2b of our earlier idealized model [9]. These

distributions are used to modify the PAC metabolic rates non-homogeneously in a man-

ner similar to our earlier paper.

Figure 16 compares reactive PAC and PAC-OH production profiles with no diffusion

contributions to the flow. Note that both PAC and PAC-OH are produced here as in

our ideal treatment of zonation found in Paper II [9]. In Fig. 16 only ports A and C are

shown as their productions show the largest variation among all six production ports.

Zonation (either averaged or extreme) is seen to have a small effect on the production

behavior compared to the base case (no zonation) behavior, with the low concentration

zonation profiles essentially identical to the no zonation case (see the almost uniform

CYP profile generated for this case, Figure A3). Finally, with the same (reversed) zon-

ation patterns, but assuming additional diffusive contributions to the flow, mostly only

PACOH is produced, and no differences in production behavior are seen with or

Fig. 16 Reactive (6 × 10−3 min−1) PAC and PAC-OH profiles across the lobule without diffusion effects and
normal versus low concentration–zonation metabolism (a) PAC production (b) PAC-OH production
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without zonation (not shown). This is consistent with our ideal treatment of zonation de-

scribed in Paper II [9].

Spatial plots of PAC and PACOH distributions at various time points for the no diffu-

sion cases with zonation show only subtle differences from the base case no-zonation pro-

files of Fig. 16 and thus are not shown explicitly. This is perhaps not surprising for the

low O2 concentration generation case with a very uniform zoned CYP distribution, but is

more puzzling for the normal O2 concentration generated case. We believe this is a result

of the high PAC to PACOH conversion rate chosen as our example for this paper coupled

to the downstream distribution of CYP. This example appears to be quite robust to details

of the exact CYP zonation pattern.

To further confirm these comments, we have rerun the models with a lower PAC me-

tabolism rate. Figure 17 compares reactive PAC and PAC-OH production profiles with no

diffusion contributions to the flow at these lower reaction rates (6 × 10−6 min−1). Again

only ports A and C are shown. For these cases, the low concentration zonation produc-

tion is again essentially identical to the no zonation case, but the normal zonation produc-

tion differs more substantially from the other two cases. This behaviour is reflected in the

spatial distributions of PAC and PACOH at various time points as well. Figure 18 com-

pares the final (at 1 min) spatial distributions for PAC and PACOH for the normal and

low-oxygen concentration generated CYP distributions. (The no zonation case is essen-

tially identical to the latter case plots, not shown). The normal oxygen generated CYP dis-

tribution results in less PACOH conversion.

Conclusions
Generalized conclusions relative to our earlier work

The increased morphological variability of the sinusoidal networks generated in this

work allows various generalized observations relative to our earlier work on idealized

lattice models:

(a) In 2D due to randomness of the sinusoid patterns, individual producing ports

(hepatic veins) respond differently (i.e. at different times) to injected drug. This is

similar to the randomness we generated via multiple realizations to our individual

well pair models with our previous idealized modelling work. If we sum the

individual hepatic vein responses we get an overall 2D lobule drug response (see

Fig. 5), the net result of which is an increased spreading (effective diffusion) of the

average produced profile.

Fig. 17 Reactive (6 × 10−6 min−1) PAC and PAC-OH profiles across the lobule without diffusion effects and
normal versus low concentration–zonation metabolism (a) PAC production (b) PAC-OH production
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(b)Multiple 2D morphological sinusoid realizations can be explored to ascertain

the effects of structural variations, as indicated in Table 2. Additionally a 3D

model viewed as interacting stacks of 2D sinusoid realizations represents an

enhanced method to consider such variability.

(c) In 3D, because the individual producing ports are completed throughout the

vertical extent of the lobule, the variation of response of individual producing

ports is seen to be less extreme, although the production curves themselves are

more diffuse in 3D than in 2D. Furthermore, the average lobule production

summed over all hepatic veins is also more diffuse. Thus the net effect of all

these variations is to make the overall response more smooth (i.e. more robust

to individual variations).

(d)When the effect of drug processing (CYP) zonation is included, the effect on

drug production characteristics appears quite small and only when the further

(smoothing) effects of diffusion are ignored. However, within a lobule we expect

there are conditions under which there can be noticeable differences in drug

distribution due to zonation. These observations are consistent with our earlier

idealized models of zonation. Finally we should emphasize that this treatment of

zonation of drug metabolism can be readily extended to other metabolic zonation

phenomena occurring in the liver, such as carbohydrate metabolism [21], nitrogen

metabolism [22], etc. O2 distribution is implicated as a fundamental cause of such

zonation in all cases.

Follow-up work and future directions

Since various liver diseases can be thought to produce structural variations in the

lobule, our analysis also gives insight into the role of disease on liver function and

Fig. 18 Reactive (6 × 10−6 min−1) PAC and PAC-OH profiles at 1 min across the lobule without diffusion
effects and normal versus low concentration-zonation metabolism in 3D – clipped view. a PAC
(normal concentration), b PAC-OH (normal concentration), c PAC (low concentration), dPAC-OH
(low concentration). Color bar is in mole fraction
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performance. In our previous work on variable lattice lobule models [9], we utilized

random sinusoid permeability models and percolation concepts to capture some of the

structural effects of hepatitis and cirrhosis. We next plan on extending such analysis to

our more physiologically realistic 3D lobule model.

It should be mentioned that there exist other computer-generated liver models that

attempt to provide a realistic representation of the liver vasculature for blood flow and

metabolic reaction simulations. Schwan et al. [23] used an image of a mouse liver pro-

duced with a CT scanner. Based on this image data, they reconstructed the structure of

the fine branches of the liver vessel system. The liver was then split into 50,000 small

blocks. The results of the simulation show that blood flow and metabolic reactions

can be tracked in detail on the computer monitor. In a follow-up publication [24] a

multi-scale model was generated that links together four scales of modeling. Thus the

focus of these authors is the full liver scale (organ model) and not the lobule scale (tissue

level) which is the subject of our current paper. In addition, we have also recently devel-

oped a spatial model of the full liver (White D, Rezania V, Coombe D, Tuszynski J: Build-

ing a 3D virtual liver: a preliminary example – methods for describing vascular

generation, blood flow calculations, and hepatic clearance, submitted) utilizing a

computational algorithm for generating vasculature and where we have considered

upscaling from our lobule model and some comparisons with the work of Schwen

et al. [23]. Eventually, our overall modeling approach is intended to provide input

data regarding liver metabolism for multi-compartment physiologically-based phar-

macokinetic models such as those reviewed by Jones et al. [25]. This could lead to

more accurate and individualized predictions for the pharmacokinetic analyses of

drugs and drug combinations. It is also of interest to explore the possibility of

fractal vascular structures and their consequences on the scaling laws in liver func-

tion as reviewed extensively by Pang et al. [26].

Our focus will continue to be on the structural and metabolic changes induced

by liver disease and cancer, and its remediation via drug treatments. More particu-

larly, we will focus on drug combination therapy for cancer (e.g. paclitaxel with

doxorubicin) [27].

Appendix A
Reactive O2 distribution in 3D – indicator of zonation

Here we utilize known O2 flow characteristics to predict steady state O2 distributions

across our mathematically constructed 3D liver lobule. The O2 reactive flow character-

istics are taken from Davidson et al. [28], and are summarized in Table 3. Davidson

et al. [29] utilized this data to analyze O2 behaviour in their bioartificial liver. Here we

will employ the same data to predict O2 distribution across our 3D lobule model.

The O2 metabolic reaction used in our model is assumed to be

O2 þ HEP→1:778 H2O þ HEP

This approach preserves mass and assumes a non-specific metabolic consumption of

O2 by hepatocytes without detailing explicit cellular metabolic products (since water is

a universal component in our model). Reactions occur only in tissue areas (hepatocytes

HEP act as “catalysts” for this reaction).
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With these parameters, the flow of O2 across the lobule is calculated in a manner simi-

lar to that of reactive PAC. O2 levels are due to the relative contribution of convection,

diffusion and hepatocyte O2 consumption. Note, however, the flow pattern of O2 can be

expected to be quite different from that of PAC, both because of its reaction rate but also

because of its diffusion coefficient, as this is a very small molecule with much higher diffu-

sion than PAC. Here we establish a steady state O2 distribution throughout the 3D lobule

by observing the long time O2 distribution.

Two cases are considered: (a) “normal” O2 injection levels, and (b) “low concentration”

O2 injection levels to represent some nonspecific illness condition, as listed in Table 3.

[(a) 90 mm Hg = 3.37 × 10-6 mole fraction; (b) 60 mm Hg = 2.25 × 10−6 mole fraction].

Figures 19 and 20 illustrate the evolution of O2 profiles across the lobule to steady state

for these two cases, respectively. Although there are observable concentration differences

between the two cases throughout the lobule, the major differences occur near the injec-

tion site.

Rescaled versions of these distributions are used to define corresponding predicted

CYP distributions. The actual form of this rescaling is

CYP½ � ¼ 1:0 ‐ O2½ �‐ O2½ �min

� �
= O2½ �max‐ O2½ �min

� �

Table 3 O2 kinetic elimination Michaelis-Menten parameters plus diffusion (converted from
Davidson et al. [28], their Table 1)

Parameter Characteristic unit STARS unit

Maximum Rate vmax 352 μM/min 6.34 × 10−6 mole fraction/min

Half Saturation Constant Km 6.24 μM 1.12 × 10−7 mole fraction

Linear Rate vmax/Km 56.4 min−1 56.4 min−1

Sinusoid Effective Diffusion 3.0 × 10−9 m2/sec 1.8 × 10−3 cm2/min

Tissue Effective Diffusion 2.0 × 10−9 m2/sec 1.2 × 10−3 cm2/min

Fig. 19 Reactive O2 profiles across the lobule with diffusion effects for “normal” injected O2 level in
3D – clipped view. a O2 at 0.01 min, b O2 at 0.1 min, c O2 at 0.5 min, d O2 at 1.0 min. Color bar is in
mole fraction
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Here [O2] >0 represents the steady state O2 concentration level at any location

throughout the lobule for each case, while [O2]min and [O2]max correspond to the

non-zero minimum and maximum injected O2 concentration level for the “normal”

case (90 mm Hg = 3.37× 10−6 molefrac), respectively. Figure 21 shows the resultant

CYP profiles for each case. First, there are zero CYP expressed in the sinusoids

and near the injection end for the “normal O2 generated” zonation. There are

higher CYP levels generated near the production ports, but the individual CPY

levels depend on the flow distribution to each port (the ports with highest flow

have lower CYP levels). In contrast, for the “normal O2 generated” zonation, there

is significantly higher levels of CYP predicted and a much more uniform distribu-

tion (except closest to the inlet port).

These zonal CYP distributions are used in the main body of the paper to investigate

PAC drug zonation effects.

Fig. 21 Predicted CYP profiles across the lobule for injected O2 level in 3D – clipped view. a Normal
concentration, b low concentration. Color bar is normalized

Fig. 20 Reactive O2 profiles across the lobule with diffusion effects for “low concentration” injected O2 level
in 3D – clipped view. a O2 at 0.01 min, b O2 at 0.1 min, c O2 at 0.5 min, d O2 at 1.0 min
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Additional files

Additional file 1: Figure S1. Non-reactive PAC profiles across the lobule with diffusion. (a) PAC at 0.01 min, (b)
PAC at 0.1 min, (c) PAC at 0.2 min (d) PAC at 0.5 min. Color bar is in molfrac. (PPTX 206 kb)

Additional file 2: Figure S5. Non-reactive PAC profiles across the lobule without diffusion in 3D – block view. (a)
PAC at 0.01 min, (b) PAC at 0.05 min, (c) PAC at 0.1 min (d) PAC at 1 min. Color bar is in molfrac. (PPTX 613 kb)

Additional file 3: Figure S2. Non-reactive PAC profiles across the lobule with diffusion in 3D – block view. (a)
PAC at 0.01 min, (b) PAC at 0.05 min, (c) PAC at 0.1 min (d) PAC at 1 min. Color bar is in molfrac. (PPTX 431 kb)

Additional file 4: Figure S3. Non-reactive PAC profiles across the lobule with diffusion in 3D – sliced view. (a)
PAC at 0.01 min, (b) PAC at 0.05 min, (c) PAC at 0.1 min (d) PAC at 1 min. Color bar is in molfrac. (PPTX 335 kb)

Additional file 5: Figure S6. Reactive (6 × 10-3 min-1) PAC and PAC-OH profiles across the lobule without
diffusion effects and base case metabolism in 3D – block view. (a) PAC at 0.01 min, (b) PAC at 0.05 min, (c) PAC at
0.1 min, (d) PAC at 1 min, (e) PAC-OH at 0.01 min, (f) PAC-OH at 0.05 min, (g) PAC-OH at 0.10 min, (h) PAC-OH at
1 min. Color bar is in molfrac. (PPTX 1050 kb)

Additional file 6: Figure S4. Reactive (6 × 10-3 min-1) PAC and PAC-OH profiles across the lobule with diffusion
effects and base case metabolism in 3D – sliced view. (a) PAC at 0.1 min, (b) PAC at 0.5 min, (c) PAC at 1 min, (d)
PAC-OH at 0.1 min, (e) PAC-OH at 0.5 min, (f) PAC-OH at 1 min. Color bar is in molfrac. (PPTX 378 kb)
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