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Abstract

Background: Many mathematical models assume random or homogeneous mixing
for various infectious diseases. Homogeneous mixing can be generalized to
mathematical models with multi-patches or age structure by incorporating contact
matrices to capture the dynamics of the heterogeneously mixing populations. Contact
or mixing patterns are difficult to measure in many infectious diseases including
influenza. Mixing patterns are considered to be one of the critical factors for infectious
disease modeling.

Methods: A two-group influenza model is considered to evaluate the impact of
heterogeneous mixing on the influenza transmission dynamics. Heterogeneous mixing
between two groups with two different activity levels includes proportionate mixing,
preferred mixing and like-with-like mixing. Furthermore, the optimal control problem is
formulated in this two-group influenza model to identify the group-specific optimal
treatment strategies at a minimal cost. We investigate group-specific optimal
treatment strategies under various mixing scenarios.

Results: The characteristics of the two-group influenza dynamics have been
investigated in terms of the basic reproduction number and the final epidemic size
under various mixing scenarios. As the mixing patterns become proportionate mixing,
the basic reproduction number becomes smaller; however, the final epidemic size
becomes larger. This is due to the fact that the number of infected people increases
only slightly in the higher activity level group, while the number of infected people
increases more significantly in the lower activity level group. Our results indicate that
more intensive treatment of both groups at the early stage is the most effective
treatment regardless of the mixing scenario. However, proportionate mixing requires
more treated cases for all combinations of different group activity levels and group
population sizes.

Conclusions: Mixing patterns can play a critical role in the effectiveness of optimal
treatments. As the mixing becomes more like-with-like mixing, treating the higher
activity group in the population is almost as effective as treating the entire populations
since it reduces the number of disease cases effectively but only requires similar
treatments. The gain becomes more pronounced as the basic reproduction number
increases. This can be a critical issue which must be considered for future pandemic
influenza interventions, especially when there are limited resources available.
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Background
The timely and effective countermeasures of influenza challenge global health experts
around the world, especially when limited resources are available. Mathematical model-
ing has made significant contributions to understanding the spread of influenza, and also
providing useful insights to control or decrease the disease burden [1–4]. A number of
mathematical models assume random or homogeneous mixing for the influenza dynam-
ics, which can provide a good approximation to real epidemiological phenomenon [5, 6].
This simple assumption of homogeneous mixing can be extended to more general math-
ematical models with multi-patches or age structure by incorporating contact matrices
to capture the dynamics of the heterogeneously mixing populations [1, 7]. In general,
contact or mixing patterns are difficult to measure in many infectious diseases including
influenza. There is no doubt that mixing patterns are considered to be one of the critical
factors for infectious disease modeling.
There are many different approaches that allow us to investigate the impact of contact

patterns on the transmission dynamics of infectious diseases. The age-dependent con-
tact matrices based on empirical social data have been estimated [8, 9]. Age-dependent
transmission matrices that describe the mixing and the probability of infection are stud-
ied using synthetic data [10]. In these studies, it has been noted that contact patterns are
strongly dependent on distinct age groups, and therefore, the heterogeneity of contact
patterns should be recognized as an important feature for the realistic modeling of many
infectious diseases. Moreover, individual basedmodels or network basedmodels can pro-
vide more details on the disease dynamics by studying the effects of heterogeneous and
clustered contact patterns. Contact patterns and their underlying network structures have
shown to be one of the critical factors for determining the characteristics of infectious dis-
ease transmission [11, 12]. Also, several different heterogeneity types in infectious disease
models have been incorporated, such as susceptibility, infectivity and mixing patterns
[13, 14]. Agent or network based models have been developed to study effective controls
in the influenza pandemic [2, 15, 16].
Deterministic models which are much simpler than network based models have been

successfully employed to study the transmission dynamics of various infectious diseases
and continued to produce valuable insights. Preferred mixing has been used to highlight
the role of contact patterns in the HIV transmission dynamics [17, 18]. The impact of
selective mixing is studied in the transmission of STDs [19]. In these studies, the contact
rate matrices are formulated in terms of activity levels and subpopulation sizes by using
a proportionate mixing assumption. The relation between the basic reproduction num-
ber and the initial exponential growth rate of an epidemic to models with heterogeneous
mixing has been studied [20–22]. The authors show that an epidemic with heterogeneous
mixing may have a quite different epidemic size than an epidemic with homogeneous
mixing, even though they may have the same reproduction number and initial exponen-
tial growth rate. Determination of the final size of an epidemic under the assumption of
heterogeneous mixing requires additional data from the initial exponential growth stage
of the epidemic [21]. More recently, a two-group influenza model has been used to study
the impact of heterogeneous mixing on the probability of the extinction of influenza
[23, 24]. It has been pointed out that heterogeneousmixing between two subgroups would
play a key role to explain the delays in the geographic spread of the 2009 H1N1 pandemic
observed in Mexico and Japan.
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In this manuscript, a deterministic two-group model is used to study the influenza
transmission dynamics in heterogeneous environments. A two-group model allows for
different activity levels and heterogeneous mixing between subgroups. In particular, two
groups are coupled by a mixing matrix whose entries pij, i, j = 1, 2 represent the pro-
portion of individuals in group i that contact individuals in the other group j. This
two-group model of influenza is an extension of the prototype model by Brauer [20] in
which a two-groupmodel is used to investigate the impact of proportionate mixing on the
basic reproduction number and the final epidemic size. Now, our model involves more
extensive heterogeneous mixing scenarios between the two groups. Specifically, several
mixing scenarios are considered, including proportionate mixing, preferred mixing and
like-with-like mixing, by varying the group mixing fractions.
We explore how this mixing pattern can affect the basic reproduction number and the

final epidemic size. Heterogeneous mixing certainly changes the reproduction number
and the final epidemic size, but it is not trivial to determine whether different mixing
assumptions can change them substantially or not. The level of transmissibility measured
by the basic reproduction number R0 is varied to highlight the differences and similari-
ties for the results under several heterogeneousmixing scenarios.Moreover, we formulate
an optimal control framework to investigate how these mixing patterns will influence the
effectiveness of group-specific treatment strategies in the two-group model. Under vari-
ous mixing scenarios, optimal group-specific treatment strategies and the corresponding
influenza outcomes are compared. This can help us address some of the important issues
such as allocating optimal treatments for future pandemic preparedness plans.

Methods
A heterogeneous mixing model

We consider a two-group influenza model based on a standard compartmental SITR
model. Two additional compartments, a latent class and an asymptomatic class, are
included due to the characteristics of influenza. Each class is divided into two subpop-
ulations of sizes N1 and N2. For each group i = 1, 2, we have a susceptible class Si, a
latent class Li, an infected class with symptoms Ii, an asymptomatic infected class without
symptoms Ai and a treated class Ti. A two-group influenza model involves two differ-
ent age groups, which are connected by a mixing matrix (pij) for i, j = 1, 2, by allowing
for the possibility of subgroups with different activity levels and heterogeneous mix-
ing between these subgroups. A two-group influenza model with two subgroups can be
written as

S′
1 = −a1

[
p11

S1(I1 + σT1 + δA1)

N1
+ p12

S1(I2 + σT2 + δA2)

N2

]
,

L′
1 = a1

[
p11

S1(I1 + σT1 + δA1)

N1
+ p12

S1(I2 + σT2 + δA2)

N2

]
− κ1L1,

I ′1 = pκ1L1 − (α1 + u1)I1,

A′
1 = (1 − p)κ1L1 − η1A1,

T ′
1 = u1I1 − αT ,1T1,

D′
1 = d1α1I1 + dT ,1αT ,1T1,

(1)
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S′
2 = −a2

[
p21

S2(I1 + σT1 + δA1)

N1
+ p22

S2(I2 + σT2 + δA2)

N2

]
,

L′
2 = a2

[
p21

S2(I1 + σT1 + δA1)

N1
+ p22

S2(I2 + σT2 + δA2)

N2

]
− κ2L2,

I ′2 = pκ2L2 − (α2 + u2)I2,

A′
2 = (1 − p)κ2L2 − η2A2,

T ′
2 = u2I2 − αT ,2T2,

D′
2 = d2α2I2 + dT ,2αT ,2T2.

For each group i, κi is the rate of passage from the latent to the symptomatic infective
or asymptomatic infective classes; p is the fraction of latent members who become symp-
tomatic infectious, and the fraction (1 − p) progress to the asymptomatic stage; δ is the
infectivity reduction factor for the asymptomatic class and σ is the infectivity reduction
factor for treatedmembers; αi(αT ,i) is the natural recovery rate from the infected (treated)
to the removed stage and ηi is the rate of passage from the asymptomatic to the removed
stage. Also, ui is a constant treatment rate, which will be modified as a time-dependent
treatment rate in the next section. di (dT ,i) is the disease-induced death rate from the
infected class (the treated class).
In this manuscript, we generalize the proportional mixing assumption to the preferred

mixing one and we carry out mathematical analysis under different mixing patterns. Sup-
pose that the members of group i make ai contacts per unit time and that the fraction of
contacts made by the members of group i with the members of group j is pij, for i, j = 1, 2;
then we have the following:

p11 + p12 = p21 + p22 = 1.

For our two-group influenza model, we consider preferred mixing, in which a fraction
πi of each group mixes randomly with its own group and the remaining members mix
proportionately. Thus, preferred mixing is given by

p11 = π1 + (1 − π1)p1, p12 = (1 − π1)p2,

p21 = (1 − π2)p1, p22 = π2 + (1 − π2)p2,
(2)

where

pi = (1 − πi)aiNi
(1 − π1)a1N1 + (1 − π2)a2N2

.

More details on the preferred mixing formulation can be found in previous studies
[18, 20].

The impact of mixing patterns on the contact matrix

Let us investigate the impact of different mixing patterns on the contact matrix. The con-
tact matrix is defined as the product of group activity level, ai and the group mixing
proportions pij (i, j = 1, 2) given in (2).

C =
[
a1p11 a1p12
a2p21 a2p22

]
.

To illustrate the impact of different mixing patterns, several group mixing fractions
are chosen; C1 (π1 = π2 = 0), C2 (π1 = 0.25,π2 = 0.75), C3 (π1 = π2 = 0.5),
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C4 (π1 = 0.75,π2 = 0.25) and C5 (π1 = π2 = 1) using a1 = 0.5260, a2 = 0.2670 and
N1 = 1750 and N2 = 250. Then, we get the following contact matrices:

C1 =
[
0.4904 0.0356
0.2489 0.0181

]
,C2 =

[
0.5167 0.0093
0.0652 0.2018

]
,C3 =

[
0.5082 0.0178
0.1245 0.1425

]
,

C4 =
[
0.5025 0.0235
0.1645 0.1025

]
,C5 =

[
0.5260 0

0 0.2670

]
.

When the group mixing fraction is π1 = π2 = 0, we have proportionate mixing which
is a special case of preferred mixing (C1). It is also possible to have like-with-like mixing
when π1 = π2 = 1, in which members of each group mixes only with members of the
same group. That is, for like-with-like mixing, p11 = p22 = 1 and p12 = p21 = 0 (C5). For
like-with-like mixing, the contact matrix is a diagonal matrix.

The basic reproduction number

One of the most important factors in mathematical epidemiology is the basic repro-
duction number, which is the average number of secondary infectious cases when
one infectious individual is introduced to a whole susceptible population. The basic
reproduction number can be calculated by using the next generation matrix approach,
outlined in [25, 26]. Since the model includes treatments, we also compute the controlled
reproduction number in the presence of constant treatment rates (ui).
Let x = (L1, I1,A1,T1, L2, I2,A2,T2)T and F(x) represent all the new infection rates.

The net transition rates out of the corresponding compartment are represented by V (x).
Then, we find the Jacobian matrix of F(x) and V(x) evaluated at the disease-free equilib-
rium point x∗, which consists of S1 = N1, S2 = N2 and the rest of the components zero.
The spectral radius of the matrix FV−1 yields the basic reproduction number (R0) and
the controlled reproduction number (Rc) in the presence of treatments (more details are
given in Appendix A).
As a result, the basic reproduction numberR0 with u1 = u2 = 0 is

R0 = 1
2

(
a1p11�1 + a2p22�2 +

√
(a1p11�1 − a2p22�2)2 + 4a1a2p12p21�1�2

)
,

where �1 =
(

δ(1−p)
η1

+ p
α1

)
,�2 =

(
δ(1−p)

η2
+ p

α2

)
.

The controlled reproduction numberRc is

Rc = 1
2

(
a1p11	1 + a2p22	2 +

√
(a1p11	1 − a2p22	2)2 + 4a1a2p12p21	1	2

)
,

where 	1 =
(

δ(1−p)
η1

+ p(αT ,1+σu1)
αT ,1(α1+u1)

)
,	2 =

(
δ(1−p)

η2
+ p(αT ,2+σu2)

αT ,2(α2+u2)

)
.

The expressions for the basic reproduction numberR0 and the controlled reproduction
number Rc have been generalized from the ones with proportional mixing [20] to the
ones with preferred mixing. The activity levels and the mixing fractions play a critical role
in the basic reproduction number.
For instance, taking partial derivatives of pij with respect to πi, we can show that p11

and p22 increase and p12 and p21 decrease as either π1 or π2 increase to 1. This results
in the basic reproduction number increasing as preferred mixing becomes like-with-like
mixing. Numerical sensitivity analysis ofR0 andRc is carried out in the next section.
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The final size relation

For a one-group epidemic model, there is a final size relation that makes it possible to
calculate the size of the epidemic from the reproduction number [5, 22, 27, 28]. In this
section, we establish a final size relation for the two-group model (1) with u1 = u2 = 0.
This relation does not involve the basic reproduction number explicitly but still makes it
possible to calculate the size of the epidemic from the model parameters. The final size
relation of the model (1) can be obtained as[

ln S1(0)
S1(∞)

ln S2(0)
S2(∞)

]
=

⎡
⎣ a1p11�1

(
1 − S1(∞)

N1(0)

)
+ a1p12�2

(
1 − S2(∞)

N2(0)

)
a2p21�1

(
1 − S1(∞)

N1(0)

)
+ a2p22�2

(
1 − S2(∞)

N2(0)

)
⎤
⎦ . (3)

For the relation between the final size relation and the basic reproduction number, we
use the eigenvector v ofR0 as in [21], then

v =[ v1, 0, 0, 0, v2, 0, 0, 0]T , (4)

where

v1 = a1p11�1 − a2p22�2
√

(a1p11�1 − a2p22�2)2 + 4a1a2p12p21�1�2
2a1p2�1(1 − π2)

, v2 = 1.

The eigenvalue and the eigenvector can be written as[
p11�1v1 (1 − π1)p1�2v2

(1 − π2)p2�1v1 p22�2v2

][
a1
a2

]
=

[
R0v1
R0v2

]
. (5)

Also, the activity levels can be found in terms ofR0 using (4) and (5),

a1 = R0

(
v1p22 − v2(1 − π1)p1

p11p22 − p12p21

) (
1

�1v1

)
, a2 = R0

(
v2p11 − v1(1 − π2)p2

p11p22 − p12p21

) (
1

�2v2

)
.

When these values are substituted into the final sized system, S1(∞) and S2(∞) can be
expressed in terms of the model parameters. As seen in the analytic expression above, the
group specific final sizes are coupled with each other in a complex way. In the previous
study [21], it can be simplified under proportionate mixing and shown that the final epi-
demic size in group 1 is larger than in group 2 when a1 > a2. Also, it has been pointed out
thatR0 alone is not enough to determine the final epidemic size due to this complex cou-
pling. It is difficult to observe how different mixing patterns affect the final size relation.
Therefore, we carry out sensitivity analysis numerically as mixing patterns are varied in
the following section. The details on the computation of the final size relation are given
in Appendix A and the references [20, 21].

Modeling optimal treatment strategy
Optimal control theory has been used frequently in a number of biological and epi-
demiological models (see [29] and the references therein). For influenza transmission
models, optimal interventions are identified and the impact of optimal interventions on
the influenza dynamics are investigated [30–32]. Various intervention strategies such as
vaccination, antiviral treatment, and isolation controls are studied; optimal strategies for
the 1918 influenza pandemic with limited resources [33] and age-dependent optimal vac-
cination strategies are investigated in context of the transmission dynamics of the 2009
influenza pandemic [34, 35].
We employ optimal control theory to explore the impact of antiviral treatment in sit-

uations that mimic 1918-like influenza pandemic scenarios. We modify model (1) by
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incorporating time-dependent control functions to measure the effectiveness of group-
specific treatment strategies. Intervention strategies (policies) are modeled by the func-
tions ui(t)(i = 1, 2) that externally control the number of treated cases. The objective
functional F over a finite time interval [0,T] is given by the expression:

F(u1(t),u2(t)) =
∫ T

0

(
C1I1(t) + C2I2(t) + W1

2
u21(t) + W2

2
u22(t)

)
dt. (6)

We choose to model the control efforts via a linear combination of quadratic terms,
ui2(t) (i = 1, 2). The constants C1,C2 are the weight constants for infected individuals
andW1,W2 are the relative costs of the interventions.Wemight include the cost of deaths
in the objective functional so that we would emphasize the cost of disease-induced deaths.
However, it turns out that the results including the cost of deaths and the ones without
the cost of deaths are almost indistinguishable (results are not shown here).
The optimal control problem is that of finding optimal functions (u1∗(t),u2∗(t)) such

that

F(u∗
1(t),u∗

2(t)) = min
F(u1(t),u2(t)), (7)

where 
 =
{
(u1(t),u2(t)) ∈ (

L1(0,T)
)2 ‖0 ≤ u1(t),u2(t) ≤ b, t ∈ [0,T]

}
subject to the

state equations given by (1) with initial conditions. The existence of optimal controls is
guaranteed from standard results on optimal control theory [36]. Pontryagin’s Maximum
Principle is used to establish necessary conditions that must be satisfied by an optimal
solution [37]. Derivations of the necessary conditions are shown in Appendix B.
A two point boundary method [29] is employed to find numerical solutions to (7). First,

the state system (1) is solved forward with initial conditions. Then, the adjoint system
with transversality conditions is solved backward in time. Finally, the optimality condi-
tion is updated and whole steps are iterated until convergence is achieved. The baseline
parameter values are given in Table 1, which has been taken [20].

Table 1 Parameter definitions and baseline values used in the numerical simulations

Parameter Description Values

ai Group-specific activity level for age group i 0.1 − 0.84

πi Group-specific mixing fraction for age group i 0 − 1

αi Recovery rate for infected class for age group i (days−1) 0.244

ηi Rate of progression from asymptomatic to recovered class for age group i (days−1) 0.244

αT ,i Recovery rate for treated class for age group i (days−1) 0.323

κi Rate of progression from latent to infective or asymptomatic class (days−1) 0.526

p Fraction of latent individuals who become infected 0.667

σ Infectivity reduction for treated class 0.2

δ Infectivity reduction for asymptomatic class 0.5

di Mortality rate for infected class for age group i (days−1) 0.01 (i = 1)

0.08 (i = 2)

dT ,i Mortality rate for recovered class for age group i (days−1) 0.005 (i = 1)

0.04 (i = 2)

b The upper bound of control 0.2, 0.5, 1

Ci Weight constants on Ii (i = 1, 2) 1

Wi Weight constants on controls (i = 1, 2) 1, 100

N1 Population size for group 1 1750

N2 Population size for group 2 250
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Results and discussion
We present the numerical simulations associated with implementing optimal treatment
control functions as well as their effect on two-group influenza dynamics under different
mixing patterns. In order to investigate the impact of mixing patterns, the group mix-
ing fractions πi are varied from 0 to 1 for each i = 1, 2, including proportionate mixing
(πi = 0), half mixing (πi = 0.5) and like-with-like mixing (πi = 1).

The results in the absence of treatments

First, we illustrate the influenza dynamics of (1) in the absence of treatments
(u1 = u2 = 0). Figure 1 compares the group specific incidence under three mixing sce-
narios: proportionate mixing (dotted curve), half mixing (solid curve) and like-with-like
mixing (dashed curve). Furthermore, the results are shown under two different values of
R0 (using a moderate value and a higher value on the left and right, respectively). The
group 2 incidence is smaller under like-with-like mixing than the one using proportion-
ate mixing, while the group 1 incidence is larger. The incidence in the lower activity level
group 2 gets significantly larger as the mixing becomes more proportionate than the one
in the higher activity group. Hence, this leads to the total incidence or the final epidemic
size getting smaller as the mixing becomes like-with-like mixing. Also, it clearly shows
more significant differences in the final epidemic size asR0 gets larger in the right panels.
Next, the basic reproduction number R0 is displayed as a function of group mixing

fractions in Fig. 2. The left panel shows the basic reproduction numberR0 using a mod-
erate value of activity levels (R0 ∈ [1.35, 1.45]) while the right one using a higher value
of activity levels (R0 ∈ [2.45, 2.55]). Both panels show that the basic reproduction num-
ber gets slightly larger as preferred mixing becomes like-with-like mixing (either π1 or
π2 becomes 1). This is consistent with the analytic expression for R0. Since p11 and p22
increase and p12 and p21 decrease as either π1 or π2 become 1, the basic reproduction
number increases as preferred mixing becomes like-with-like mixing. Using the param-
eter values given here, it is worth mentioning that the effect of the lower activity group
mixing fraction (π2) on the values ofR0 is slightlymore significant than the higher activity

Fig. 1 The impact of mixing patterns on the group-specific incidence. The number of incidence for each
group is displayed under proportionate mixing (dotted), half mixing (solid) and like-with-like mixing (dashed).
The left panels show the results for the moderate value ofR0 = 1.32, while the right panels show the results
for the higher value ofR0 = 2.45



Choe and Lee Theoretical Biology andMedical Modelling  (2015) 12:28 Page 9 of 22

Fig. 2 The impact of mixing patterns on the basic reproduction numberR0. The basic reproduction number
R0 is displayed as a function of π1 and π2, when activity levels are fixed (a moderate R0 in the left panel and a
higher R0 in the right panel)

group mixing fraction (π1). The slope for the axis of π2 increases more than the slope for
the axis of π1 in both panels.
We compute the final epidemic size, which is the number of members of the population

who are infected over the course of the epidemic, N − S∞ with S∞ = limt→∞ S(t). This
can be described in terms of the final attack ratio, (1 − S∞/N). In Fig. 3, the final attack
ratio is displayed under various mixing scenarios (six different combinations of π1 and
π2). The left and middle panels show the final attack ratios for group 1 and group 2,
respectively, while the right panel shows the total final attack ratio. Note that the range
of R0 is between 1.72 and 1.82 (x-axis) using a1 = 0.526 and a2 = 0.267 as the mixing
fractions are varied. The final attack ratio for group 1 gets larger as the mixing becomes
like-with-like mixing (π1 = π2 = 1), while it becomes significantly smaller in group 2.
Consequently, the total final attack ratio becomes smaller as the mixing becomes like-
with-likemixing. Proportionatemixingmakes the individuals in group 2more likely to get
infected than like-with-like mixing resulting in a significantly increased the final attack
ratio in group 2. This leads to the result that the total final attack ratio follows exactly the
same order (i.e. the total final attack ratio becomes smaller as π2 becomes to 1 in the right
panel). Moreover, all results follow the order of a mixing fraction for the group 2 (π2)
whether decreasing or increasing in the final attack ratio (all panels). Therefore, the basic
reproduction number and the final attack ratio are not consistent and this reconfirms that

Fig. 3 The impact of mixing patterns on the final attack ratio. The impact of different mixing patterns on the
final attack ratio is displayed using a1 = 0.526 and a2 = 0.267. All results are in order of π2, whether
decreasing or increasing and regardless of the different combinations of mixing fractions
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the basic reproduction number alone is not sufficient to determine whether preferred
mixing increases the final epidemic size or not [21].
These results are dependent on the group activity level, the group mixing fraction, and

the group population size. We present a summary of the impact of these parameters on
the final attack ratio as group activity levels and group population sizes are varied from the
baseline scenarios in the next section.

The impact of mixing patterns on the group-specific optimal treatment

We present the numerical simulations associated with implementing optimal treatment
control functions as well as their effect on two-group influenza dynamics under differ-
ent mixing patterns. Also, the impact of different levels of transmissibility is investigated
by varying the basic reproduction number. Figures 4 and 5 show the results under three
different mixing patterns using a moderate value of R0 ∈ [1.73, 1.79]. Likewise in the pre-
vious section, three mixing patterns are chosen as proportionate mixing, half mixing and
like-with-like mixing. In Fig. 4, the proportion of incidence and cumulative incidence
in the presence of optimal treatments (red curves) are compared with the results in the
absence of treatments (black curves). The results show that there are no outbreak in
the presence of treatments and this indicates that group-specific optimal treatments are
effective enough to prevent outbreaks regardless of mixing patterns.
Figure 5 illustrates the impact of mixing patterns on the group-specific optimal treat-

ment controls and the proportion of incidence under the three mixing patterns. Note
that the time window of treatment is wider for group 1 under all mixing patterns while
the time period of treatment becomes smaller for group 2 as the mixing becomes like-
with-like (top panels). This is due to the fact that group 1 has a higher activity level and
a larger population size than group 2. Also, the cumulative treated proportion becomes
smaller as mixing becomes like-with-like for group 2, while it is the opposite for group
1. As noted in the previous section, the incidence in the lower activity level group 2 gets
significantly larger as the mixing becomes more proportionate than the one in the higher

Fig. 4 The impact of optimal age-specific controls under different mixing patterns. The proportion of
group-specific incidence in the presence of optimal treatment (red curves) is displayed under the three
mixing patterns for a moderate value ofR0. The results are compared with the ones in the absence of
treatment (black curves)
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Fig. 5 Optimal age-specific controls under different mixing patterns. Optimal group-specific treatment and
the corresponding incidence are displayed (top panels) under the three mixing patterns using a moderate
value ofR0. The proportion of cumulative treated and cumulative infected individuals are displayed under
proportionate mixing, half mixing and like-with-like mixing (bottom panels)

activity group 1. Hence, this leads to the final epidemic size getting smaller and it requires
less treatment as mixing becomes like-with-like mixing (bottom panels).
Figures 6 and 7 show the results under three different mixing patterns using a higher

value of R0 ∈ [2.45, 2.53] and higher activity levels a1 = 0.742, a2 = 0.377. Again, Fig. 6
shows the proportion of incidence and cumulative in the presence of optimal treatments
(red curves) are compared with the results in the absence of treatments (black curves).
Since the basic reproduction number becomes higher, optimal treatments can not stop
the outbreaks under all mixing patterns. Figure 7 displays the group-specific optimal
treatment controls and the proportion of incidence. We observe that the time period of
treatment gets smaller for group 1 but larger for group 2, than the ones using a moder-
ateR0. Hence, this results in the cumulative treated cases increasing significantly in both
groups. As R0 becomes higher, the number of infected individuals in group 2 increases

Fig. 6 The impact of optimal age-specific controls under different mixing patterns. The proportion of
group-specific incidence in the presence of optimal treatment (red curves) is displayed under the three
mixing patterns for a higher value ofR0. The results are compared with the ones in the absence of treatment
(black curves)
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Fig. 7 Optimal age-specific controls under different mixing patterns. Optimal group-specific treatment and
the corresponding incidence are displayed (top panels) under the three mixing patterns using a higher value
ofR0. The proportion of cumulative treated and cumulative infected individuals are displayed under
proportionate mixing, half mixing and like-with-like mixing (bottom panels)

dramatically as the mixing becomes proportionate. Note that group 2 (the lower activity
group) is more sensitive to mixing patterns.

The impact of mixing patterns on the group-specific final epidemic size

Figure 8 displays the group-specific final attack ratio and the total final attack ratio as
a function of R0 in the absence of treatment under three distinct mixing patterns. The
basic reproduction number is increased as the activity levels are increased in the ranges
of a1 ∈ [0.1, 0.827] and a2 ∈ [0.05, 0.42]. The left panel shows that the final attack ratio
for group 1 becomes almost indistinguishable regardless of mixing. The final attack ratio
for group 2 has the largest value under proportionate mixing (circled), while it becomes
smaller as the mixing becomes like-with-like (triangle). This results in the fact that the
total (both groups) final attack ratio follows the order of group 2.
Figure 9 presents the comparisons of the final attack ratio and the proportion of cumu-

lative treated as a function of R0 in the presence of treatment. It is clear how optimal
treatment strategies and the mixing fractions affect the final attack ratio. Similar to the
results in the absence of treatment, the final attack ratio for group 1 is almost indistin-
guishable under all mixing patterns. Again, the final attack ratio for group 2 becomes

Fig. 8 Final attack ratio in the absence of treatment. The final attack ratio in the absence of treatment is
displayed as a function ofR0 under three mixing patterns. The basic reproduction number is increased as
the activity levels increase in the range of a1 ∈ [0.1, 0.827] and a2 ∈ [0.05, 0.42]
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Fig. 9 Final attack ratio in the presence of treatment. The impact of the mixing patterns on the final attack
ratio is illustrated. The final attack ratio in the presence of optimal treatment strategies is displayed as a
function ofR0 under the three mixing patterns

smaller as the mixing becomes like-with-like. However, these results show that optimal
treatment strategies can significantly limit the severity of outbreaks when R0 is brought
below a certain threshold (the controlled reproduction number, Rc). Particularly, for the
lower activity group, the reduction is dramatic (triangle in the top middle panel). The
cumulative treated results are consistent with the final attack ratio results (more infected,
more treatment needed in the bottom panels).

The impact of control parameters

There are two critical control parameters that change the corresponding dynamics
greatly. One of them is the control upper bound, bi, which represents the maximum level
of effectiveness for implementing the treatment. The influenza outcomes are dependent
on the control upper bound in a straightforward fashion. As the control upper bound is
decreased, the magnitude of control decreases for all mixing patterns as shown in Fig. 10.
This leads to a longer time of treatment in both groups and interestingly, it results in

Fig. 10 The impact of different control upper bounds. The optimal group-specific treatment and the
corresponding incidence are displayed under the three mixing patterns. The results are presented using a
lower control bound (b1 = b2 = 0.2)
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larger costs (more treated cases) and larger infected cases. This indicates that the higher
treatment rate is more effective (less treated cases and less infected as seen in Fig. 5).
The other control parameters are the weight constants or the relative costs of treat-

ments which can play a critical role in the influenza dynamics. As we increase these
parameters, the relative cost of control increases and therefore, the magnitude of the
optimal controls decreases, resulting in the increase of infected individuals and the final
epidemic size in both groups regardless of the mixing pattern in Fig. 11.

The impact of different activity levels and subpopulation sizes

All simulation results so far have been based on the case where group 1 is a higher activity
group and a larger population size than the ones for group 2 (a1 > a2, N1 > N2). Now
we investigate the impact of different group activity levels and subpopulation sizes on the
optimal treatments and the resulting two group influenza dynamics. There are a total of
nine scenarios as we vary group activity levels (a1, a2) and subpopulation sizes (N1,N2).
Only some selected results are presented because the rest of the cases are identical.

• Baseline scenario: a1 > a2, N1 > N2
• Scenario 1: a1 > a2, N1 = N2
• Scenario 2: a1 > a2, N1 < N2
• Scenario 3: a1 = a2, N1 = N2
• Scenario 4: a1 < a2, N1 < N2

1. Let us consider the first scenario for a1 > a2 and N1 = N2: the number of infected
and treated cases for group 1 under the baseline scenario is larger than the ones under
the first scenario, while it is the opposite for group 2 under all mixing patterns. However,
the total number of infected and treated cases is larger under the baseline scenario than
the first scenario. When mixing is proportionate (πi = 0), the total cumulative treated
(infected) number of the baseline scenario is 403 (894) and the one for the first scenario is
376 (837), respectively. Now, when the mixing is like-with-like (πi = 1), the total cumula-
tive treated number of the baseline scenario is 399 (885) and the one for the first scenario
is 236 (522), respectively. Interestingly, the baseline scenario requires more treatment, but
the number of infected people is larger than the first scenario, and the difference becomes
more significant as mixing becomes more like-with-like.

Fig. 11 The impact of different weight constants. The optimal group-specific treatment and the
corresponding incidence are displayed under the the three mixing patterns. The results are presented using
a higher weight constant (W1 = W2 = 100)
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2. The second scenario is a1 > a2 and N1 < N2: this scenario is for the case where the
higher activity group has a smaller population size than the lower activity group. The total
cumulative treated (infected) number is 360 (799) for proportionated mixing and 73 (159)
for like-with-like mixing, respectively. This result demonstrates that optimal treatment
has more significant impact to reduce the epidemic size as mixing become like-with-like
when a higher activity group has a smaller subpopulation size. The time using treatment
control for group 2 is longer than the one of group 1 under proportionate mixing. How-
ever, the time using treatment of group 2 decreases by increasing π1, so that the time of
treatment for group 1 is longer than the one for group 2 as mixing becomes like-with-like.
This suggests that the time duration of implementing treatment depends on the group
activity levels (the higher activity requires a longer time to implement).
3. The third scenario is that the activity level and the population size for group

1 and group 2 are the same. The basic reproduction number, the final attack ratios
and optimal group-specific treatments are almost the same under all mixing patterns.
It shows that the impact of mixing patterns is not significant when groups have the
same activity level and the same population size. Lastly, the scenario 4 for a1 < a2
and N1 < N2 is exactly identical as the baseline scenario, hence, the results are
omitted.

Conclusions
We have studied the dynamics of influenza transmission in a two-group model in which
two groups are connected via a mixing matrix. The model proposed here represents
two age groups with different activity levels and distinct mixing patterns. Several mix-
ing patterns are considered such as proportionate and preferred mixing by varying the
group mixing fractions πi for i = 1, 2. The impact of these mixing patterns is illus-
trated on the basic reproduction number and the group specific final epidemic size.
Also, the intensity of R0 is varied by using different values of the group specific activity
levels.
The basic reproduction numberR0 increases as themixing becomes like-with-likemix-

ing. Interestingly, in the absence of treatments, the opposite is true for the final epidemic
size, which gets smaller as mixing becomes like-with-like as reported [23]. This is con-
sistent with the observations that the basic reproduction number alone is not enough
to determine the final epidemic size in a heterogeneous model [21]. However, the basic
reproduction number and the final epidemic size depend on the group activity level and
the group population size as well. Under our baseline scenarios (a1 > a2 and N1 > N2),
the final attack ratios decreases as π2 increases to 1, which implies that the group 2mixing
fraction determines the order of the final attack ratio . Using different sets of parameters,
the order might changes depending on either π1 or π2.
Furthermore, we formulated an optimal framework to investigate group-specific opti-

mal treatment strategies under various mixing scenarios. For a moderate value ofR0, the
optimal treatment can prevent the outbreaks in both groups under all mixing patterns.
The treatment time is longer for group 1 and the treated cases are larger since it has a
higher activity level and a large population size, regardless of mixing patterns. For a higher
value of R0, the optimal treatment can not stop the outbreaks in both groups under all
mixing patterns. Compared with the moderate R0 results, the treatment time for group
1 decreases, but for group 2 increases. This is due to the fact that the number of those
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infected in the lower activity group gets significantly larger as the mixing becomes more
proportionate. Therefore, treating more people is necessary with emphasis on the lower
activity group, when two groups mix proportionately.
Optimal treatment strategies can significantly limit the severity of outbreaks when R0

is brought below a certain threshold (the controlled reproduction number, Rc). Under
optimal treatments in both groups, the controlled reproduction number Rc and the
final attack ratio decrease slightly as mixing becomes like-with-like. Again, the final
attack ratio is in the order of either π1 or π2. Preferred mixing changes the basic
reproduction number, the controlled reproduction number and the final epidemic size
in a rather complex way and the effect gets more substantial as the epidemic gets
more severe.
Further, the impact of different group activity levels and subpopulation sizes are

explored for the optimal treatments and the resulting two group influenza dynamics.
First, the groupmixing fractions can play a key role in the final attack ratio. For the case of
a1 > a2 and N1 = N2, π2 determines the order of the final attack ratio, i.e., the total final
attack ratio becomes smaller as π2 becomes 1. For the case of a1 > a2 and N1 < N2, the
total final attack ratio becomes smaller as π1 becomes 1. Based on these results, the effec-
tiveness of optimal treatments is dependent on the group specific parameters. In general,
the optimal treatment becomes more efficient as the mixing becomes more like-with-like.
The efficiency of optimal treatments becomes more substantial when a higher activity
group has a smaller population size (a1 > a2 and N1 < N2). Also, the time duration of
implementing treatment depends on the group activity levels while the final attack ratios
are more sensitive to the group population size.
Sensitivity analysis for the control upper bound and the weight constant has been car-

ried out. The results using a lower upper bound (b = 0.2) and a higher weight constant
(W = 100) show that the magnitude of the treatment controls decreases and therefore,
the total amount of treated and infected cases are increased in both groups under all mix-
ing patterns. Clearly, this indicates that a more intensive treatment or a higher treatment
rate is able to more efficiently reduce the total number of infected individuals with less
treatment.
For the parameters used here, our results indicate that treatment of both groups with

a higher rate is the most effective, regardless of mixing scenarios. However, proportion-
ate mixing requires more treated cases for all combinations of different group activity
levels and group population sizes. In other word, as the mixing becomes more like-with-
like mixing, treatment of the more active group in the population is almost as effective
as treating the entire population, since it reduces the number of disease cases effectively
but requires the similar treatments. The gain is more pronounced as the basic reproduc-
tion number increases. This can be a critical issue which has to be considered for future
epidemic interventions, especially when there are limited resources.
This study focuses on the two-group influenza model to explore the effect of het-

erogeneous mixing on the group-specific optimal treatment. This simple two-group
influenza model can be used for any general disease which consists of two different
activity levels and different mixing patterns. Furthermore, this work can be generalized
to a multi-group influenza model (with more age groups) so that it can capture more
interesting and realistic epidemiological scenarios. This will be carried out in our future
study.
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Appendix A
The basic reproductive number is calculated by using the methodology (the next genera-
tion matrix approach) outlined in [26]. Now, let F(x) represent the rate of appearance of
new infections. The net transition rates out of the corresponding compartment are rep-
resented by V (x). Then, we find the Jacobian matrix of F(x) and V (x) and denote them
F =

[
∂F
∂xj

]
and V =

[
∂V
∂xj

]
, evaluated at the disease free equilibrium point x∗, which

consists of S1 = N1, S2 = N2 with the rest of them zero.

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a1p11 S1
N1

a1p11 S1δN1
a1p11 S1σN1

0 a1p12 S1
N2

a1p12 S1δN2
a1p12 S1σN2

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 a2p21 S2

N1
a2p21 S2δN1

a2p21 S2σN1
0 a2p22 S2

N2
a2p22 S2δN2

a2p22 S2σN2
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In F, a1p12 S1
N2

is replaced by the balance relation a2p1
N1

= a1p2
N2

. Then, we get

a1((1 − π1)p2)
S1
N2

= a2((1 − π1)p1)
S1
N1

.

Also,

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

κ1 0 0 0 0 0 0 0
−pκ1 α1 + u1 0 0 0 0 0 0

−(1 − p)κ1 0 η1 0 0 0 0 0
0 −u1 0 αT ,1 0 0 0 0
0 0 0 0 κ2 0 0 0
0 0 0 0 −pκ2 α2 + u2 0 0
0 0 0 0 −(1 − p)κ2 0 η2 0
0 0 0 0 0 −u2 0 αT ,2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The matrix FV−1 has six zero eigenvalues and the remaining two eigenvalues are the
roots of the following quadratic equation:

λ2 − (p11a1	1 + p22a2	2)λ + (p11p22 − p12p21)a1a2	1	2 = 0.

The controlled reproductionRc is the largest of these two eigenvalues, which is

Rc = 1
2

(
a1p11	1 + a2p22	2 +

√
(a1p11	1 − a2p22	2)2 + 4a1a2p12p21	1	2

)
, (8)

where 	1 =
(

δ(1−p)
η1

+ p(αT ,1+σu1)
αT ,1(α1+u1)

)
,	2 =

(
δ(1−p)

η2
+ p(αT ,2+σu2)

αT ,2(α2+u2)

)
.

The basic reproduction numberR0 isRc with u1 = u2 = 0:

R0 = 1
2

(
a1p11�1 + a2p22�2 +

√
(a1p11�1 − a2p22�2)2 + 4a1a2p12p21�1�2

)
,

where �1 =
(

δ(1−p)
η1

+ p
α1

)
,�2 =

(
δ(1−p)

η2
+ p

α2

)
.

Next, we compute the final size relation by introducing the notation g(∞) for
limt→∞ g(t) and ĝ for

∫ ∞
0 g(t)dt assuming g is a nonnegative integrable function defined

for 0 ≤ t < ∞.
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L1(∞) = 0, I1(∞) = 0, A1(∞) = 0, T1(∞) = 0,

L2(∞) = 0, I2(∞) = 0, A2(∞) = 0, T2(∞) = 0,

S1(0) + L1(0) − S1(∞) = N1(0) − S1(∞) = κ1L1,

S2(0) + L2(0) − S2(∞) = N2(0) − S2(∞) = κ2L2.

Also, we have the following:

φ1 Î1 = αT ,1T̂1, φ2 Î2 = αT ,2T̂2,

(1 − ρ)κ1L̂1 = η1Â1, (1 − ρ)κ2L̂2 = η2Â2,

ρκ1L̂1 = (α1 + u1)Î1, ρκ2L̂2 = (α2 + u2)Î2.

Using the first equation in (1), we have

− S′
1
S1 =

[
a1p11
N1

(I1 + σT1 + δA1) + a1p12
N2

(I2 + σT2 + δA2)
]
. (9)

Integrating Eq. (9),

ln
S1(0)
S1(∞)

= a1p11
N1

(
Î1 + σ T̂1 + δÂ1

)
+ a1p12

N2

(
Î2 + ˆσT2 + ˆδA2

)

= a1p11
(

ρ(αT ,1 + σu1)
αT ,1(α1 + u1)

+ (1 − ρ)δ

η1

) (
1 − S1(∞)

N1

)

+ a1p12
(

ρ(αT ,2 + σu2)
αT ,2(α2 + u2)

+ (1 − ρ)δ

η2

) (
1 − S2(∞)

N2

)

∴ ln
S1(0)
S1(∞)

= a1p11	1

(
1 − S1(∞)

N1

)
+ a1p12	2

(
1 − S2(∞)

N2

)
.

(10)

Similarly,

−S′
2
S2

=
[
a2p21
N1

(I1 + σT1 + δA1) + a2p22
N2

(I2 + σT2 + δA2)

]
. (11)

Also, integrating Eq. (11),

ln
S2(0)
S2(∞)

= a2p21
N1

(Î1 + ˆσT1 + ˆδA1) + a2p22
N2

(
Î2 + ˆσT2 + ˆδA2

)

= a2p21
(

ρ(αT ,1 + σu1)
αT ,1(α1 + u1)

+ (1 − ρ)δ

η1

) (
1 − S1(∞)

N1

)

+ a2p22
(

ρ(αT ,2 + σu2)
αT ,2(α2 + u2)

+ (1 − ρ)δ

η2

) (
1 − S2(∞)

N2

)
,

∴ ln
S2(0)
S2(∞)

= a2p21	1

(
1 − S1(∞)

N1

)
+ a2p22	2

(
1 − S2(∞)

N2

)
.

(12)

The final size relation in the absence of treatment (u1 = u2 = 0) can be written as:[
ln S1(0)

S1(∞)

ln S2(0)
S2(∞)

]
=

⎡
⎣ a1p11�1

(
1 − S1(∞)

N1(0)

)
+ a1p12�2

(
1 − S2(∞)

N2(0)

)
a2p21�1

(
1 − S1(∞)

N1(0)

)
+ a2p22�2

(
1 − S2(∞)

N2(0)

)
⎤
⎦ . (13)

Appendix B
The optimal control problem for the two-group influenza model is formulated to mini-
mize the number of infected individuals for a finite time interval at a minimal cost. We
define our objective functional as follows:

F (u1(t),u2(t)) =
∫ T

0

(
C1I1(t) + C2I2(t) + W1

2
u21(t) + W2

2
u22(t)

)
dt. (14)
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Then, we seek an optimal pair (U∗,X∗) such that

F(u∗
1(t),u∗

2(t)) = min
F(u1(t),u2(t)), (15)

where 
 = {
(u1(t),u2(t)) ∈ (L1(0,T))2‖0 ≤ u1(t),u2(t) ≤ b, t ∈ [0,T]

}
subject to the

state equations given by (1) with initial conditions. The existence of optimal controls is
guaranteed from standard results in optimal control theory [36]. The necessity conditions
of optimal solutions are derived from Pontryagin’s Maximum Principle [37]. This princi-
ple converts the systems (1), (6), (7) into the problem of minimizing the Hamiltonian H
given by

H = C1I1(t) + C2I2(t) + W1
2

u21(t) + W2
2

u22(t)

+ λS1

(
−a1

[
p11

S1(I1 + σT1 + δA1)

N1
+ p12

S1(I2 + σT2 + δA2)

N2

])

+ λS2

(
−a2

[
p21

S2(I1 + σT1 + δA1)

N1
+ p22

S2(I2 + σT2 + δA2)

N2

])

+ λL1

(
a1

[
p11

S1(I1 + σT1 + δA1)

N1
+ p12

S1(I2 + σT2 + δA2)

N2

]
− κ1L1

)

+ λL2

(
a2

[
p21

S2(I1 + σT1 + δA1)

N1
+ p22

S2(I2 + σT2 + δA2)

N2

]
− κ2L2

)

+ λI1 (pκ1L1 − (α1 + u1(t))I1) + λI2 (pκ2L2 − (α2 + u2(t))I2)

+ λA1 ((1 − p)κ1L1 − η1A1) + λA2 ((1 − p)κ2L2 − η2A2)

+ λT1

(
u1(t)I1 − αT ,1T1

) + λT2

(
u2(t)I2 − αT ,2T2

)

(16)

From this Hamiltonian and Pontryagin’s Maximum Principle [37], we obtain the
following theorem:

Theorem. There exist optimal controls u∗
1(t),u∗

2(t) and corresponding solutions, S∗
i , L∗

i ,
I∗i , A∗

i and T∗
i that minimizes F(u1(t),u2(t)) over the domain 
. In order for the above

statement to be true, it is necessary that there exist continuous functions λSi(t), λLi(t),
λIi(t), λAi(t) and λTi(t) for i = 1, 2 such that

λ̇Si(t) = ai
{
pi1

(I1 + σT1 + δA1)

N1
+ pi2

(I2 + σT2 + δA2)

N2

}
(λSi − λLi),

λ̇Li(t) = κi
{
(λLi − λAi) − p(λIi − λAi)

}
,

λ̇Ii(t) = −Ci + a1p1i
S1
Ni

(λS1 − λL1) + a2p2i
S2
Ni

(λS2 − λL2) + (αi + ui)λIi − uiλTi ,

λ̇Ai(t) = a1p1i
S1δ
Ni

(λS1 − λL1) + a2p2i
S2δ
Ni

(λS2 − λL2) + ηiλAi ,

λ̇Ti(t) = a1p1i
S1σ
Ni

(λS1 − λL1) + a2p2i
S2σ
Ni

(λS2 − λL2) + αT ,iλTi ,

(17)

with the transversality conditions,

λSi(T) = λLi(T) = λIi(T) = λAi(T) = λTi(T) = 0, i = 1, 2.
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Furthermore,

u∗
1(t) = min

{
max

{
0,

I1
W1

(λI1 − λT1)

}
, 1

}
,

u∗
2(t) = min

{
max

{
0,

I2
W2

(λI2 − λT2)

}
, 1

}
.

(18)

Proof. The existence of optimal controls follows from Corollary 4.1 of [36] since the
integrand of J is a convex function ofU(t) and the state system satisfies the Lipschitz prop-
erty with respect to the state variables. The following can be derived from the Pontryagin’s
Maximum Principle [37]:

λ′
S1 = − ∂H

∂S1
= (

λS1 − λL1
) [

a1
(
p11

(I1 + σT1 + δA1)

N1
+ p12

(I2 + σT2 + δA2)

N2

)]
,

λ′
L1 = − ∂H

∂L1
= κ1

(
λL1 − λA1

) + pκ1
(
λA1 − λI1

)
,

λ′
I1 = −∂H

∂I1
= −C1 + (

λS1 − λL1
) (

a1p11
S1
N1

)
+ (

λS2 − λL2
) (

a2p21
S2
N1

)

+ λI1 (α1 + u1) − λT1u1,

λ′
A1 = − ∂H

∂A1
= (λS1 − λL1)

(
a1p11

δS1
N1

)
+ (λS2 − λL2)

(
a2p21

δS2
N1

)
+ λA1η1,

λ′
T1 = − ∂H

∂T1
= (λS1 − λL1)

(
a1p11

σS1
N1

)
+ (λS2 − λL2)

(
a2p21

σS2
N1

)
+ λT1αT ,1,

λ′
S2 = − ∂H

∂S2
= (

λS2 − λL2
) [

a2
(
p21

I1 + σT1 + δA1
N1

+ p22
I2 + σT2 + δA2

N2

)]
,

λ′
L2 = − ∂H

∂L2
= κ2

(
λL2 − λA2

) + pκ2(λA2 − λI2),

λ′
I2 = −∂H

∂I2
= −C2 + (λS1 − λL1)

(
a1p12

S1
N2

)
+ (λS2 − λL2)

(
a2p22

S2
N2

)

+ λI2(α2 + u2) − λT2u2,

λ′
A2 = − ∂H

∂A2
= (λS1 − λL1)

(
a1p12

δS1
N2

)
+ (λS2 − λL2)

(
a2p22

δS2
N2

)
+ λA2η2,

λ′
T2 = − ∂H

∂T2
= (λS1 − λL1)

(
a1p12

σS1
N2

)
+ (λS2 − λL2)

(
a2p22

σS2
N2

)
+ λT2αT ,2,

with λSi , λLi , λIi , λAi , λTi (i = 1, 2) and evaluated at the optimal controls and correspond-
ing states, which results in the adjoint system (17). The HamiltonianH is minimized with
respect to the controls at the optimal controls, so we differentiate H with respect to u1
and u2 on the set 
, giving the following optimality conditions:

∂H
∂u1

= W1u1 − λI1 I1 + λT1 I1 = 0,

∂H
∂u2

= W2u2 − λI2 I2 + λT2 I2 = 0.
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Solving for u1∗,u2∗, then

∴ u∗
1 = I1(λI1 − λT1)

W1
, u∗

2 = I2(λI2 − λT2)

W2
.

By using the standard argument for bounds a ≤ ui(t) ≤ b for i = 1, 2, we have the
optimality conditions (15).
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