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Abstract
Background: In many areas of medical research, a bivariate analysis is desirable because it 
simultaneously tests two response variables that are of equal interest and importance in 
two populations. Several parametric and nonparametric bivariate procedures are available 
for the location problem but each of them requires a series of stringent assumptions such 
as specific distribution, affine-invariance or elliptical symmetry.

The aim of this study is to propose a powerful test statistic that requires none of the
aforementioned assumptions. We have reduced the bivariate problem to the univariate
problem of sum or subtraction of measurements. A simple bivariate test for the difference in
location between two populations is proposed.

Method: In this study the proposed test is compared with Hotelling's T2 test, two sample 
Rank test, Cramer test for multivariate two sample problem and Mathur's test using Monte 
Carlo simulation techniques. The power study shows that the proposed test performs 
better than any of its competitors for most of the populations considered and is equivalent 
to the Rank test in specific distributions.

Conclusions: Using simulation studies, we show that the proposed test will perform much 
better under different conditions of underlying population distribution such as normality 
or non-normality, skewed or symmetric, medium tailed or heavy tailed. The test is therefore 
recommended for practical applications because it is more powerful than any of the 
alternatives compared in this paper for almost all the shifts in location and in any direction.

Background
Few medical research studies involve comparing two groups on only a single response vari-
able; comparisons on two or more response variables are usually desired. If a single variable
is identified as of major research interest, it will be appropriate to apply a two independent
samples t-test or Mann-Whitney test. In some studies, however, two response variables are
of equal interest and importance. For example, in studies comparing two different treat-
ments for hypertension, it is equally important to compare their effects on both systolic and
diastolic blood pressure. For such studies, a bivariate analysis that compares the treatments
on two response variables simultaneously may have advantages over two separate univariate

* Correspondence: 

ayatolahim@sums.ac.ir
1 Department of Biostatistics, 
Shiraz University of Medical 
Sciences, Shiraz, Iran
Full list of author information is 
available at the end of the article
© 2010 Tabesh et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20459659
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20459659
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20459659
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20459659
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20459659
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20459659
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20459659
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20459659
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20459659
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20459659
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20459659
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20459659
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20459659
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20459659
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20459659
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20459659
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20459659
http://www.biomedcentral.com/


Tabesh et al. Theoretical Biology and Medical Modelling 2010, 7:13
http://www.tbiomed.com/content/7/1/13

Page 2 of 13
tests, one for each variable. The great advantage of bivariate analysis is the possibility of
increased power. If the response variables are not too highly correlated, the bivariate test
has a chance of finding significant differences among the treatments even if none of the
univariate tests is significant [1].

In most medical research, location analysis may be sufficient and testing the distribu-
tions is not necessary. For example, when it is decided to compare two characteristics of
a population, such as the weight and height of infants, with those of another population,
the researcher tries to compare the bivariate location in two populations. In terms of sta-
tistical theory, this problem may be restated as follows.

We consider two independent random bivariate samples
(x1i, y1i), i = 1, ..., m and (x2j, y2j), j = 1, ..., n from continuous bivariate populations e.g.,

weight and height of infants in control and treatment populations. [X1, Y1]' and [X2, Y2]'

denote the joint distributions of (X1, Y1) and (X2, Y2) respectively. We intend to test

against

where δ = (δ1, δ2) ≠ (0, 0) and H0 means that the joint distribution of (X1, Y1) and (X2,
Y2) are the same.

For the above-mentioned problem, we know that for a bivariate normal population,
Hotelling's T2 is the best. In addition, under nonsingular linear transformations, T2 is
invariant.

When the underlying population is unknown, many nonparametric tests have been
proposed. In 1958, Blumen [2] described a sign test for the hypothesis that the medians
of two or more variables had a particular value for the bivariate case. The slopes of the
vector from the bivariate median to the n sample points were arranged in ascending
order according to the respective angles made with the positive horizontal axis. Blumen's
proposed statistic is proportional to the squared distance from the centre of gravity of
the hypothesized centre. In 1962, Bennett [3] used certain properties of the multivariate
normal integral to develop sign tests for the equality of means in two correlated multi-
variate populations. Chatterjee and Sen [4] extended the Wilcoxon-Mann-Whitney rank
sum test to the case of two variables following a conditional approach. Mardia [5] pro-
posed an unconditional non-parametric statistic using the median vector of the com-
bined sample. Peters and Randles [6] introduced a sign rank affine invariant test for the
difference in location between two elliptically symmetric populations. Hettmansperger
and Oja [7] developed a multivariate invariant sign-test for the multi-sample location
problem. Sen and Mathur [8] used the angles made by centerized data for two samples
with the positive direction of the x-axis to construct a test statistic suggested as an
affine-invariant test statistic for the bivariate two sample location problem. Sen and

H X Y X Y0 1 1 2 2: ~[ ]′ [ ]′ (1)

H X Y X YA : ~1 1 2 1 2 2[ ]′ + +[ ]′d d (2)
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Mathur [9] proposed a consistent test similar to the Mann-Whitney test for difference in
locations between two bivariate populations. LaRocque et al. [10] extended the univari-
ate Wilcoxon sign rank test to the bivariate location problem. Baringhaus and Franz [11]
proposed a test statistic using the difference between the sums of all the Euclidean inter-
point distances. Mathur [12] suggested a nonparametric bivariate test for two sample
location problem that did not require affine-invariance or elliptic-symmetry to be
assumed.

The findings of most of these tests are not easy to apply and their powers depend on
the direction of shifts and the covariance matrix of the alternative distribution. Some of
the proposed tests are powerful only for particular forms of distributions and some of
them require specific assumptions to verify the test statistics. Thus, it seems that the
tests available in the literature are not wholly adequate and hence it is necessary to intro-
duce a test statistic more powerful than the existing ones, which does not depend on the
covariance structure of the underlying population and is also easy to apply with readily
available software for those who are not experts in statistics.

In the following section, we present a simple bivariate test statistic for the two sample
location problem. To investigate the power of the proposed test and to compare it with
the alternatives in the literature, a simulation study was carried out. A summary of the
power study is displayed in the results and discussion sections. In the conclusion section,
an application of the proposed test statistic to a real set of data is given.

Methods
Test Statistic
Let (X1i, Y1i) i = 1, ..., m and (X2j, Y2j) j = 1, ..., n be two independent random samples from
bivariate populations. [X1 Y1]' and [X2 Y2]' denote the joint distributions of X1, Y1 and X2,
Y2 respectively. We intend to test the null hypothesis given in (1) against the alternative
(2). According to the structure of this testing problem, it is presumed that the two distri-
butions [X1 Y1]' and [X2 Y2]' have the same structural form, but there may be a location
shift in [X2 Y2]' with respect to [X1 Y1]'. We therefore aim to test the existence of a location
shift.

It is obvious that many tests are available to test the difference in locations between
two univaraite populations. It is therefore desirable to find a convenient transformation
for changing the bivariate data to the univariate case. We implement our test for three
possible combinations of shift direction as follows:

(i) When the shift directions for two variables are the same i.e. δ1 δ2 > 0, random vari-
ables are defined as S1i = X1i + Y1i for i = 1, ..., m and S2j = X2j + Y2j for j = 1, ..., n. Now to
test the null hypothesis H0 in (1) against HA in (2), it is sufficient to test

against

′ +[ ] +[ ]H X Y X Y0 1 1 2 2: ~

′ +[ ] + +[ ]H X Y X YA : ~1 1 2 2 d
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where δ = δ1 + δ2 is a location difference parameter. In fact, this is a location problem in
the univariate case and an available test such as the Mann-Whitney test can be used to
solve it.

(ii) When the shift directions for two variables are not the same i.e., δ1 δ2 < 0, the ran-

dom variables are defined as  for i = 1, ..., m and  for j = 1,

..., n. Therefore, it is sufficient to test

against

Where δ = δ1 - δ2 is a location parameter. For this location problem in the univariate
case, the Mann-Whitney test is again used.

(ii) When (δ1 = 0, δ2 ≠ 0) or (δ1 ≠ 0, δ2 = 0), it is enough to apply a rank test to the sec-
ond variable or the first variable, respectively.

Remark 1: To decide which of the above three methods must be used in practice, first

the values  and  are computed, where ,

 and , . Then if  > 0, method (i) is used

and if  < 0, it is appropriate to use method (ii); and method (iii) is used for the test-

ing problem when ( ) or ( ).
Remark 2: (a) Note that, when the two variables are on significantly different scales,

the data have to be transferred by the following relations before solving the testing prob-
lem:

and

where ,  and  and  are the standard

deviations of the random variables X1 (or X2) and Y1 (or Y2), respectively.

S X Yi i i1 1 1
* = − S X Yj j j2 2 2

* = −
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(b) In application, when the two variables are on significantly different scales, the data
are transformed by the following relations before using a test statistic and testing
hypotheses:

and

where ,  and , are the samples pooled variances of

the first variables and the second variables in (X1, Y1) and (X2, Y2), respectively.
Power
This section indicates the results of a Monte Carlo study to assess the power of the new
test. For comparison purposes, the performances of the following tests were simulated:

(1) Hotelling's T2 test with test statistic:

where S-1 is the inverse of the sample variance-covariance matrix S [13].
(2) The Rank test, which is based on marginal ranks, is given by

where N = m + n, i = 1, ..., N, j = 1,2,  are the set

of scores for each j = 1,2 and Xij are independent identically-distributed random variables

with a continuous bivariate distribution [14].
(3) The Cramer test with test statistic:

where the function ϕ is the kernel function.  is recommended for

location alternatives [11].
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(4) The Mathur's test based on the test statistic:

where ,  and  for i = 1, ..., m j = 1,

..., n [12].

The new proposed test (P) was compared with the above four tests using samples from

bivariate normal and non-normal distributions. Simulations were run for bivariate nor-

mal with ρ = -0.5,0,0.5. Also, simulations were run for some non-normal distributions

generated using the g-and-h distribution [15], i.e. generating Zij from a bivariate normal

distribution and setting .

For g = 0 this expression is taken to be .

As the g-and-h distribution provides a convenient method for considering a very wide
range of situations corresponding to both symmetric and highly asymmetric distribu-
tions, its use is highly recommended. The case g = h = 0 corresponds to a normal distri-
bution, the case g = 0 corresponds to a symmetric distribution, and, as g increases, the
skewness increases as well. For example, with g = 0.5 and h = 0, the skewness is 1.75,
which is great [16].

In this study, simulations were run with g = 0.25 and g = 0.5 to span the range of skew-
ness values that seems to occur in practice.

The parameter h determines the heaviness of the tail. As h increase, the heaviness
increases as well. With h = 0.2 and g = 0, the kurtosis equals 36. This might seem
extreme, but even higher values were found by Wilcox, so our simulations were run for h
= 0.2 [16].

Results and discussion
The results in Table 1, Table 2, Table 3, Table 4, Table 5 and Table 6 were based on 10,000
samples of sizes 15, 18 from a bivariate population with location parameters (δ1, δ2). A
nominal significance level of 0.05 was used. STAT, MASS, CRAMER and ICSNP librar-
ies in R program version 2.10.0 were used.

Under the bivariate normal distribution with different correlations, the simulation
results showed that the proposed test statistic performed better than any of the test sta-
tistics compared here for almost all shifts in location.

The findings of this study show that the proposed test had greater power than Hotell-
ing's T2 and Mathur's test for skewed populations. Also, had greater power than Cramer's
test for a small shift in location but reached a power level equivalent to that of the Rank
test for a skewed population.
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Table 1: Monte Carlo rejection proportion for the bivariate normal population (ρ = 0), m = 15, n = 18

δ1, δ2 P T2 R C M

0.00,0.00 0.0500 0.0511 0.0539 0.0538 0.0485

0.15,0.15 0.0878 0.0757 0.0782 0.0791 0.0529

0.15,0.25 0.1197 0.1001 0.1021 0.1034 0.0581

0.25,0.25 0.1589 0.1271 0.1289 0.1320 0.0636

0.30,0.40 0.2653 0.2160 0.2095 0.2202 0.0840

0.40,050 0.3950 0.3275 0.3189 0.3333 0.1143

0.60,0.70 0.6915 0.6069 0.5911 0.6072 0.2293

0.80,0.90 0.8951 0.8414 0.8216 0.8443 0.4327

1.10,1.30 0.9958 0.9913 0.9874 0.9912 0.8408

1.60,1.80 1.0000 0.9999 0.9999 0.9999 0.9982

0.00,0.00 0.0477 0.0511 0.0539 0.0538 0.0485

-0.15,0.15 0.0831 0.0748 0.0782 0.0756 0.0521

0.15,-0.25 0.1131 0.1060 0.1025 0.1062 0.0594

-0.25,0.25 0.1506 0.1240 0.1214 0.1235 0.0646

0.30,-0.40 0.2581 0.2118 0.2071 0.2159 0.0835

-0.40,050 0.4028 0.3254 0.3166 0.3259 0.1150

0.60,-0.70 0.6959 0.6105 0.5873 0.6106 0.2322

-0.80,0.90 0.8995 0.8477 0.8271 0.8507 0.4331

1.10,-1.30 0.9954 0.9905 0.9880 0.9907 0.8446

-1.60,1.80 1.0000 1.0000 1.0000 1.0000 0.9980

Table 2: Monte Carlo rejection proportion for the bivariate normal population (ρ = 0.5), m = 15, n = 18

δ1, δ2 P T2 R C M

0.00,0.00 0.0477 0.0511 0.0518 0.0532 0.0474

0.15,0.15 0.0768 0.0676 0.0692 0.0755 0.0516

0.15,0.25 0.0995 0.0861 0.0891 0.0984 0.0535

0.25,0.25 0.1245 0.0997 0.1021 0.1220 0.0585

0.30,0.40 0.1927 0.1608 0.1605 0.1956 0.0726

0.40,050 0.2912 0.2355 0.2345 0.2841 0.0973

0.60,0.70 0.5170 0.4431 0.4376 0.5176 0.1764

0.80,0.90 0.7468 0.6677 0.6632 0.7440 0.3320

1.10,1.30 0.9606 0.9357 0.9280 0.9608 0.7130

1.60,1.80 0.9996 0.9988 0.9985 0.9993 0.9848

1.90,2.20 1.0000 0.9998 0.9999 0.9999 0.9998

0.00,0.00 0.0481 0.0511 0.0518 0.0532 0.0474

-0.15,0.15 0.1221 0.1016 0.0958 0.0750 0.0545

0.15,-0.25 0.1874 0.1546 0.1453 0.1034 0.0596

-0.25,0.25 0.2608 0.2082 0.1930 0.1265 0.0717

0.30,-0.40 0.4688 0.3829 0.3503 0.2289 0.0996

-0.40,050 0.6704 0.5954 0.5446 0.3785 0.1464

0.60,-0.70 0.9337 0.8974 0.8564 0.7372 0.3192

-0.80,0.90 0.9968 0.9896 0.9819 0.9504 0.5962

1.10,-1.30 1.0000 1.0000 0.9999 0.9997 0.9459
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When the population was highly skewed, the proposed test statistic dominated Hotell-
ing's T2 and Mathur's test for almost all shifts in location. It also dominated Cramer's test
for small and moderate shifts in location.

The power of the proposed test was greater than any of its competitors for almost all
shifts in location except the Rank test for a large shift in location under a heavy tailed
bivariate distribution.

The simulation results revealed that the proposed test statistics would perform much
better when the underlying population was bivariate normal, skewed, highly skewed or
heavy tailed.

The simulations were done for sample sizes m = 10 and n = 10, and the results were
closely similar. In general, simulations performed for different sample sizes showed simi-
lar power trends.

Conclusions
In the medical field, where two measurements such as changes in closing volume and
white blood cell count [18], cholesterol level and blood pressure, potassium and sodium
[19] are considered for important diagnoses, the bivariate values may be related in an
unknown way, so bivariate analysis is considered an important problem. The population
bivariate distributions may be unknown in many cases so parametric tests cannot be
applied. Some nonparametric tests require assumptions that are hard to validate. The
proposed test does not require the stringent assumption of affine-invariance or elliptic-
symmetry, and it is very easy to understand and apply using only regular statistical pro-
grams. In fact, we have solved the bivariate problem by reducing it to the univariate
problem of sum or difference of measurements.

The results of the simulation studies showed that the proposed test performed better
than most of it competitors for almost all the shifts in location. This very important
property of the proposed test statistic established that it would perform much better
whether the underlying population was normal or non-normal, skewed or symmetric,
medium tailed or heavy tailed. Therefore, its application is recommended, since it is
more powerful than any of the alternatives compared here for almost all shifts in location
and in any direction.

Most of the test statistics available in the literature were difficult to compute even with
the help of the computer. The proposed test statistic could easily be calculated manually
for small and moderate sized data sets, which is another important property.

Here for illustration, the application of the proposed test statistic to a real data set is
given. Ayatollahi [17] studied growth velocity standards from longitudinally measured
infants aged 0-2 years born in Shiraz. A cohort of 317 healthy neonates were selected
and followed for two years. They were visited at home at different target ages and several
variables were measured. Here the researchers focused on 12 months old children, and
we interested in two dependent variables, height and weight, and a grouping variable,
mother's education level. Ages were recorded exactly on the basis of the difference
between the date of visit and date of birth in days, and then converted to months. The
weight velocity over the first year of life was defined as the difference between weight at
12 months old and weight at birth divided by the difference between date of visit at 12
months old and date of birth [17].
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Table 3: Monte Carlo rejection proportion for the bivariate normal population (ρ = -0.5), m = 15, n = 18

δ1, δ2 P T2 R C M

0.00,0.00 0.0481 0.0511 0.0539 0.0526 0.0474

0.15,0.15 0.1227 0.1033 0.1016 0.0759 0.0542

0.15,0.25 0.1874 0.1528 0.1442 0.0988 0.0602

0.25,0.25 0.2671 0.2145 0.1945 0.1257 0.0685

0.30,0.40 0.4688 0.3896 0.3520 0.2284 0.0992

0.40,050 0.6774 0.5876 0.5438 0.3834 0.1448

0.60,0.70 0.9337 0.8952 0.8565 0.7368 0.3176

0.80,0.90 0.9947 0.9916 0.9826 0.9481 0.5977

1.10,1.30 1.0000 0.9999 0.9999 0.9998 0.9449

0.00,0.00 0.0477 0.0511 0.0539 0.0526 0.0474

-0.15,0.15 0.0768 0.0648 0.0688 0.0727 0.0516

0.15,-0.25 0.0928 0.0911 0.0902 0.0974 0.0553

-0.25,0.25 0.1245 0.0976 0.0990 0.1118 0.0585

0.30,-0.40 0.1902 0.1574 0.1591 0.1901 0.0743

-0.40,050 0.2912 0.2335 0.2300 0.2791 0.0959

0.60,-0.70 0.5281 0.4348 0.4325 0.5178 0.1823

-0.80,0.90 0.7468 0.6747 0.6705 0.7459 0.3300

1.10,-1.30 0.9567 0.9371 0.9295 0.9612 0.7141

-1.60,1.80 0.9996 0.9994 0.9988 0.9999 0.9847

1.90,-2.20 1.0000 1.0000 1.0000 1.0000 0.9998

Table 4: Monte Carlo rejection proportion for the bivariate skewed population, m = 15, n = 18

δ1, δ2 P T2 R C M

0.00,0.00 0.0492 0.0520 0.0539 0.0534 0.0486

0.15,0.15 0.0863 0.0729 0.0787 0.0771 0.0494

0.15,0.25 0.1181 0.0951 0.1044 0.1010 0.0514

0.25,0.25 0.1533 0.1218 0.1314 0.1276 0.0554

0.30,0.40 0.2591 0.2021 0.2137 0.2096 0.0689

0.40,050 0.3895 0.3162 0.3289 0.3222 0.0943

0.60,0.70 0.6730 0.5727 0.6000 0.5954 0.1922

0.80,0.90 0.8772 0.8095 0.8248 0.8335 0.3858

1.10,1.30 0.9926 0.9832 0.9861 0.9900 0.8220

1.60,1.80 0.9999 0.9997 0.9999 0.9998 0.9975

1.90,2.20 1.0000 1.0000 1.0000 1.0000 0.9998

0.00,0.00 0.0485 0.0520 0.0539 0.0534 0.0486

-0.15,0.15 0.0818 0.0724 0.0788 0.0740 0.0534

0.15,-0.25 0.1143 0.1012 0.1034 0.1053 0.0597

-0.25,0.25 0.1467 0.1173 0.1240 0.1224 0.0669

0.30,-0.40 0.2514 0.2015 0.2124 0.2091 0.0870

-0.40,050 0.3919 0.3099 0.3274 0.3171 0.1146

0.60,-0.70 0.6773 0.5770 0.5976 0.5988 0.2376

-0.80,0.90 0.8821 0.8147 0.8352 0.8406 0.4301

1.10,-1.30 0.9921 0.9824 0.9876 0.9887 0.8268

-1.60,1.80 1.0000 1.0000 1.0000 1.0000 0.9962
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Simultaneously, comparison of weight and height velocities between two groups of
infants, with primary and secondary educated mothers, was the main interest. The
bivariate observations were the 87 measurements on weight velocity (X1) and height
velocity (Y1) over the first year of life for infants with primary educated mothers and 54
measurements on weight velocity (X2) and height velocity (Y2) over the first year of life
for infants with secondary educated mothers.

Table 7 shows  kg/mo,  kg/mo,  cm/mo and

 cm/mo. Computing  and , we found that 

and , hence  > 0. According to the sign of , method (i) should be used.

So Si = Xi + Yi were computed for infants with primary and secondary educated mothers

(i = 1,2). The Mann-Whitney test was used to test H0: [X1 + Y1] ~ [X2 + Y2] against HA:

[X1 + Y1] ~ [X2 + Y2 + δ]; the p-value = 0.006 led to rejection of the null hypothesis at the

5% level of significance. This was consistent with the conclusion reached using Hotell-

ing's T2 test for the same data set with p-value = 0.027.
In order to illustrate the performance of the proposed test versus Hotelling's T2 test

especially for small size samples, a random sample of 22 infants was selected. Weight and

X1 0 483= . X2 0 497= . Y1 1 950= .

Y2 2 128= . d̂1 1 2= −X X d̂ 2 1 2= −Y Y d̂1 0<

d̂ 2 0< ˆ ˆd d1 2
ˆ ˆd d1 2

Table 5: Monte Carlo rejection proportion for the bivariate highly skewed population, m = 15, n = 18

δ1, δ2 P T2 R C M

0.00,0.00 0.0487 0.0470 0.0539 0.0532 0.0500

0.15,0.15 0.0834 0.0656 0.0834 0.0725 0.0455

0.15,0.25 0.1128 0.0836 0.1086 0.0929 0.0472

0.25,0.25 0.1478 0.1058 0.1398 0.1175 0.0501

0.30,0.40 0.2464 0.1734 0.2314 0.1942 0.0589

0.40,050 0.3664 0.2661 0.3520 0.2948 0.0777

0.60,0.70 0.6264 0.4938 0.6243 0.5627 0.1694

0.80,0.90 0.8351 0.7194 0.8386 0.8062 0.3500

1.10,1.30 0.9779 0.9429 0.9834 0.9853 0.7959

1.60,1.80 0.9991 0.9973 0.9998 0.9997 0.9933

1.90,2.20 1.0000 0.9997 1.0000 1.0000 0.9994

0.00,0.00 0.0480 0.0470 0.0539 0.0532 0.0500

-0.15,0.15 0.0796 0.0647 0.0813 0.0738 0.0531

0.15,-0.25 0.1095 0.0885 0.1088 0.0987 0.0643

-0.25,0.25 0.1412 0.1024 0.1335 0.1119 0.0657

0.30,-0.40 0.2363 0.1738 0.2270 0.1938 0.0945

-0.40,050 0.3671 0.2640 0.3479 0.2924 0.1152

0.60,-0.70 0.6272 0.4906 0.6294 0.5638 0.2400

-0.80,0.90 0.8419 0.7280 0.8437 0.8110 0.4222

1.10,-1.30 0.9812 0.9425 0.9841 0.9830 0.7890

-1.60,1.80 0.9997 0.9974 0.9998 1.0000 0.9882

1.90,-2.20 1.0000 0.9998 1.0000 1.0000 0.9980
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height velocities for this random sample, a part of data from Ayatollahi (2005) [17], are
presented in Table 8. The bivariate observations were the 13 measurements on weight
velocity (X1) and height velocity (Y1) over the first year of life for infants with primary
educated mothers and 9 measurements on X2, Y2 for infants with secondary educated
mothers. In Table 9, mean and standard deviation of weight and height velocity over the
first year of life for infants with primary and secondary educated mothers are presented.

Table 6: Monte Carlo rejection proportion for the bivariate heavy tailed population, m = 15, n = 18

δ1, δ2 P T2 R C M

0.00,0.00 0.0505 0.0470 0.0539 0.0523 0.0476

0.15,0.15 0.0754 0.0598 0.0723 0.0717 0.0535

0.15,0.25 0.0945 0.0720 0.0898 0.0890 0.0563

0.25,0.25 0.1190 0.0854 0.1091 0.1062 0.0607

0.30,0.40 0.1928 0.1379 0.1725 0.1684 0.0742

0.40,050 0.2789 0.1993 0.2570 0.2465 0.0969

0.60,0.70 0.4974 0.3782 0.4731 0.4554 0.1707

0.80,0.90 0.7167 0.5752 0.6953 0.6823 0.3050

1.10,1.30 0.9369 0.8581 0.9366 0.9326 0.6325

1.60,1.80 0.9977 0.9835 0.9985 0.9983 0.9407

1.90,2.20 0.9998 0.9976 0.9999 0.9999 0.9904

0.00,0.00 0.0480 0.0470 0.0539 0.0523 0.0476

-0.15,0.15 0.0718 0.0579 0.0722 0.0671 0.0500

0.15,-0.25 0.0921 0.0774 0.0905 0.0925 0.0573

-0.25,0.25 0.1154 0.0852 0.1059 0.0999 0.0596

0.30,-0.40 0.1849 0.1359 0.1732 0.1642 0.0750

-0.40,050 0.2743 0.2004 0.2538 0.2373 0.0980

0.60,-0.70 0.4986 0.3694 0.4717 0.4521 0.1720

-0.80,0.90 0.7236 0.5840 0.7053 0.6866 0.3011

1.10,-1.30 0.9394 0.8595 0.9373 0.9346 0.6351

-1.60,1.80 0.9965 0.9847 0.9980 0.9987 0.9436

1.90,-2.20 0.9999 0.9972 0.9999 1.0000 0.9905

Table 7: Mean and standard deviation of weight and height velocity of infants over the first 
year of life with primary and secondary educated mothers (m = 87, n = 54)

Mother education Weight velocity Height velocity

Primary
(m = 87)

Mean 0.483 2.002

Std. Deviation 0.087 0.209

Secondary
(n = 54)

Mean 0.497 2.094

Std. Deviation 0.088 0.195
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Using the proposed test, the p-value was 0.030, which led to rejection of the null hypoth-
esis at the 5% level of significance. However, this was not consistent with the conclusion
reached using Hotelling's T2 test (p-value = 0.072). In this small data set, Hotelling's T2

could not detect the difference, but the proposed test could detect it as well as in the
large data set.

Table 8: Data from the weight and height velocity of infants over first year of life with 
primary and secondary educated mothers

Infants with primary educated mothers Infants with secondary educated mothers

Weight velocity Height velocity Weight velocity Height velocity

0.49 2.00 0.53 2.04

0.30 1.42 0.58 2.25

0.48 1.90 0.45 2.05

0.53 1.92 0.61 1.98

0.51 2.01 0.45 1.87

0.48 1.90 0.41 2.23

0.43 1.95 0.54 2.27

0.40 2.07 0.44 2.23

0.67 2.11 0.44 2.23

0.62 2.28

0.42 2.03

0.52 1.89

0.42 1.86

Table 9: Mean and standard deviation of weight and height velocity of infants over first 
year of life with primary and secondary educated mothers (m = 13, n = 9)

Mother education Weight velocity Height velocity

Primary
(m = 13)

Mean 0.483 1.950

Std. Deviation 0.095 0.196

Secondary
(n = 9)

Mean 0.493 2.128

Std. Deviation 0.072 0.146



Tabesh et al. Theoretical Biology and Medical Modelling 2010, 7:13
http://www.tbiomed.com/content/7/1/13

Page 13 of 13
Competing interests
The authors declare that they have no competing interests.

Authors' contributions
HT proposed the test, most of the redaction, simulation study, application to weight and height velocity. SMTA conceptu-
alized and supervised the study. MT proposed the test and redaction. All authors read and approved the final manuscript.

Authors' information
Corresponding author: SMT Ayatollahi, Ph.D., FSS, C.Stat. Professor of Biostatistics, The Medical School, Shiraz University of
Medical Sciences, Shiraz, Islamic Republic of Iran. P.O.Box 71345-1874

Acknowledgements
This work was supported by grant number 88-4820 from Shiraz University of Medical Sciences.

Author Details
1Department of Biostatistics, Shiraz University of Medical Sciences, Shiraz, Iran and 2Department of Statistics, Shiraz 
University, Shiraz, Iran

References
1. Fleiss JL: The Design and Analysis of Clinical Experiments.  New york: John Wiley & sons; 1986. 
2. Blumen I: A new bivariate sign test.  Journal of American statistical Association 1958, 53:448-456.
3. Bennett B: On multivariate sign tests.  Journal of the 1962, 24:159-161.
4. Chatterjee SK, Sen K: Nonparametric tests for the bivariate two sample location problem.  Bull Calcutta Statist Ass 

1964:18-58.
5. Mardia K: A nonparametric test for the bivariate location problem.  Journal of the Royal statistical Society, series B 

1967, 29:320-342.
6. Peters D, Randles R: A bivariate signed rank test for two sample location problem.  Journal of American statistical 

Association 1991, 85:552-557.
7. Hettmansperger T, Oja H: Affine invariant multivariate multisample sign tests.  Journal of Royal Statistical Society 

1994, Series B(56):235-249.
8. Sen K, Mathur S: A bivariate signed rank test for two sample location problem.  Commun Statist - Theory Meth 1997, 

26(12):3031-3050.
9. Sen K, Mathur S: A test for bivariate two sample location problem.  Commun Statist - theory Meth 2000, 

29(2):417-436.
10. Larocque D, Tardif S, Eeden Cv: An affine-invariant generalization of the wilcoxon signed-rank test for the 

bivariate location problem.  Aust N Z J Stat 2003, 45(2):153-165.
11. Baringhaus L, Franz C: On a new multivariate two-sample test.  Journal of Multivariate Analysis 2004, 88:190-206.
12. Mathur SK: A new nonparametric bivariate test for two sample location problem.  Stat Meth & Appl 2008, 

18(3):375-388.
13. Rencher A: Methods of Multivariate Analysis.  New York: John Wiley & sons; 2002. 
14. Hajek J, Sidak Z, Sen KP: Theory of Rank Tests.  second edition. ACADEMIC PRESS; 1999. 
15. Hoaglin DC: Summarizing shape numerically: the g-and-h distributions.  In Exploring Data Tables, Trends and 

Shapes Edited by: Hoaglin D, Mosteller F, Tukey J. New York: Wiley; 1985. 
16. Wilcox RR: Simlation results on solutions to the multivariate Behrens-Fisher problem via trimmed means.  The 

Statistician 1995, 44(2):213-225.
17. Ayatollahi SMT: Growth velocity standards from longitudinally measured infants of age 0-2 years born in Shiraz, 

Southern Iran.  American Journal of Human Biology 2005, 17(3):302-309.
18. Merchant JA, Halprin GM, Hudson AR, Kilburn KH, McKenzie WN, Hurst DJ, Bermazohn P: Responses to Cotton Dust.  

Archives of Environmental Health 1975, 30:222-229.
19. Rawlings JO: Applied Regression Analysis:A Research Tool.  Wadsworth, Inc.; 1988. 

doi: 10.1186/1742-4682-7-13
Cite this article as: Tabesh et al., A simple powerful bivariate test for two sample location problems in experimental and 
observational studies Theoretical Biology and Medical Modelling 2010, 7:13

Received: 1 March 2010 Accepted: 7 May 2010 
Published: 7 May 2010
This article is available from: http://www.tbiomed.com/content/7/1/13© 2010 Tabesh et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Theoretical Biology and Medical Modelling 2010, 7:13

http://www.tbiomed.com/content/7/1/13
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15849710
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1130834

	Abstract
	Background:
	Method:
	Conclusion:

	Background
	Methods
	Test Statistic
	Power

	Results and discussion
	Conclusions
	Competing interests
	Authors' contributions
	Authors' information
	Acknowledgements
	Author Details
	References

