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Abstract
Background: The critically ill can have persistent dysglycemia during the “subacute”
recovery phase of their illness because of altered gene expression; it is also not
uncommon for these patients to receive continuous enteral nutrition during this time.
The optimal short-acting subcutaneous insulin therapy that should be used in this
clinical scenario, however, is unknown. Our aim was to conduct a qualitative numerical
study of the glucose-insulin dynamics within this patient population to answer the
above question. This analysis may help clinicians design a relevant clinical trial.

Methods: Eight virtual patients with stress hyperglycemia were simulated by means
of a mathematical model. Each virtual patient had a different combination of insulin
resistance and insulin deficiency that defined their unique stress hyperglycemia state;
the rate of gluconeogenesis was also doubled. The patients received 25 injections of
subcutaneous regular or Lispro insulin (0-6 U) with 3 rates of continuous nutrition. The
main outcome measurements were the change in mean glucose concentration, the
change in glucose variability, and hypoglycemic episodes. These end points were
interpreted by how the ultradian oscillations of glucose concentration were affected by
each insulin preparation.

Results: Subcutaneous regular insulin lowered both mean glucose concentrations
and glucose variability in a linear fashion. No hypoglycemic episodes were noted.
Although subcutaneous Lispro insulin lowered mean glucose concentrations, glucose
variability increased in a nonlinear fashion. In patients with high insulin resistance and
nutrition at goal, “rebound hyperglycemia” was noted after the insulin analog was
rapidly metabolized. When the nutritional source was removed, hypoglycemia tended
to occur at higher Lispro insulin doses. Finally, patients with severe insulin resistance
seemed the most sensitive to insulin concentration changes.

Conclusions: Subcutaneous regular insulin consistently lowered mean glucose
concentrations and glucose variability; its linear dose-response curve rendered the
preparation better suited for a sliding-scale protocol. The longer duration of action of
subcutaneous regular insulin resulted in better glycemic-control metrics for patients
who were continuously postprandial. Clinical trials are needed to examine whether
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these numerical results represent the glucose-insulin dynamics that occur in intensive
care units; if present, their clinical effects should be evaluated.

Keywords: Stress hyperglycemia, Subcutaneous insulin, Glucose variability, Mean
glucose, Hypoglycemia, Computer simulation

Background
Stress hyperglycemia (SH) of critical illness is a multifaceted disease that involves elevated
hepatic gluconeogenesis [1–3], increased insulin resistance (IR) [4–9], and insulin defi-
ciency (ID) [5, 10]. These factors are dynamic and evolve during critical illness. In com-
bination, they produce a heterogeneous disorder marked by hyperglycemia that affects
30–50% of intensive-care patients although some may have occult diabetes [11–13].
Optimal SH therapy would minimize glucose variability (GV ) [14–16], prevent hyper-
glycemia [17, 18], and not cause hypoglycemia [19, 20] because all three factors have a
similar mortality risk [21].
Literature review suggests that patients with SH have variable responses to the same

insulin treatment [16]. Disease heterogeneity may partially explain why only certain sub-
groups, such as trauma patients, seem to benefit from tight glycemic control (TGC)
[22, 23]. In general, TGC studies have been plagued by frequent hypoglycemia [22, 24]
and worsened mortality [25]. One current treatment recommendation for SH is to begin
therapy with an insulin infusion when glucose concentrations exceed 150 mg/dL, with
an absolute goal of less than 180 mg/dL [16]. As the patient recovers, the insulin infu-
sion is changed to a subcutaneous (SQ) insulin sliding scale after vasopressors have been
removed, peripheral edema has resolved, and no further nutrition interruptions have
been planned. Nevertheless, SH may persist for weeks because of altered gene expression
that results in long-term changes in glucose metabolism [26]. Therefore, an improved
understanding of SQ insulin therapies may benefit critically ill patients in the subacute
phase of their illness. Although SQ insulin therapy has been successfully used in criti-
cal care [27, 28], the optimal short-acting insulin preparation is unknown; moreover, GV
after SQ insulin therapy has not been examined.
SQ Lispro insulin improves mean glucose concentration (MGC) in diabetes while

minimizing postprandial hypoglycemia [29, 30]. When an otherwise healthy diabetic
patient eats a meal, endogenous insulin concentrations spike and follow a narrow “bell
shape” curve [31]. Clinical [32] and computational studies [33] confirm that SQ Lispro
insulin tends to outperform SQ regular insulin in this patient population because of
the shorter duration of action that more closely mimics the body’s response to a food
bolus. On the other hand, patients with SH who are receiving continuous nutrition may
have a very different response to short-acting insulin preparations, given that they are
continually postprandial. Assuming stable values for IR, ID, gluconeogenesis and the
continuous nutrition rate, their hyperglycemia would result from a uniformly amplified
glucose ultradian oscillation.
We hypothesized that the short-acting SQ insulin preparation with the longer duration

of action would have a better GV profile, and a smaller risk of hypoglycemia, in the back-
ground of continuous enteral feedings when SH is present. Thus, our aim was to conduct
a qualitative computational study of the glucose-insulin axis to simulate a population of
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critically ill patients with SH to identify the optimal short-acting SQ insulin therapy that
should be used in this clinical scenario. In addition, the effects of SH disease hetero-
geneity on the patients’ response to different short-acting SQ insulin therapies were also
examined.

Methods
In the last decades, several mathematical models have been proposed and studied with
the aim of better understanding the dynamics of the glucose-insulin axis, so that safer
and more effective insulin administration practices could be developed to treat diabetes
mellitus [33–39]. This work has meet with success and has culminated in a recent clinical
trial of an artificial pancreas [40]. These analytical methods can be modified to model the
effects of SQ insulin when used against SH in the Intensive Care Unit [41]. The analysis
will be qualitative because the model used has not been validated against human data
gathered from the critically ill; however, closely related models have reproduced results
from clinical trials involving diabetes and SQ insulin therapies [33, 42].

The glucose-insulin system in functional form

The model used in this study [38, 41] applies delay differential equations to incorporate
the time delays required to simulate the finite response time of the pancreas and liver
to secrete insulin and glucose, respectively. The delay differential equations were derived
from the principle of mass conservation for both the glucose concentration, G(t), and the
insulin concentration, I(t), for any time t. The principle states that the rate of change in
G(t)must equal the glucose production,Gp(t), minus glucose utilization,Gu(t). Similarly,
the rate of change of I(t)must equal the insulin production, Ip(t), minus insulin clearance,
Ic(t). In equation format, this principle reads as follows:

dG(t)
dt

=Gp(t) − Gu(t), (2.1a)

dI(t)
dt

=Ip(t) − Ic(t), (2.1b)

where

Gp(t) = Gin(t) + � × f5(I(t − τ2)) × f6(G(t)), (2.2a)

Gu(t) = f2(G(t)) + β × f3(G(t)) × f4(I(t)) + f7(G(t) − 330), (2.2b)

Ip(t) = Iin(t) + α × f1(G(t − τ1)), (2.2c)

Ic(t) = diI(t), (2.2d)

and d
dt is the derivative with respect to time. The functions f1 through f7 are highly

nonlinear and describe different characteristics of the glucose-insulin axis; their explicit
forms are presented below. They describe the body’s glucose production and utilization
as well as insulin production and clearance. Note that Gin(t) in Eq. (2.2a) denotes glu-
cose absorption from either enteral nutrition or an intravenous source. Insulin absorption
from an exogenous source is represented by Iin(t) in Eq. (2.2c); this function will be used
to represent the different SQ insulin therapies. The purpose of each of the fi functions is
shown in Table 1, and they have been determined from work that defines some of the key
parameters of glucose and insulin metabolism in function form. References to the original
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Table 1 Descriptions of the functions f1 through f7, Gin(t) and Iin(t)

Function name Description

f1(G(t − τ1)) Insulin production and release by pancreas

f2(G(t)) Insulin-independent glucose utilization

f3(G(t)) × f4(I(t)) Insulin-dependent glucose utilization

f5(I(t − τ2)) Hepatic glucose production

f6(G(t)) Inhibitor of hyperglycemia

f7(G(t) − 330) Inhibitor of hyperglycemia

Gin(t) Nutritional source

Iin(t) Exogenous insulin

physiological experiments may be found in [34]. Equation (2.1) were solved as described
previously [41].

Model parameters and what they represent

The model incorporates 6 adjustable parameters: τ1, τ2, di, α, β , and �, which have been
boldfaced in Eq. (2.2) for easy identification; their value determines the specific patho-
physiology of the patient being simulated. Each parameter affects only a portion of the
glucose-insulin axis; this principle is summarized in Table 2. A detailed description of
each model parameter follows next.
The model was validated for normal physiology and diabetes (that is, for normal rates

of gluconeogenesis or � = 1 in Eq. (2.2a)) by showing that detailed glucose measure-
ments from several healthy subjects and patients with type 1 or type 2 diabetes can be
reproduced when the parameter values are appropriately chosen [38]. The model cor-
rectly captures the effects of insulin therapy and a nutritional source. The reverse process
was also found to be valid because an unknown patient’s corresponding parameter values
can be used to correctly diagnose the patient’s underlying pathophysiology [38].
Type 1 diabetes was mainly captured by decreasing the term that describes insulin

secretion by a constant, α, in Eq. (2.2c). Similarly, type 2 diabetes was primarily modeled
by decreasing the term that describes insulin-dependent glucose utilization by another
constant, β , in Eq. (2.2b). When α and β are appropriately chosen and less than one, the
virtual patient will either secrete a suboptimal amount of insulin or demonstrate IR.
SH in critical illness is the result of at least 4 factors: increased gluconeogenesis

[1–3], increased IR [4–9], ID from decreased pancreatic insulin secretion (IDp) [10],
and ID from increased insulin clearance (IC) [5, 10]. Each factor was incorporated into
our model. For example, an increase in the hepatic glucose production term by a con-
stant � (where � is greater than unity, Eq. (2.2a)) increases gluconeogenesis [41]. It was
assumed that the shape of f5 (the function that represents gluconeogenesis) does not

Table 2 A summary of the 6 parameters of the model and their purpose

Parameter name Description

τ1 Time delay, endogenous insulin secretion

τ2 Time delay, endogenous glucose secretion

β Amplitude, insulin-dependent glucose utilization

α Amplitude, endogenous insulin production

� Amplitude, gluconeogenesis

di Amplitude, insulin clearance
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change with elevated rates of gluconeogenesis because it has been shown that the shapes
of the fi functions are more important than their exact functional form in reproduc-
ing the correct glucose-insulin dynamics [43]: a reasonable assumption for a qualitative
study.
Insulin resistance in SH was modeled by decreasing the rate of insulin-dependent glu-

cose utilization, as with type 2 diabetes by setting β < 1. Reduced insulin secretion in SH
was also simulated in the same fashion as with type 1 diabetes by fixing α < 1. Finally,
critical illness has been shown to increase IC by 50–70% in human studies [5, 10]. Exper-
iments have demonstrated that the process of insulin degradation is proportional to its
concentration, and this proportionality constant is di in Eq. (2.2d) [44]. Thus, increasing
di by 50% increases the IC, which we defined as IC50.
It is the time delays that allow the model to reproduce the naturally occurring glucose-

insulin ultradian oscillations [35, 36]. They describe the time required for the body to
produce and secrete insulin, τ1 in f1(G(t − τ1)), as well as to produce and secrete glucose,
τ2 in f5(I(t − τ2)).

How the model parameter values were chosen

The amount of IR, IDp and increased IC that occurs in SH varies among patients and is
not well defined. To proceed, we have slightly modified the validated α, β and di values
that were found to represent normal physiology (see sim1 in [38]) to define low normal
pancreatic insulin secretion (mild IDp), mild IR and high normal IC, respectively. Next, we
decreased the modified α and β values by 25% to represent severe IR and severe IDp. This
defined the pancreatic dysfunction and the decreased insulin-dependent glucose utiliza-
tion severity in our virtual patients. For reference, the validated α and β values required
to accurately model type 1 and type 2 diabetes are an additional 20% smaller than the
parameter values used to represent severe IDp and severe IR [38]. Thus, we assumed that
the level of pathology being simulated was reasonable in that the glucose dynamics pro-
duced wound not be abnormally divergent from clinically familiar pathology. Finally, we
used the experimentally determined observation on humans that IC may be increased by
50–70 % in critical illness [10] to justify increasing the high normal di value by 50% (called
IC50). A summary of the model parameters with their associated descriptors is found in
Table 3.We have limited the data analysis to include only qualitative trends in themeasur-
able quantities: the change-in-MGC and the change-in-GV versus the dose of SQ insulin
injected, as well as hypoglycemic episodes.
For the time delays, normal values were used [38]; however, they were chosen so that

all of the 8 virtual patients simulated had a maximum glucose value between 150 and 170
mg/dL [41]. This approach facilitated interpatient comparison of the change-in-MGC and
change-in-GV.

Modeling SQ insulin

The durations of action of SQ Lispro insulin and SQ regular insulin were taken to be 240
and 480 min, respectively; their onset of action was defined to be 5 and 30 min, respec-
tively [31]. For each virtual patient, 25 injections of SQ Lispro insulin and SQ regular
insulin were given with doses that ranged from 0 to 6 U. The upper insulin limit of 6 U
was chosen because this is near the dose where insulin’s effects begin to saturate for a
70-kg body mass [45].
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Table 3 Summary of model parameter values, description of the resultant pathophysiology, with
associated descriptor

Name and value Pathophysiology or function Descriptor

β = 0.8 Low normal insulin-dependent Mild IR

glucose utilization

β = 0.6 Low normal insulin-dependent Severe IR

glucose utilization decreased by 25%

α = 0.8 Low normal insulin secretion Mild IDp

α = 0.6 Low normal insulin secretion Severe IDp

decreased by 25%

di = 0.17 High normal IC Borderline IC

di = 0.25 High normal IC increased by 50% IC50
� = 2 Normal gluconeogenesis rate doubled No descriptor

SQ insulin injections, Iin(t) in Eq. (2.2c), were modeled with simple, linear piece-
wise functions [33, 41]. For example, 5 min after a SQ injection of Lispro insulin, the
absorption was assumed to linearly increase to a maximum value during the first 30
min, followed by a linear decrease to nearly zero by minute 120; this was followed
by a small residual tail for the remaining 120 mins. The main form of this function
is a triangle with an area that represents the total number of SQ Lispro insulin units
injected. The explicit functional forms that represent the SQ insulin injections are shown
next.
The SQ Lispro insulin injections were modeled with [33, 41]:

ILis(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.25 for 0 ≤ t ≤ 5,
0.25 +

(
1 + t−30

30−5

)
for 5 ≤ t < 30,

0.25 +
(
1 − t−30

120−30

)
for 30 ≤ t < 120,

0.25 for 120 ≤ t ≤ 240.

(2.3)

Similarly, for the SQ regular insulin injections, the following function was used [33, 41]:

IReg(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.25 for 0 ≤ t ≤ 30,
0.25 + (

1 + t−120
90

)
for 30 ≤ t < 120,

0.25 + (
1 − 0.5 × t−120

120
)
for 120 ≤ t < 240,

0.25 + 0.5 × (
1 − t−240

240
)
for 240 ≤ t ≤ 480.

(2.4)

In both functions, t represents time; the time of injection is t = 0.

Measuring the change-in-GV and change-in-MGC

The change-in-MGC and change-in-GV are the metrics of interest, and they were calcu-
lated as follows: MGC/GV was measured after an SQ insulin injection from which the
baseline MGC/GV was subtracted. We have adopted the term “baseline” to refer to data
that were gathered from the virtual patient when 0 U of insulin was injected. Thus, the
patients (having received no insulin) served as their own controls.
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MGC was calculated as the sum of glucose concentrations that occur each second after
the beginning of the simulations (t = 0) divided by the total number of glucose concen-
trations used in the sum; the time over which the calculation is performed was 750 mins
(the duration of each simulation).
GV does not have a standard definition [46]; this reflects the lack of solid knowledge

on what exactly in abnormal glucose-insulin dynamics causes an increase in adverse out-
comes that has been associated with increased GV in literature. In several retrospective
studies, different indices have been proposed; for example, glucose variability index [47],
standard deviation [15, 48], glycemic lability index [49] and mean amplitude of glucose
excursions [50]. It has to be mentioned that blood glucose values are seldom normally
distributed, a mathematical condition for use of standard deviation [51]. In literature,
this limitation is mostly ignored. In a systemic review of GV, and its effect on mor-
tality, each study reviewed found at least one measure of GV that was associated with
mortality [52].
A definition of GV well suited for this study is the mean absolute glucose change

[53, 54]. This is the simple summation of all absolute changes in glucose concentrations,
divided by the time over which measurements were taken. In this way, two excur-
sions of identical extent, but differing in duration, contribute differently to the overall
sum of variability. The downside of such a measure in clinical practice is that noise,
a particular problem in continuous glucose concentration monitoring, is hard to sep-
arate from the signal [55]. Concerning the data gathered from computer models of
glucose-insulin dynamics two observations are relevant: (1) there is no noise within
the data generated by simulation and (2) the time over which glucose measurements
are made can be constructed to be identical. In such a scenario, time may be sup-
pressed in the mean absolute glucose change calculation, as it is the same for each GV
measurement.
We thus have chosen to define GV as the average distance between adjacent local

maximum and local minimum values in a patient’s G(t) data (i.e. mean absolute glucose
change); the time over which the calculation is performed was again 750 mins. Because
all GV measurements occurred over exactly the same relatively short time interval, the
change-in-GVswere not normalized by the time over which the data was gathered. Finally,
the local maximum/minimum values in the G(t) data were designated as peaks/troughs.

Modeling continuous nutrition

The 3 rates of continuous nutrition, Gin(t) in Eq. (2.2a), were 135 mg/min (nutrition at
goal), 67.5 mg/min (nutrition at half goal), and 0 mg/min (no nutrition); see Table 4 for
a summary. For example, G(t) = 135 mg/min is equivalent to 82.2 mL/h of Glucerna®1.2
Cal, which would provide 2367 calories and 194 g of net carbohydrates in 24 h.

Table 4 A summary of the different rates of continuous nutrition studied with an associated
descriptor

Name and value Descriptor

Gin(t) = 135 mg/min Nutrition at goal

Gin(t) = 67.5 mg/min Nutrition at half goal

Gin(t) = 0 mg/min No nutrition



Strilka et al. Theoretical Biology andMedical Modelling  (2016) 13:3 Page 8 of 20

Explicit forms of the glucose-insulin metabolic functions

For completeness, the explicit forms of the fi functions are presented:

f1(G(t − τ1)) = Rc
1 + exp((c1 − (G(t − τ1)/Vg))(1/e1))

, (2.5a)

f2(G(t)) = Ub×[ 1 − exp(−(G(t)/c2Vg)] , (2.5b)

f3(G(t)) = G(t)
c3Vg

, (2.5c)

f4(I(t)) = Uo + Uc − Uo
1 + exp(−κlog((I(t)/c4)(1/Vc) + (1/Etc)))

, (2.5d)

f5(I(t − τ2)) = Rg

1 + exp(e1((I(t − τ2)/Vp) − c5))
, (2.5e)

f6(G(t)) = 1
exp(γ ((G(t)/c3Vg) − c6))

, (2.5f)

f7(G(t) − 330) = Sb + Sc − Sb
1 + exp(δ(((G(t) − 330)/c3Vg) − c7))

. (2.5g)

The associated constant values within each function are derived from human physio-
logical data [34] and have been presented in tabulated form [38, 41].

Results
The results are grouped in subsections by insulin therapy, patient pathophysiology, and
the rate of the nutritional source. In general, graphs depicting the change-in-MGC show
a decrease in MGC when a data point is below the y = 0 line and an increase when the
data point is above y = 0. The same is true for the change-in-GV graphs. Note that all
insulin injections were timed to be given at a glucose concentration peak.

SQ Lispro insulin, the 4 borderline IC patients, and nutrition at goal

This subsection contains the change-in-GV and change-in-MGC data for the 4 patients
with borderline IC. All patients received nutrition at goal, and SQ Lispro insulin was used
to treat their hyperglycemia.
SQ Lispro insulin injections were noted to lower GV when the insulin dose was less

than 4 U (Fig. 1a). In the 2 patients with mild IR, GV remained relatively unaffected by
the dose because the change-in-GV curves were nearly flat and near y = 0. For the 2
patients with severe IR, however, theGV increased when the doses were greater than 4 U.
Insulin resistance also affected the shape of the change-in-MGC curves (Fig. 1b). Patients

Fig. 1 The 4 patients with borderline IC and nutrition at goal. a Change-in-GV versus number of SQ Lispro
insulin units injected. b The change-in-MGC versus number of SQ Lispro insulin units injected
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with mild IR had a change-in-MGC curve that decreased linearly as the SQ Lispro insulin
dose increased, which was an intuitive result. Nevertheless, patients with severe IR had
MGCs that were not significantly decreased as the dose of SQ Lispro insulin was increased
beyond 4 U. This result implies that IR significantly affected the response of the glucose-
insulin axis to an SQ ultrashort insulin analog. In comparison, changing IDp frommild to
severe did not significantly alter the effect of SQ Lispro insulin on eitherMGC or GV.
To interpret the change-in-MGC and change-in-GV graphs in terms of the underly-

ing glucose concentration dynamics, the detailed G(t) data were examined for 2 selected
patients: 1 withmild IR and another with severe IR. Both patients hadmild IDp, and 5 U of
SQ Lispro insulin was injected at a glucose concentration peak at time t = 0. For syntax,
the first peak and first trough occurred just after the insulin injection, and this conven-
tion is used below. The corresponding baseline G(t) data (no insulin injected) were also
plotted for comparison. For the patient with mild IR (Fig. 2a), the first G(t) trough was
significantly less than the baseline trough. Additionally, the first and second peaks were
significantly decreased. These factors combined to lower both GV andMGC.
The more interesting behavior was exhibited by the patient with severe IR (Fig. 2b). The

first glucose concentration peak was seen to be larger than its corresponding pre-insulin
baseline peak, and we termed this behavior “rebound hyperglycemia.” Furthermore, the
first glucose concentration trough after the injection was significantly lower than the cor-
responding baseline trough. These 2 factors combined to decrease MGC but increase
GV. The “rebound hyperglycemia” first appeared at 4 U and worsened as the dose of
SQ Lispro insulin was increased. Because of the “rebound hyperglycemia”, the change-
in-MGC curves (Fig. 1b) began to flatten when the IR was severe and the dose of SQ
increased above 4 U. This picture signaled a nonlinear dose-response relation between
SQ Lispro insulin and MGC in patients with severe IR: a potential important observa-
tion for the design of sliding-scale SQ Lispro insulin protocols for such patients. No
episodes of hypoglycemia were noted; however, the significantly decreased first trough
in Fig. 2b suggests that SQ Lispro insulin may be particularly likely to cause hypo-
glycemia. It is important to mention that “rebound hyperglycemia” was also seen when
type 2 diabetics were modeled with a validated numerical model that simulated diabet-
ics receiving continuous nutrition while being treated with SQ Lispro insulin for their
hyperglycemia [42].

Fig. 2 G(t), glucose concentration versus time, after 5 U of SQ Lispro insulin were injected at t = 0; baseline
G(t) was also plotted for comparison. Both patients were receiving nutrition at goal. a The patient with mild
IR, mild IDp and borderline IC. b The patient with severe IR, mild IDp and borderline IC; note the “rebound
hyperglycemia”
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Fig. 3 The 4 patients with borderline IC and nutrition at goal. a The change-in-GV versus number of SQ
regular insulin units injected. b The change-in-MGC versus number of SQ regular insulin units injected

In general, IR seems to have rendered the glucose-insulin axis more sensitive to pertur-
bations caused by SQ ultrashort insulin analogs; this result was evidenced by the “rebound
hyperglycemia” and increased GV. It is important to note that hourly glucose checks
would be required to identify an increase in GV in an analogous real patient.

SQ regular insulin, the 4 borderline IC patients, and nutrition at goal

The same group of 4 patients from the previous subsection (the 4 patients with borderline
IC who were receiving nutrition at goal) were next given SQ regular insulin at exactly the
same time point as the previous SQ Lispro insulin injections; this approach facilitated a
comparison between the 2 insulin preparations.
Figure 3a and b show linear decreases in GV and MGC with an increasing SQ regu-

lar insulin dose. This picture demonstrated a linear dose-response relation between SQ
regular insulin and MGC/GV ; a linear dose-response is presumed optimal for a sliding-
scale SQ insulin protocol. To interpret thesemetrics in terms of the glucose concentration
dynamics, the G(t) data were again examined; Fig. 4a shows a patient with mild IR and
mild IDp. The results revealed that the first 5 glucose concentration peaks were lowered;
this finding is consistent with the duration of action of SQ regular insulin.
In contrast to SQ Lispro insulin, the same well-behaved dynamics occurred in the

patient with severe IR; again, the first several glucose concentration peaks were sup-
pressed (Fig. 4b). Furthermore, SQ regular insulin only minimally decreased the glucose
concentrations troughs as compared to SQ Lispro insulin (Figs. 2 and 4). This finding
suggests that SQ regular insulin would be less likely to cause hypoglycemia, as compared

Fig. 4 G(t), glucose concentration versus time, after 5 U of regular insulin were injected at t = 0; baseline
G(t) was also plotted for comparison. Both patients were receiving nutrition at goal and had mild IDp and
borderline IC. a The patient with mild IR. b The patient with severe IR
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to SQ Lispro insulin (at least, for the patients examined thus far). Finally, bothMGC and
GV were similarly lowered regardless of the IR or IDp value. Unlike SQ Lispro insulin,
SQ regular insulin did not cause “rebound hyperglycemia” at higher doses. In addition, no
episodes of hypoglycemia were noted.
In this subsection, the response of the glucose-insulin axis to perturbation by a short

SQ insulin preparation appeared better behaved as compared to the effects of the ultra-
short SQ Lispro insulin (see the previous subsection). Thus, the difference between the
onset/duration of action of the insulin preparations significantly affects the response of
the glucose-insulin axis to SQ insulin therapies as measured by GV and MGC. Similar
results were observed in a validated numerical study of patients with type 2 diabetes who
received continuous enteral feeding [42].

SQ Lispro insulin, the 4 patients with IC50, and nutrition at goal

To examine the consequences of increasing IC to pathological levels, the second set of
4 patients with IC50 (borderline IC increased by 50%) was studied next; this analysis
allowed for a comparison of the glucose dynamics in the patients with borderline IC and
IC50 after SQ Lispro insulin therapy. As before, nutrition was at goal.
A direct comparison of the borderline IC and IC50 change-in-GV curves (Figs. 1a and

5a) shows that the glucose dynamics remained qualitatively similar between the 2 patient
groups. In both sets of curves, GV first decreased and then increased after approximately
4 U. In contrast, the change-in-GV was an order of magnitude smaller in the IC50 patient
group. This result was due to the additional mechanism (an increased IC) that wors-
ened ID and blunted the patient’s response to the same SQ Lispro insulin dose. The IC50
change-in-MGC curves (Fig. 5b) were different from the corresponding change-in-MGC
graphs with borderline IC (Fig. 1b) because the MGC decreased in a monotonic fashion
and never flattened.
To demonstrate that the qualitative behavior of the measurables remained similar

between the borderline IC and IC50 patient groups, the effects of increasing the SQ Lispro
insulin dose on a patient with severe IR were examined. In particular, Fig. 6a and b show
the effects of 3 and 6 U of SQ Lispro insulin, respectively, which were injected in the
patient with severe IR andmild IDp. The graphs show that as the dose of SQ Lispro insulin
increased, the G(t) curves began to resemble the curves that were found in the patient
with severe IR, mild IDp, and borderline IC (Fig. 2b). That is, the first peak after the

Fig. 5 The 4 patients with IC50 (50% increase in IC from borderline IC) and nutrition at goal. a The change-in-GV
versus number of SQ Lispro insulin units injected. b The change-in-MGC versus number of SQ Lispro insulin
units injected
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Fig. 6 G(t), glucose concentration versus time. Baseline G(t) was also plotted for comparison. The patient
had severe IR, mild IDp and IC50 with nutrition at goal. G(t) after a 3 U of SQ Lispro insulin were injected at
t = 0 and after b 6 U of SQ Lispro insulin were injected at t = 0

SQ Lispro insulin injection nearly returned to its baseline value, just avoiding “rebound
hyperglycemia”; note, this phenomenon occurred at the higher insulin doses. Therefore,
the underlying glucose-insulin dynamics remained qualitatively similar between the bor-
derline IC and IC50 patient groups; albeit, the effects of SQ Lispro insulin were blunted
by the higher IC values. In fact, “rebound hyperglycemia” could be produced when the
SQ Lispro insulin dose exceeded 6 U (data not shown). Finally, changing IDp from mild
to severe did not significantly affect the change-in-MGC and change-in-GV curves; this
finding is similar to the data in the corresponding borderline IC subsection.

SQ regular insulin, the 4 patients with IC50, and nutrition at goal

Next, the previous 4 numerical experiments were repeated; however, the insulin prepa-
ration was changed to regular insulin. In the 4 patients with IC50, Fig. 7a and b show
that both GV andMGC decreased in a linear manner as the SQ regular insulin dose was
increased. The corresponding G(t) graphs were similar to those patients with borderline
IC presented in Fig. 4; therefore, the G(t) data for the IC50 patients are not shown. More-
over, the linear dose-response relation between SQ regular insulin andMGC was found to
be similar to the dependence shown in Fig. 3b: again, presumed optimal for a sliding-scale
SQ insulin protocol. Now familiar, changing IDp from mild to severe did not signifi-
cantly affect the change-in-MGC and change-in-GV curves. Furthermore, we noted that
increasing the IC from borderline to IC50 resulted in approximately a 50% decrease in the
size of the change-in-GV and change-in-MGC curves (compare Figs. 3 and 7).

Fig. 7 The 4 patients with IC50 and nutrition at goal. a The change-in-GV versus number of SQ regular insulin
units injected. b The change-in-MGC versus number of SQ regular insulin units injected



Strilka et al. Theoretical Biology andMedical Modelling  (2016) 13:3 Page 13 of 20

Both SQ insulin preparations, all 8 patients, and nutrition at half goal

It is not uncommon for patients to require a decrease in the rate of their enteral feedings
because of intolerance; therefore, all of the above experiments were repeated but with the
rate of nutrition halved, or nutrition at half goal. All 8 patients are discussed within this
subsection.
For the 4 patients with borderline IC, both insulin preparations decreased MGC in a

linear manner (Fig. 8a and b). Nevertheless, SQ Lispro insulin and SQ regular insulin had
an opposite effect on GV. SQ Lispro insulin increased GV as the dose increased (Fig. 9a),
whereas SQ regular insulin decreased GV (Fig. 9b). The G(t) data showed that the main
effect of SQ Lispro insulin was to significantly decrease the first glucose concentration
trough after the injection, suggesting that SQ Lispro insulin has the larger risk of causing
hypoglycemia when the rate of continuous nutrition is decreased, when compared to SQ
regular insulin. After this, the first postinjection glucose concentration peak returned to
its baseline value, nearly causing “rebound hyperglycemia”. This phenomenon decreased
MGC but increased GV. The SQ regular insulin injection, however, smoothly decreased
several glucose concentration peaks, thus decreasing bothMGC and GV, just as in Fig. 3;
therefore, the G(t) data are not shown.
Increasing the IC from borderline to IC50 decreased the magnitude of the change-in-

MGC and change-in-GV curves; this pattern was seen in the corresponding subsections
when the nutrition was at goal. Because the qualitative shapes of the curves were similar
to those in the previous subsections, the data are not shown.
Finally, there were no episodes of either hypoglycemia or “rebound hyperglycemia” in

any patient, and the IDp value again did not significantly affect the change-in-MGC and
change-in-GV curves.

Both SQ insulin preparations, all 8 patients, and no nutrition

Either because of a required procedure or feeding intolerance, patients sometimes need
their enteral feedings held. To examine this clinical scenario, the nutritional source was
removed, and the simulations were repeated; all 8 patients are discussed within this
subsection.
The main effect of removing the nutritional source on the baseline simulations was

a decrease in the glucose concentration troughs that was greater than the decrease in
the corresponding glucose concentration peaks. In the comparison with the nutrition-
at-goal simulations, the baseline glucose concentration troughs were approximately

Fig. 8 The 4 patients with borderline IC and nutrition at half goal. a The change-in-MGC versus number of SQ
Lispro insulin units injected. b The change-in-MGC versus number of SQ regular insulin units injected
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Fig. 9 The 4 patients with borderline IC and nutrition at half goal. a The change-in-GV versus number of SQ
Lispro insulin units injected. b The change-in-GV versus number of SQ regular insulin units injected

20 mg/dL lower. The change-in-GV and change-in-MGC curves were quantitatively
similar to the corresponding curves in the nutrition-at-half-goal subsection (data not
shown).
The most remarkable finding in this subsection was that SQ Lispro insulin (but not

regular insulin) caused hypoglycemia (glucose concentrations near 60 mg/dL). This effect
was seen in the 4 patients with borderline IC when the dose exceeded 4 U; the effect
occurred in part because the baseline troughs were lowered when the nutritional source
was removed.
Finally, increasing the IC from borderline to IC50 decreased the magnitude of the

change-in-GV and change-in-MGC curves. The IDp value again had minimal effects on
the glucose dynamics.

Discussion
To the best of our knowledge, SQ Lispro insulin and SQ regular insulin have not
been compared in SH patients receiving continuous nutrition. The numerical study that
included this comparison, unfortunately, did not involve analysis of ID [41], which we
have included here. Our 3 main findings are:

1 SQ Lispro insulin tended to increase GV even if MGC was decreased, and at times,
it did so in a nonlinear manner. Hourly glucose checks would be required to
uncover this phenomenon in a corresponding real patient.

2 SQ regular insulin tended to decrease MGC and GV in a linear manner, with
respect to its dose, suggesting that this preparation is better suited for a
sliding-scale SQ protocol, as compared to SQ Lispro insulin.

3 Higher SQ Lispro insulin doses produced hypoglycemia when the patients’
nutritional sources were discontinued; SQ regular insulin did not cause
hypoglycemia in any simulation.

An additional finding of interest is that severe IR seems to predict when the glucose-
insulin axis has increased sensitivity to changes in endogenous insulin concentrations. It
was found that such increased sensitivity could result in “rebound hyperglycemia” and
increased GV when the continuous nutrition was at goal, provided an ultrashort SQ
insulin analog was used.
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Glucose variability

Because it is associated with negative clinical outcomes, GV was chosen as a primary
end point [14, 15, 21, 48, 49, 52, 53, 56, 57]. Glucose fluctuations produce changes in
plasma osmolality that can lead to cellular and organ dysfunction, thus increasing mor-
bidity [58]. Oxidative stress, which is enhanced by glucose fluctuations more than by
sustained hyperglycemia [59], may be a unifying mechanism underpinning vasoconstric-
tion, microvascular thrombosis, and inflammation associated with elevatedGV [60]. One
study of surgical critical-care patients showed that the highest mortality rate is observed
when GV and hyperglycemia were both present; that study also revealed that GV is the
more important outcome predictor [53]. Such studies have led some to argue that glucose
management protocols should focus on bothMGC and GV as treatment targets [61].
There seem to be no clinical studies that involve measurement of GV after administra-

tion of short-acting SQ insulin preparations within the time frame examined here. This
is probably because sliding-scale SQ insulin regimens imply sampling of glucose values
every 3-6 h. The data presented in Figs. 2, 4 and 6 show that one glucose measurement
per hour would be required to detect the increase in GV uncovered by our numerical
simulations. Therefore, the ability of a typical sliding-scale insulin protocol to capture the
effects of SQ Lispro insulin on GV is limited.

Effects of insulin resistance

The GV data suggested that patients with severe IR are the most sensitive to changes
in exogenous insulin concentrations. “Rebound hyperglycemia” occurred only in the
patients with severe IR when the continuous nutrition was at goal. This result suggests
that these patients are at a higher risk of developing elevated GV from an insulin therapy,
particularly if the insulin concentration changes with sufficient amplitude. This notion
is consistent with the numerical works that examined the effects of insulin infusion rate
changes on patients with SH [62] and on patients with type 2 diabetes who were receiv-
ing continuous enteral feedings and SQ insulin therapy [42]. It should be noted, that the
model used to examine the diabetics is the one used in this study, albeit with � = 1
(normal rate of gluconeogenesis); furthermore, the model parameters used were validated
against actual patients’ glucose concentration data. Currently, there is no easy method
of directly measuring the IR and what constitutes severely elevated IR is poorly defined.
Computer-based insulin protocols that individually construct patient centered insulin
therapies can provide the IR data [63], which may indicate impending infection if the IR
is elevated in patients without diabetes [64, 65].
We hypothesize that IR is an important metric for the categorization of SH disease

states because our virtual patients’ glucose dynamics varied significantly according to
its value. Perhaps severe IR, and its associated altered glucose mechanics, may partially
explain why the treatment of SH in the TGC era correlated negatively with GV (as mea-
sured by standard deviation) [15]. Furthermore, patients with various relative values of IR
might behave differently enough (under non-patient-centered insulin therapy) to explain,
in part, why certain subgroups, such as trauma patients and patients receiving steroids,
seem to benefit from TGC while other subgroups do not [22, 23]. On the other hand, the
direct IR data (paired with the etiology of critical illness) does not exist to support this
query. It is noteworthy, however, that the SPRINT study, a computer-based insulin pro-
tocol for the critically ill that determines and incorporates each patient’s IR, showed no
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significant association between glucose variability or mortality in either the SPRINT or
TGC arm [66].

Effects of insulin deficiency

Unlike IR, worsening ID did not correlate with increased GV. Severe ID, which was a
result of decreased pancreatic insulin secretion and an elevated IC, was associated with
smaller decreases in MGC and GV after both insulin therapies, as compared to patients
with borderline ID.

Importance of time scales

We posit that GV may be increased by an insulin therapy when the time scale over which
the insulin concentration changes is of the same order, or smaller, than the period of the
patient’s glucose ultradian oscillation. A similar mechanism (uncovered by a validated
numerical study) was speculated to be present in type 2 diabetics who were receiving
continuous enteral feedings and SQ insulin therapies for their hyperglycemia [42].
We arrived at this hypothesis after comparing two length scales that were present in

each simulation: the period of the patient’s ultradian glucose concentration oscillations
and the duration of action of the insulin preparation. The period of the ultradian oscil-
lations in glucose represented the time needed by the glucose-insulin feedback system
to maintain glucose concentrations within a particular range and variability. When the
change in exogenous insulin concentration within this time frame was large, the glu-
cose concentrations fluctuated, and GV increased. In particular, the SQ Lispro insulin
absorption/concentration profile increased in the first 35 min after the injection and then
decreased to nearly zero over the next 90 min, nearly matching the period of the patients’
ultradian glucose concentration oscillations. In comparison, SQ regular insulin reaches
its maximum after nearly 1 ultradian period, and almost 2 ultradian periods are required
for its concentration to reach zero [33, 41].

Effects of the rate of nutrition

The rate of the continuous nutritional source also affected the patient’s response to the SQ
insulin therapies. For the doses examined, SQ regular insulin loweredMGC andGV with-
out causing hypoglycemia. SQ Lispro insulin caused hypoglycemia only at higher doses
if the nutritional source was discontinued. This result is consistent with recent clinical
[67] and numerical [42] studies of patients with diabetes who received continuous gastric
feeds. It is also important to note that the rate of continuous nutrition also played a role
in whether SQ Lispro insulin produced “rebound hyperglycemia”.
These results highlight the importance of considering a patient’s nutritional intake

when designing an insulin treatment protocol [68]. The most accurate insulin proto-
col would be patient centered and responsive to the patient’s unique physiology and
nutritional state. In fact, some computerized protocols also make recommendations as
to the nutritional rates the patients should be receiving so that hypoglycemia, and per-
haps increased GV, may be avoided if the insulin infusion rate is changed [69]. This
make sense, as the dynamics of glucose and insulin arise from a set of coupled systems
(Eq. (2.1)). There are several computational tools that have been examined in the critical
care [66, 69–71] and outpatient settings [72, 73]. The field has a rich history surveyed in
reviews [74–76].
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Limitations

This study has several limitations. First, although the model was validated for type 1
and type 2 diabetes, it had not been validated on human data gathered from the criti-
cally ill. As such, we have discussed only the qualitative aspects of our data. This study
should be followed with a randomized controlled clinical study that directly compares SQ
Lispro insulin and SQ regular insulin in patients with SH receiving continuous nutrition
before a clinical recommendation can be made. GV should remain a primary end point,
which would require continuous glucose monitoring or glucose checks every hour for
evaluation [77]. Finally, this study did not address insulin stacking, which may also cause
hypoglycemia [78].

Conclusion
SH and different SQ insulin therapies can be studied using a mathematical model of the
glucose-insulin feedback system. This type of study allows for qualitative analysis ofMGC,
GV, and hypoglycemia after SQ injections of Lispro and regular insulins. Themodel yields
insights into the dynamics of glucose metabolism that would be difficult to ascertain oth-
erwise. The model may also guide the design of future clinical trials in, for example, the
benefit of hourly glucose checks to measure GV if an ultrashort insulin preparation is
used for SH (particularly, if severe IR is present).
SQ regular insulin consistently lowered MGC and GV in a linear fashion, thus making

the preparation better suited for a sliding-scale protocol. In terms of GV and hypo-
glycemia, the inferior performance of SQ Lispro insulin was a result of its shorter duration
of action; thus, SQ Lispro insulin may not be the best choice for patients who are
continually postprandial.
Clinical trials are needed to examine whether these theoretical results represent the

glucose-insulin dynamics that occur in intensive care units. If such dynamics are present,
their clinical effects should be evaluated.
Finally, patients with severe IR were the most prone to an increase in GV from

a change in exogenous insulin concentrations. Severe IR may be an indicator of the
underlying-glucose-dynamics’ sensitivity to perturbations inherent in some insulin ther-
apies, particularly to the ultrashort SQ insulin analogs in the background of continuous
enteral feedings.
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