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Abstract

Background: The vestibular evoked myogenic potential (VEMP) can be modelled
reasonably well by convolving two functions: one representing an average motor unit
action potential (MUAP), the other representing the temporal modulation of the MUAP
rate (rate modulation). It is the latter which contains the information of interest, and so
it would be desirable to be able to estimate this function from a combination of the
VEMP with some other data. As the VEMP is simply a stimulus-triggered average of the
electromyogram (EMG), a supplementary, easily accessible source of information is the
EMG power spectrum, which can be shown to be roughly proportional to the squared
modulus of the Fourier transform of the MUAP. But no phase information is available
for the MUAP so that a straightforward deconvolution is not possible.

Methods: To get around the problem of incomplete information, the rate modulation
is described by a thoughtfully chosen function with just a few adjustable parameters.
The convolution model is then used to make predictions as to the energy spectral
density of the VEMP, and the parameters are optimized using a cost function that
quantifies the difference between model prediction and data.

Results: The workability of the proposed approach is demonstrated by analysing
Monte Carlo simulated data and exemplary data from patients who underwent VEMP
testing as part of a clinical evaluation of their dizziness symptoms.

Conclusions: The approach is suited, for example, to estimate the duration of the
inhibition causing the VEMP or to disentangle a VEMP consisting of more than one
component.

Keywords: EMG, MUAP, VEMP

Introduction
The otolith organs in the inner ear, saccule and utricle, are sensors for linear accelera-
tions and, as such, are important for controlling posture and eye movement. To assess
their function in clinical settings it can be exploited that they also respond to brief high-
intensity sounds. Muscle reflexes elicited that way give rise to short-latency myogenic
responses, which can be recorded using surface electrodes placed over the respective
muscles. This type of signal is called vestibular evoked myogenic potential (VEMP).
Two varieties of VEMP are to be distinguished: The cVEMP represents a vestibulo-collic
reflex and is recorded from a cervical muscle such as the sternocleidomastoid, whereas
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the oVEMP represents a vestibulo-ocular reflex and arises from the extraocular muscles
[1, 2]. The two signals provide complementary diagnostic information: While the sound-
evoked cVEMP is assumed to originate primarily in the ipsilateral saccule, the oVEMP is
attributed mainly to the contralateral utricle [3]. Only the cVEMP is considered in this
article, but the theoretical framework developed is applicable to the oVEMP as well.
In clinical investigations, the data evaluation is normally confined to determining the

amplitudes and latencies of the major peaks of the VEMP, which typically has a sterotyped
waveform. However, a deeper understanding of the response can only be obtained with
the help of a model. Wit and Kingma [4] modelled the electromyogram (EMG) as the sum
of motor unit action potentials (MUAP) and explained the VEMP by a brief inhibitory
modulation of the firing rates of the motor units. Building on this pioneering work, a
convolution equation of the form

v(t) = cv
∫ ∞

−∞
r(t′)h(t − t′)dt′, (1)

was derived, where v(t) is the VEMP, h(t) is the MUAP, r(t) is a function called the rate
modulation, and cv is a constant factor [5]. In the frequency domain this equation reads

V (f ) = cvR(f )H(f ), (2)

where V, R, and H are the Fourier transforms of v, r, and h, respectively. The quantity
of interest is r(t), and therefore the question arises as to how to estimate this quan-
tity from the data. A method presented in a previous article [6] exploited the fact that
r(t) effects not only the mean of the EMG, i.e., the VEMP, but causes also a modulation
of the variance. Unfortunately, this VEMP-associated variance modulation is not gener-
ally workable in standard VEMP investigations, because it typically has a much lower
signal to noise ratio than the VEMP itself (as yet, the method was applied only to grand-
averaged data). In the present article we therefore exploit a different source of information
which promises to be much more robust: the power spectrum of the EMG. A simulation
conducted by Wit and Kingma [4] suggested that the overall shape of this spectrum cor-
responds to the energy density spectrum of the MUAP. Thus, by implication, the power
spectrum of the electromyogram allows us to estimate |H(f )|, except for a factor that
is essentially independent of frequency. Moreover, from Eq. (2) it follows that dividing
|V (f )| by this estimate provides an estimate of |R(f )|, at least conceptually.
The problem remains that this procedure provides no phase information. A conceivable

solution is to resort to higher-order spectra [7]. However, caution is advised because such
spectra are highly susceptible to noise [8]. One might also consider reconstructing H(f )
from its modulus by making certain assumptions about the phase. It could be assumed,
for example, that H(f ) represents, in good approximation, a minimum phase filter. How-
ever, such assumptions would not be well-founded. Therefore yet another approach is
proposed here: Assumptions are made about R(f ) rather than H(f ), which appears to be
a much easier task. It will be shown that this approach allows us, indeed, to interpret the
VEMP using information from the EMG. Depending on the quality of the data, it becomes
possible, for example, to estimate the duration of an inhibitory or excitatory modulation
and to get hints as to a possible multi-component structure of the VEMP.
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Theory
Power spectral density of the electromyogram

The relationship between VEMP and EMG spectrum was already addressed in the pio-
neering modeling study by Wit and Kingma [4]. Making the assumption that the MUAP
waveform is the same for all motor units, the EMG was modelled as

s(t) =
N∑

n=1
anh(t − tn), (3)

where N is the number of contributing MUAPs, and tn and an specify the occurrence
time and the amplitude, respectively, of the n-th MUAP (1 ≤ n ≤ N). A time shift by
tn corresponds to a frequency-domain multiplication by e−i2π f tn [9]. Thus, the Fourier
transform of s(t) is

S(f ) = AN (f )H(f ) (4)

with

AN (f ) =
N∑

n=1
ane−i2π f tn . (5)

A simulation by Wit and Kingma [4] suggests that |S(f )| gets its overall shape from the
factor |H(f )| and its noisy character from the factor |AN (f )|.
Building on these ideas we will now derive a simple analytical formula for the expected

power spectral density of the EMG. We first calculate the expectation of

|AN (f )|2 =
( N∑
n=1

ane−i2π f tn

)
·
( N∑
n=1

anei2π f tn
)
. (6)

By expanding the product on the right-hand side, gathering terms, and exploiting the
relationship between exponential and cosine function, the equation can be rewritten as

|AN (f )|2 =
N∑

n=1
a2n + 2

N−1∑
n=1

N∑
m=n+1

anam cos
(
2π f (tn − tm)

)
. (7)

For the next step it is assumed that both the occurence times and the amplitudes of the
MUAPs are identically distributed random variables, that all random variables are inde-
pendent, and that the numbering of the MUAPs does not imply a specific order. These
assumptions ensure that corresponding summands in Eq. (7) have the same expecta-
tion. The expectation of |AN (f )|2 can therefore be calculated from the expectations of
representative summands. This way we get

E
[|AN (f )|2] = NE[ a21]+N(N − 1)E[ a1]E[ a2]E[ cos

(
2π f (t1 − t2)

)
] . (8)

As to the cosine term we assume that the MUAP occurrence times are uniformly dis-
tributed between −T/2 and T/2, which means that the time difference between two
distinct occurrence times (t1 − t2 in Eq. (8)) has the probability density function

f�t(x) = 1
T

(
1 − |x|

T

)
, (9)

|x| ≤ T . Calculation of the expectation of the cosine term and introducing the notations
ā and ¯̄a2 for the expectations of a1 (or a2) and a21 then finally yields

E
[|AN (f )|2] = N ¯̄a2 + N(N − 1)ā2sinc2(π fT), (10)

with sinc(x) = sin(x)/x.
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The expected power spectral density of the EMG can be calculated from the energy
spectral density of a finite sequence of MUAPs, |S(f )|2, as

Ps(f ) = lim
T→∞

E[ |S(f )|2]
T

= |H(f )|2 · lim
T→∞

E[ |AN (f )|2]
T

. (11)

If the time T is sufficiently long, the second term in Eq. (10) is negligible. Moreover, N
can be replaced by ρ0T , where ρ0 is the mean MUAP rate. So we finally get

Ps(f ) = ¯̄a2ρ0|H(f )|2. (12)

Note that Ps(f ) is to be understood as a two-sided power spectral density. Thus, the total
power is obtained by integrating over positive as well as negative frequencies, yielding
¯̄a2ρ0‖H‖22, where

‖H‖2 =
√∫ ∞

−∞
|H(f )|2df (13)

is the L2 norm of H(f ). As required by Parseval’s theorem (see, e.g., [9]), this result is
consistent with a previous time-domain analysis [5], in which the variance of the EMG
was shown to be ¯̄a2ρ0‖h‖22, where

‖h‖2 =
√∫ ∞

−∞
h(t)2dt (14)

is the L2 norm of h(t).
In practice, the power spectrum has to be estimated from a finite sample of the EMG,

and so the question arises whether it is justified to neglect the second term on the right-
hand side of Eq. (10). As ā and ¯̄a typically have about the same value, the condition to be
fulfilled isN/(π fT)2 � 1.WithN = ρ0T , as already assumed above, the condition can be
rewritten as f 2 � ρ0/(π2T). Making themore or less realistic assumptions ρ0 = 1000 s−1

(see, e.g., [4]) and T = 10 s, the requirement can be approximated as f 2 � 10 s−2. This
simple estimation suggests that proportionality between |H(f )|2 and power spectrum of
the EMG can be expected only at sufficiently high frequencies. In this article we generally
choose a lower frequency limit of 10 Hz.

Optimization problem

Conceptually, the goal is to solve Eq. (2) for R(f ). However, this cannot be accomplished
in a direct way because only the magnitude of H(f ) can be estimated from the EMG. We
overcome the problem of incomplete information by assuming that R(f ) is a well-defined
function with some unknown parameters. Taking the square root of the estimated EMG
power spectral density as an estimate of the magnitude of the Fourier transformedMUAP
(denoted as |H̄(f )| in what follows), the magnitude of the Fourier transformed VEMP can
be predicted as

|V̂ (f )| = |H̄(f )| · |R(f )|. (15)

The function R(f ) can be optimized, then, by relating this prediction to the VEMP actu-
ally measured. More precisely, optimal parameter values for R(f ) can be determined by
minimizing a cost function of the form

Qκ ,λ =
∫ fmax

fmin

∣∣∣∣∣
( |V̄ (f )|

‖V̄‖∗

)κ

−
(

|V̂ (f )|
‖V̂‖∗

)κ ∣∣∣∣∣
λ/2

df , (16)
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where V̄ (f ) is the Fourier transform of the measured VEMP, and ‖.‖∗ is a norm defined as

‖X‖∗ =
√∫ fmax

fmin
|X(f )|2df . (17)

For symmetry reasons there is no need to consider negative frequencies. A lower fre-
quency limit, fmin, is defined to avoid the problem considered at the end of the previous
subsection. Defining an upper frequency limit, fmax, may be useful to exclude noise out-
side the frequency range of interest. The normalization overcomes the problem that
|V̂ (f )| is arbitrarily scaled. The nature of the cost function can be varied by means of the
parameters κ and λ, which are assumed to be integers. Extensive simulations (presented
below) suggest that, all in all, the cost function Q2,1 is a good default choice.

Modelling the rate modulation

The function to be optimized, R(f ), is conveniently defined as the Fourier transform of a
rate modulation designed in the time-domain. As in a previous article [6], the function

r(t) =
K∑

k=1
rk exp

(
−1
2

(
t − tk

τk

)2
)

(18)

is chosen, which means that the rate modulation is modelled as a sequence of K Gaussian
pulses. The parameters tk , rk , and τk determine the time, the amplitude, and the width of
the k-th peak (1 ≤ k ≤ K). A positive value of rk indicates excitation, whereas a negative
value indicates inhibition. The Fourier transform of r(t) is

R(f ) = √
2π

K∑
k=1

rkτk exp
(−2π2f 2τ 2k − i2π ftk

)
. (19)

This function has more parameters than can be determined byminimizing the right-hand
side of Eq. (16). The reason is that r(t) is in this context indistinguishable from c · r(t− t0),
assuming c �= 0. We fix this problem by setting r1 = −1 and t1 = 0. Thus, in the simplest
case (K = 1) there is only a single parameter to be optimized: τ1.
Examplary rate modulation functions are shown in Fig. 1. To facilitate the comparison,

the functions were normalized using the L2 norm. The squared L2 norm of r (respectively
R) can be shown to be

‖r‖22 = ‖R‖22 = √
2π

K∑
k=1

K∑
l=1

rkrl
τkτl√

τ 2k + τ 2l

exp
(

− (tk − tl)2

2(τ 2k + τ 2l )

)
. (20)

The three rate modulation functions presented in Fig. 1a agree regarding the first peak,
for which we assumed r1 = −1, t1 = 0, and τ1 = 2 ms (the apparent minor differ-
ences between the curves go back to the normalization). While the grey curve shows only
this one peak, the other two curves show a second peak of opposite polarity, centered at
t2 = 20ms. In the case of the solid black curve we assumed τ2 = τ1, whereas in the case of
the dashed curve we assumed τ2 = 2τ1. Moreover, as to the peak amplitude we assumed
r2τ2 = 0.8 ms, which ensures that the area under the second peak is the same for the two
cases.
The differences in the time domain are paralleled by characteristic differences in the

frequency domain (Fig. 1b). For the single-peaked rate modulation, the magnitude of the
Fourier transform is bell-shaped (grey curve), whereas the other two curves appear to
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Fig. 1 Examples of rate modulation functions and their frequency-domain representations. a A single-peaked
function (grey curve in the background) and two double-peaked functions. bModulus of the Fourier
transform of the functions in (a). cModulus of the Fourier transform of single-peaked rate modulations
varying in the parameter τ (1, 2, 4 or 8 ms). dModulus of the Fourier transform of double-peaked rate
modulations with t2 = 20 ms, τ1 = τ2 = 2 ms, r1 = −1 and r2 varying in steps of 0.2 from -1 to 1

oscillate around this curve. Analytical considerations help to understand this observation.
For K = 2 and τ1 = τ2 = τ we get

|R(f )| = √
2πτ exp

(−2π2f 2τ 2
) √

r21 + r22 + 2r1r2 cos
(
2π f (t2 − t1)

)
. (21)

The exponential term clearly explains the bell shape of the grey curve, whereas the cosine
term explains the oscillations of the other two curves. Equation (21) predicts a spectral
minimum at f = 1/(t2 − t1), which is 50 Hz in the present example. This minimum is a
potentially important fingerprint when analysing and interpreting real data. Hence, it is
noteworthy that the minimum is found also in the dashed curve, although the assumption
τ1 = τ2, on which Eq. (21) is based, is not fulfilled.
Figure 1c illustrates how themagnitude of the Fourier transform depends on the param-

eter τ , which was varied between 1 and 8 ms. All curves refer to a single-peaked rate
modulation; the grey curve (τ = 2 ms) is identical with the grey curve in Fig. 1b. A com-
parison of the curves for τ = 2 ms and τ = 4 ms gives a hint as to why the oscillation of
the dashed curve in Fig. 1b fades more rapidly with increasing frequency than does the
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oscillation of the solid black curve: The broader the second peak is in the time domain,
the less does it contribute to higher frequencies.
In Fig. 1d, the parameter r2 was systematically varied between -1 and 1, whereas τ2

was kept constant at 2 ms. The thick grey curve, representing the case r2 = 0, is again
identical with the bell-shaped grey curve in Fig. 1b, whereas the black and the thin grey
curves were obtained for r2 > 0 and r2 < 0, respectively. As to be expected in view of
Eq. (21), the parameter r2 determines magnitude and polarity of the deviation from the
bell-shaped “baseline”.

VEMP deconvolution

The optimization procedure described above was devised to deal with the problem that
only the magnitude of H(f ) can be estimated from the EMG. Having completed the
parameter optimization, themissing phase information can be obtained as well, if desired.
According to Eq. (2), H(f ) could be estimated as V̄ (f )/R(f ), except for a constant factor.
But such a direct approach might lead to problems at frequencies where |R(f )| is close
to zero, because noise would be enormously amplified. The problem can be avoided by
using the estimator

Ĥ(f ) = 1
1 + εR2

max/|R(f )|2 · V̄ (f )
R(f )

, (22)

where Rmax is the maximum value of |R(f )| and ε � 1 is a positive real number. The first
factor has basically no effect for |R(f )|2 � εR2

max, whereas for |R(f )|2 � εR2
max it causes

|Ĥ(f )| to have a value close to zero. Lütkenhöner and Basel [6] showed that this kind of
regularization can be understood as optimal (Wiener) filtering. In this article we defined
ε as 10−2.

Non-uniqueness

The setup of the optimization procedure already accounted for the fact that the rate mod-
ulation can only be determined up to an unknown scale factor and that any time shift
of the rate modulation can be compensated for by a reverse time shift of the MUAP. But
there is yet another kind of non-uniqueness inherent to the inverse problem considered
here: Time reversal of the rate modulation function, which in the frequency domain cor-
responds to substituting R(f ) by its complex conjugate, R∗(f ) = |R(f )|e−i arg(R(f )), has no
effect on the cost function defined in Eq. (16). Using R∗(f ) rather than R(f ) in Eq. (22)
yields ĤR∗(f ) = Ĥ(f )e2i arg(R(f )). The fact that Ĥ(f ) and ĤR∗(f ) usually differ fundamen-
tally could help to resolve the ambiguity related to time reversal, provided that a rough
idea about the phase of H(f ) is available. For example, it might be reasonable to assume
that H(f ) more likely resembles a minimum rather than a maximum phase filter.

Simulation results
Simple Gaussian model

In the simplest case, the rate modulation specified in Eq. (18) consists of a single compo-
nent, and only the parameter τ1 = τ has to be estimated from the data. Such a situation
is considered in Fig. 2. In the time-domain representation on the left, the rate modulation
r(t) is shown as a dashed curve, the MUAP h(t) as a black solid curve, and the VEMP v(t)
as a gray curve. The MUAP has the shape proposed by Wit and Kingma [4]. With regard
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Fig. 2 Simple Gaussian model in the time domain (left) and the frequency domain (right). Convolution of the
rate modulation (dotted curve) with the MUAP (solid black curve) yields the VEMP (grey curve)

to Eq. (24), which can be found below in the section “Methods”, this means θ1 = θ2 = θ .
Lütkenhöner and Basel [10] showed that the VEMP obtained by convolving such aMUAP
with a Gaussian pulse is described by the same function as the MUAP itself, except that θ

has to be replaced by

θv =
√

θ2 + τ 2. (23)

In the present example, τ and θ have the values 3 and 4 ms, respectively, so that θv is 5
ms. The extrema of h(t) and v(t) are found at the times ±θ and ±θv, respectively (dotted
vertical lines).
Calculating the modulus of the Fourier transform yields the curves shown on the right

of Fig. 2. In view of the above time-domain considerations it is not surprising that the
curves for MUAP (black) and VEMP (gray) are similar. The differences between these
curves can be exploited to draw conclusions as to the rate modulation. This is most eas-
ily done by comparing the locations of the spectral maxima, which, for the situation
considered here, are found at the frequencies 1/(2πθ) and 1/(2πθv), respectively [10].
Numerical evaluation yields 39.8 and 31.8 Hz, respectively (dotted vertical lines). By
reversing the line of thought, the frequencies of experimentally determined spectral
maxima of MUAP and VEMP can be converted into estimates of θ and θv, and τ can
subsequently be calculated using Eq. (23).
But relying on a single feature is generally not to be recommended when dealing with

real data. A more faithful estimate of τ is obtained by minimizing a cost function as in
Eq. (16). Extensive simulations were performed to answer the question as to what cost
function is the most advantageous one. As distinct from Fig. 2, the rate modulation was
scaled so that the peak value was r1(0) = −0.5. Moreover, the MUAP rate ρ0 was set to
1000 s−1, 100 VEMPs were elicited at a rate of 4 s−1, and the simulated EMGwas sampled
at a rate of 2000 s−1. All in all, 10,000 Monte Carlo experiments were carried out, and in
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each case the parameter τ was optimized using various cost functions. Thus, in the end,
10,000 estimates of τ were obtained for each of the investigated cost functions. Table 1
summarizes the results of a statistical analysis of these data. Each column corresponds to
a specific cost function. A comparison of themedian and themean of the estimated τ with
the true value (3 ms) suggests that the least biased estimate is obtained by minimizing the
cost function Q2,1. On the other hand, minimization of the cost function Q1,2 resulted in
the smallest standard deviation (SD) as well as the smallest root-mean-square deviation
(RMSD) between estimated and true τ .

More sophisticated model

While the simple Gaussian model appears to be ideally suited for getting a first under-
standing of the relationship between MUAP and VEMP, the underlying assumptions are
relatively special. Therefore another, more sophisticated model will be investigated now.
The model itself is illustrated by the thick grey curves in the background of Fig. 3. The
two-component rate modulation shown in Fig. 3a was calculated using Eq. (18), with
r1 = −1, r2 = 0.25, τ1 = 2 ms, τ2 = 4 ms, t1 = 0, and t2 = 20 ms. The L2-normalized
MUAP function shown in Fig. 3b was calculated using Eq. (24), which can be found below
in the section “Methods” (the parameters were θ1 = 4 ms and θ2 = 5 ms; moreover, the
curve was time-shifted by 17.5 ms). Convolution of rate modulation andMUAP yields the
VEMP shown as a grey curve in the background of Fig. 3c. The gray curves on the right
side of the figure show themodulus of the Fourier transform for the corresponding curves
on the left side.
The grey curves in Fig. 3 visualize theoretical functions which are, of course, not avail-

able when dealing with real data. Instead, the analysis has to begin with two curves that
are generally quite noisy: the estimated VEMP and the estimated power spectral density
of the EMG. Here we consider the square root of the latter, which serves as a surrogate for
the modulus of the Fourier transform of the MUAP. The examples shown as black curves
in Fig. 3c and 3e, respectively, were obtained by Monte Carlo simulation. As in the sim-
ulations before, the MUAP rate ρ0 was set to 1000 s−1, the data was sampled at a rate of
2000 s−1, and stimuli were presented at a rate of 4 s−1. The number of stimulus presen-
tations was raised to 200, though. In accordance with the Theory section of the article,
where it was explained that the EMG power spectrum is basically proportional to the
energy spectral density of the MUAP, the grey curve in the background of Fig. 3e appears,
indeed, as a smoothed version of the black curve.
What remains to be done now is to choose a rate modulation so that, in the frequency-

domain, multiplication with the estimate obtained for theMUAP (square root of the EMG

Table 1 Estimation of the parameter τ of the simple Gaussian model

Q1,1 Q1,2 Q1,4 Q2,1 Q2,2 Q2,4

Median 2.47 2.61 2.70 2.80 2.70 2.61

Mean 2.49 2.65 2.71 2.83 2.74 2.62

SD 0.62 0.59 0.68 0.72 0.83 0.97

RMSD 0.80 0.69 0.74 0.74 0.87 1.04

The parameter estimation was performed using six different cost functions. Based on 10,000 simulated experiments, the median,
the mean, the standard deviation (SD) and the root-mean-square deviation (RMSD) of the estimated τ were estimated (true value:
3 ms). The optimal result for each measure, which is the least biased median or mean and the smallest SD or RMSD, is shown in
bold



Lütkenhöner Theoretical Biology andMedical Modelling  (2015) 12:21 Page 10 of 19

-1

-0.5

0

r
a
te

 m
o
d
u
la

ti
o
n

a

-10

-5

0

5

M
U

A
P

b

-10 0 10 20 30 40 50 60 70

-25

0

25

Time (ms)

V
E

M
P

c

-10 0 10 20 30 40 50 60 70

-25

0

25

Time (ms)

V
E

M
P

0

0.05

0.1

d

0

0.05

0.1

e

0 100 200

0

0.05

0.1

0.15

Frequency (Hz)

f

Fig. 3 Simulation using a model with double-peaked rate modulation and slightly asymmetric MUAP. The
theoretical functions are shown as grey curves in the background. The time domain is considered on the left,
the frequency domain on the right. The black curves in c and e were obtained by analysing Monte Carlo
simulated data. They show the estimated VEMP and the square root of the normalized EMG power spectrum,
respectively. The latter is used as a surrogate for the modulus of the Fourier transform of the MUAP. The rate
modulation shown in a and d was estimated by minimizing the cost function Q2,1 (see Eq. (16)). Loosely
speaking, the rate modulation was chosen so that the frequency-domain representation of the predicted
VEMP (shown as a dotted (red) curve in f) optimally corresponded to the modulus of the Fourier transform of
the measured VEMP (black curve). Deconvolution of the measured VEMP with the estimated rate modulation
yielded an estimate of the MUAP (dashed curve in b)
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power) optimally fits the observed VEMP. The frequency-domain representation of the
VEMP is shown as a black curve in Fig. 3f, whereas the best fitting model (the one that
minimizes the cost function Q2,1) is represented by the dotted (red) curve. The corre-
sponding rate modulation, represented by the black curve in Fig. 3a, is in good agreement
with the theoretical counterpart (grey curve).
Estimation of the MUAP function h(t) is optional, but can help to check the plausibility

of the rate modulation obtained. The dashed curve in Fig. 3b shows the Fourier transform
of Ĥ(f ) as calculated using Eq. (22). The curve apparently agrees well with the theoretical
counterpart (grey curve).
To get a more representative view, theMonte Carlo experiment considered in Fig. 3 was

repeated 10,000 times, and as in the case of the simple Gaussian model considered before,
the parameter estimation was done with different cost functions. A statistical evaluation
of the results is provided in Table 2. The table is analogous to the previous one, except
that there are four parameters rather than one. The optimal result in each row (median or
mean showing the smallest deviation from the true value; smallest SD or RMSD) is shown
in bold. In the majority of cases the optimal result was obtained for the cost functionQ2,1,
and if another cost function performed better, the advantage was generally small (even
marginal in the case of the parameter r2). Thus, all in all, the cost function Q2,1 appears
to be the most favorable choice.

Analysis of exemplary real data
To investigate the applicability of the proposed method under real-world conditions, two
exemplary datasets were investigated. The data as well as its model-based interpretation
are presented analogously to the simulation results shown in Fig. 3. In the first example,
the VEMP (Fig. 4c) shows prominent peaks with latencies around 13 and 23 ms. Con-
sidering their polarity they are called p13 and n23. Visual inspection of the curve gives

Table 2 Parameter estimation for the two-component model

Cost function

Q1,1 Q1,2 Q1,4 Q2,1 Q2,2 Q2,4

τ1 median 1.77 1.82 1.85 1.92 1.81 1.32

(ms) mean 1.78 1.84 1.86 1.94 1.86 1.59

SD 0.20 0.24 0.41 0.28 0.51 0.66

RMSD 0.29 0.29 0.43 0.28 0.53 0.78

τ2 median 4.23 3.86 3.61 4.04 3.76 3.14

(ms) mean 4.38 4.17 3.88 4.15 3.92 3.54

SD 1.21 1.76 2.09 1.14 2.24 2.62

RMSD 1.27 1.77 2.09 1.15 2.24 2.66

r2 median 0.25 0.26 0.26 0.25 0.26 0.21

mean 0.25 0.27 0.29 0.25 0.30 0.28

SD 0.08 0.09 0.13 0.09 0.16 0.18

RMSD 0.08 0.09 0.14 0.09 0.17 0.18

t2 median 19.87 19.90 19.86 19.98 19.88 19.85

(ms) mean 19.82 19.80 19.76 19.99 19.82 19.83

SD 1.62 1.65 1.61 1.52 1.64 1.85

RMSD 1.63 1.66 1.63 1.52 1.65 1.86

The table is organized in the same way as Table 1, except that there are four parameters now (true values: τ1 = 2 ms, τ2 = 4 ms,
r1 = 0.25, t2 = 20 ms). The optimal result for each measure, which is the least biased median or mean and the smallest SD or
RMSD, is shown in bold
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Fig. 4 Real-data example of a single-component VEMP. The figure is organized in basically the same way as
Fig. 3. The time domain is considered on the left, the frequency domain on the right. The measured data are
represented by the black curves in c and e, which show the VEMP and the square root of the EMG power
spectrum, respectively. The rate modulation shown in a and d was optimized so that the frequency-domain
representation of the predicted VEMP, shown as a dotted (red) curve in f, optimally corresponded to the
modulus of the Fourier transform of the measured VEMP (black curve in f). Deconvolution of the measured
VEMP with the estimated rate modulation yielded an estimate of the MUAP (dashed curve in b)

no indication that this standard component of the VEMP is followed by a second com-
ponent of significant amplitude. The analysis was therefore done with a one-component
rate modulation (Fig. 4a). As in the simulations presented before, this function was iter-
atively adjusted so that the modulus of its Fourier transform (Fig. 4d) multiplied by the
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square root of the EMG power spectrum estimated from the data (black curve in Fig. 4e)
approximated the modulus of the Fourier transformed VEMP (solid curve in Fig. 4f) in
the best possible way. The dotted curve in the latter panel, representing the modelling
result, demonstrates that the data is explained quite well by our simple model, althought
it has just one free parameter, τ1 (for which we dermined the value 2.5 ms). The optional
estimation of the MUAP function yielded the dashed curve in Fig. 4b. Fourier transfor-
mation of this curve resulted in the dashed curve in Fig. 4e, which is roughly consistent
with the black curve in that panel. The deviations at higher frequencies are caused by the
regularization factor in Eq. (22). A convolution of the rate modulation (Fig. 4a) with the
estimated MUAP (Fig. 4b) yields a curve that almost coincides with the measured VEMP
(difference shown as a grey curve in Fig. 4c). This good agreement was to be expected,
because the convolution basically inverts the estimation of the MUAP.
In the second example, the VEMP (Fig. 5c) is evidently composed of two components:

The first component, with the peaks p13 and n23, is followed by a second component with
peaks around 34 and 44 ms. Considering their polarity they are called n34 and p44. Cole-
batch et al. [11] presumed that the second component is of cochlear rather than vestibular
origin. Figure 5a shows the rate modulation determined for this example. To keep the
number of parameters at a minimum, the two peaks of the rate modulation were assumed
to have the same width, which in terms of Eq. (18) means τ1 = τ2 = τ . Optimization
of the three remaining model parameters yielded τ = 1.1 ms, r2 = 1.1, and t2 = 20.9
ms. Figure 5f shows a good agreement between data (solid curve) and model prediction
(dotted curve). Thus, there seems to be no reason to use a more elaborate model. The
improvement obtained by dropping the assumption τ1 = τ2 (not shown in the figure)
was indeed marginal. As in the previous example, the optional calculation of the MUAP
yielded a roughly biphasic curve (Fig. 5b), the Fourier transform of which is shown as a
dashed curve in Fig. 5e. The VEMP predicted by convolving the estimatedMUAPwith the
estimated rate modulation is again almost identical with the measured VEMP (difference
shown as a grey curve in Fig. 5c).

Discussion and conclusions
This study started from the conjecture that the differences in the spectral densities
of VEMP and EMG represent a signature which, if interpreted appropriately, can tell
something about the generation of the VEMP. Model simulations building on previous
theoretical work [4, 5, 10] allowed us to make predictions about this signature. Our cur-
rent understanding is that the VEMP represents a brief reduction of the firing probability
of the motor units. To implement this idea in the convolution model given by Eq. (1), the
rate modulation is defined as a negative pulse. The width of the pulse can principally be
estimated by comparing the locations of the spectral maxima of VEMP and EMG: the
more they differ, the broader the peak (Fig. 1c). But when working with real data such as
those presented in Fig. 4, noise typically prevents a precise estimation of spectral max-
ima. The problem can be overcome by resorting to a parameter optimization approach
which accounts for the whole (or nearly the whole) spectrum. This way we derived the
rate modulation shown in Fig. 4a. For a Gaussian function with the standard deviation τ ,
the full width at half maximum is 2

√
2 ln 2τ ≈ 2.355τ . Inserting the estimated τ we get

5.9 ms, which is consistent with Colebatch and Rothwell [12]: In a study of single motor
units they found inhibition windows with a duration between 2 and 8 ms (mean 3.6 ms).
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Fig. 5 Real-data example of a two-component VEMP. The figure is organized in exactly the same way as Fig. 4

A second VEMP component, which follows roughly 20 ms after the first one and has
opposite polarity, is found in 55 % [13] to 76 % [14] of healthy subjects. Because this com-
ponent does not depend on the integrity of the vestibular nerve, it is generally assumed
to be of cochlear rather than vestibular origin [11]. But the component was identified also
in deaf ears, which could be indicative of a dual origin: cochlear as well as vestibular [13].
No matter what the origin of the second component is, the analysis of a VEMP con-
sisting of two components requires to choose a rate modulation with two peaks. In that
case, the spectral density of the VEMP differs from the spectral density of the EMG by a
more or less pronounced spectral minimum. This kind of signature is so salient in Fig. 5f
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that the evaluation can be done just by visual inspection. The location of the spectral
minimum is easy to interpret, because it corresponds to the reciprocal of the latency dif-
ference between the two VEMP components. Other frequency-domain features are more
difficult to understand. Thus, a parameter optimization has to be performed to explain
given data in terms of a model. In the example presented in Fig. 5, the assumption of
a two-component rate modulation was indeed suitable to explain the data. It was even
possible to reduce the number of parameters by assuming that the two peaks of the rate
modulation have the same width.
A key feature of the proposed method is that the rate modulation is character-

ized in terms of just a few parameters, whereas no assumptions whatsoever are made
about the MUAP. The latter is considered as an arbitrary function to be estimated
from the data (more precisely, only the modulus of the Fourier transform is relevant).
Thus, the finding that the estimated MUAP (Figs. 4b and 5b) is roughly biphasic, in
good agreement with the theoretical functions used in the model simulations, does
not reflect assumptions inherent to the model, but is based on the measured data.
The reason why the rate modulation rather than the MUAP was parametrized (in the-
ory, the latter possibility would work equally well) is that parameters closely related
to the questions of interest can be chosen. If the VEMP has two components, the
questions concern the latency difference as well as the amplitude ratio of the compo-
nents, and the half width of each component. Inhibitory and excitatory rate modulations
are distinguished by the sign, but apart from that they are handled in the same way.
Although the method cannot be used to confirm the generally accepted opinion that
the first VEMP component (p13-n23) is of an inhibitory nature, it is possible to relate
the “polarity” (excitatory versus inhibitory) of any other component to that of the first
component.
A drawback of the normalization in Eq. (16) is that the estimated functions are unscaled.

In this respect the present approach is clearly inferior to a method developed by Lütken-
höner and Basel [6], where the deconvolution algorithm exploits the relationship between
VEMP and associated variance modulation. But that method is applicable only in well-
chosen cases, because a variance modulation with a sufficient signal-to-noise ratio is
rather the exception. The present approach, by contrast, promises to be workable when-
ever an acceptable VEMP was recorded, because this normally means that the EMG
power spectrum can be estimated reasonably well, too. Considering the fact that both
deconvolution approaches have advantages and disadvantages, the question arises as to
whether they can be combined. This should indeed be possible. The general idea is that
the unscaled functions obtained with the method proposed here are scaled using the
previously developed algorithm. Conceptually, given unscaled estimates of rate modula-
tion and MUAP, a simulation as presented in Fig. 3 could be run, provided that suitable
assumptions are made about what is unknown. Detailed knowledge of the statistical dis-
tribution of the MUAP amplitudes is not essential, because a normalization of the EMG
(such that it has unit variance) prior to the estimation of the VEMP basically elimi-
nates the dependence of the VEMP on the MUAP amplitudes [5]. In essence, only two
unknown parameters remain: the mean MUAP rate and the scaling factor for the rate
modulation. These two parameters could be optimized by comparing the variance modu-
lation estimated from simulated EMGdata with the variancemodulation derived from the
experimental data. Even if the signal-to-noise ratio of the latter is too bad for a stand-alone
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deconvolution as proposed in our previous article [6], there may be enough information
for optimizing only two parameters. This consideration shows that the deconvolution
method developed in this study could eventually become a key component of a more
comprehensive deconvolution approach that simultaneously works on VEMP, associated
variance modulation, and power spectrum of the EMG.

Methods
Monte Carlo experiments

A synthetic EMG was calculated using Eq. (3). As to the definition of the MUAP function
h(t), we basically followed Wit and Kingma [4], who suggested to use the first derivative
of a Gaussian. Such a function is symmetric in the sense that its shape is invariant under
time reversal (apart from the sign). However, to be more realistic, it could be useful to
allow for some degree of asymmetry, and therefore we defined the MUAP function as
follows:

h(t) = 2π−1/4√
θ−1
1 + θ−1

2

⎧⎨
⎩
tθ−2

1 exp
(
−t2θ−2

1 /2
)

if t < 0

tθ−2
2 exp

(
−t2θ−2

2 /2
)

if t ≥ 0
(24)

This function has an L2 norm of one and mean zero. It is continuous at t = 0, but only for
θ1 = θ2 it is continuously differentiable at this point. The latter requirement corresponds
to the original proposal byWit and Kingma [4]. Figure 6 shows the graph of h(t) for θ1 = 2
ms and θ2 = 6 ms. The function reaches a minimum at t = −θ1 and a maximum at t = θ2
(see dotted vertical lines).
The application of Eq. (3) requires that random numbers an and tn (1 ≤ n ≤ N) are

generated. Strictly speaking, the total number of contributing MUAPs, N, is a random
number as well. As to the MUAP occurrence times tn, the task was accomplished by con-
sidering theMUAP generation as a time-dependent Poisson process (see, e.g., [15]). More
specifically, the mean number of MUAPs occurring between t and t + �t was assumed
to be ρ(t)�t, where ρ(t) is a rate function; the Matlab function POISSRND converted the
mean number into a random number of MUAPs (mostly 0 or 1, provided that �t is suf-
ficiently small; the simulations presented here were performed with �t = 0.5 ms). To
generate all the required MUAP occurrence times, the time range of interest (with some
extra time on both sides, to avoid edge effects) was sampled at intervals of �t, and the
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Fig. 6 The MUAP function defined in Eq. (24) for θ1 = 2 ms and θ2 = 6 ms
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idea of a Poisson process was successively applied to each sampling time. The amplitude
values associated with the occurrence times were drawn from a gamma distribution with
shape parameter 2, as already suggested by Wit and Kingma [4]. For the sake of conve-
nience, the value 1/2 was chosen for the scale parameter of the distribution, which has
the consequence that the mean amplitude is ā = 1. Gamma distributed random numbers
were generated using the Matlab function GAMRND.
What remains to be done is to specify the rate function ρ(t). This function is closely

related to one of the key quantities of the present study: By definition of the rate
modulation r(t), the rate is

ρ(t) = ρ0 · (
1 + r(t)

)
, (25)

where ρ0 denotes, as in the context of Eq. (12), the mean MUAP rate of the undisturbed
EMG (no VEMP eliciting stimulus). To simulate a typical VEMP experiment, the stimulus
was assumed to be presented at intervals of 250 ms, and a corresponding periodicity was
implemented also into the rate ρ(t).
The Monte Carlo simulations were complemented by numerical calculations based on

Eq. (1). The constant factor in that equation can be expressed as

cv = āρ0 (26)

under the conditions considered here [5]. The convolution integral was calculated using
the Matlab function CONV.

Exemplary real data

Two exemplary sets of real data were taken from an archive compiled by Lütkenhöner et
al. [16], which comprises data from patients who underwent VEMP testing as part of a
clinical evaluation of their dizziness symptoms. In brief, VEMPs were elicited by 500-Hz
Gaussian tone pulses with a full width at half maximum of 4 ms, which were presented
at a rate of 4/s (peak-equivalent sound pressure level of 107 dB). The electromyogram,
recorded from the sternocleidomastoid muscle, was continuously digitized at a rate of 10
kHz. Each data set comprises 200 stimulus presentations.

Estimation of the rate modulation from given data

Simulated as well as real data were analysed using customMatlab scripts. The estimation
of the rate modulation from given data requires determining optimal values for a limited
number of parameters. This inherently nonlinear problem was solved using the Mat-
lab function FMINSEARCH, which is an implementation of the simplex search method of
Lagarias et al. [17]: a direct search method which gets along without calculating numeri-
cal or analytic gradients. Figure 7 schematically illustrates how the nonlinear optimization
routine drives the overall algorithm. The optimization is started by providing an ini-
tial guess of the parameters, which are, then, iteratively improved until a predefined exit
condition is fulfilled. It is convenient to define the rate modulation in the time domain,
although the algorithm itself works with the magnitude of the Fourier transform. The
number of parameters should be restricted to a minimum. A single parameter (defining
the duration of the rate modulation) can be sufficient for VEMPs showing no clear indica-
tion of a second component, whereas for VEMPs consisting of two components, three or
four parameters can be sufficient (defining the amplitude ratio and the time lag of the two
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Fig. 7 Sketch of the algorithm. A nonlinear optimization routine adjusts the parameters of the rate
modulation, r(t), in such a way that, as to the magnitude of the Fourier transform, the predicted VEMP, V̂ , and
the measured VEMP, V̄ , optimally match. The prediction is based on the idea that the VEMP can be calculated
by convolving rate modulation and MUAP and that the magnitude of the Fourier transform of the latter
basically corresponds to the square root of the EMG power spectrum (estimate denoted as |H̄(f )|)

rate modulations as well as their durations; it may be possible to assume that the latter
two parameters are identical).
The data required by the algorithm consist of the measured VEMP, v̄(t), and an esti-

mate of the magnitude of the Fourier transformed MUAP, |H̄(f )|, which is basically the
square root of the EMG power spectrum. The latter was estimated by means of the Mat-
lab function PWELCH. Figure 7 illustrates that the algorithm uses the two types of data
in a quite different way: |H̄(f )| is multiplied by |R(f )| to predict the magnitude of the
Fourier transformedVEMP, whereas v̄(t) directly enters the calculation of a figure ofmerit
(after transformation into the frequency domain).The figure of merit quantifies the differ-
ence between predicted and measured VEMP using the cost function defined in Eq. (16).
This measure eventually determines the next action taken by the nonlinear optimization
routine (i.e., either continuation with a new set of parameters or exit).
Constraints were implemented by means of parameter transformations. More specif-

ically, to ensure that a certain parameter a is always greater than a lower limit a0, the
optimization procedure internally worked with a parameter α, assuming that a = a0+α2.
This way the model parameters in Eq. (18) were constrained as follows: rk ≥ −1 and
τk ≥ 1 ms (1 ≤ k ≤ K), and tk ≥ tk−1 (2 ≤ k ≤ K).
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