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Abstract
Background: Sepsis (bloodstream infection) is the leading cause of death in non-surgical intensive
care units. It is diagnosed in 750,000 US patients per annum, and has high mortality. Current
understanding of sepsis is predominately observational and correlational, with only a partial and
incomplete understanding of the physiological dynamics underlying the syndrome. There exists a
need for dynamical models of sepsis progression, based upon basic physiologic principles, which
could eventually guide hourly treatment decisions.

Results: We present an initial mathematical model of sepsis, based on metabolic rate theory that
links basic vascular and immunological dynamics. The model includes the rate of vascular
circulation, a surrogate for the metabolic rate that is mechanistically associated with disease
progression. We use the mass-specific rate of blood circulation (SRBC), a correlate of the body
mass index, to build a differential equation model of circulation, infection, organ damage, and
recovery. This introduces a vascular component into an infectious disease model that describes the
interaction between a pathogen and the adaptive immune system.

Conclusion: The model predicts that deviations from normal SRBC correlate with disease
progression and adverse outcome. We compare the predictions with population mortality data
from cardiovascular disease and cancer and show that deviations from normal SRBC correlate with
higher mortality rates.

Background
Sepsis is defined as occurring in patients who have evi-
dence of local infection and two or more signs of systemic
inflammatory response syndrome (SIRS, comprising per-
turbation of heart rate, respiratory rate, central tempera-
ture or peripheral leukocyte count)[1-3]. Despite
intensive medical therapy, severe sepsis has a mortality
rate of 25–50%, and sepsis is the tenth leading cause of
death[4,5]. Sepsis is the leading cause of death in non-car-
diac intensive care units, and third leading cause of infec-
tious death. Ominously, incidence of sepsis is increasing

by 9% per annum, and total healthcare cost currently
exceeds $20 billion per annum[6-8].

Sepsis is a highly dynamic, acute illness. Common causes
of sepsis mortality are refractory shock, respiratory failure,
ARDS (Acute Respiratory Distress Syndrome), acute renal
failure, or DIC (Disseminated Intravascular Coagulation).
Rate of progression of sepsis to organ failure, septic shock
and death in individuals is highly heterogeneous and
largely independent of the specific underlying infectious
disease process. For example, case fatality rates in patients
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with culture-negative sepsis are similar to those with pos-
itive cultures[9]. Mortality rates in sepsis are, however,
critically dependent upon disease staging. Current differ-
entiation of local infection, SIRS, sepsis, severe sepsis and
septic shock relies exclusively on static clinical indi-
ces[1,2,10]. These include the Sepsis-related Organ Failure
Assessment (SOFA) score, the Acute Physiology and
Chronic Health Evaluation (APACHE II) score, the Pediat-
ric Risk of Mortality (PRISM III, in children) score and
blood lactate level[11-16]. These disease severity classifi-
cation systems can prognostically stratify acutely ill
patients and guide treatment intensity guidance. They are
predicated upon the hypothesis that the severity of an
acute disease, such as sepsis, can be measured by quanti-
fying the degree of abnormality of multiple, basic physio-
logic principles[13]. In turn, these indices are based upon
the long-established principle of bodily homeostasis, and
are determined by measurement and multivariate analysis
of the most deranged physiologic values during the initial
24 hours following presentation. Their validity has been
established in numerous studies that have demonstrated
linear relationships in cohorts between index value and
hospital mortality. These indices have also proven valua-
ble as surrogate end-points for the evaluation of efficacy
in clinical trials of investigational new drugs[17,18]. Clin-
ical indices such as APACHE II, however, were not
designed to guide individual patient treatment decisions.
Furthermore, these indices are, in general, not dynamical,
and were not developed to reflect changes in physiologic
data collected over time. In a highly dynamic illness, the
use of indices at disease outset is insufficient to guide
ongoing clinical management. Furthermore, sepsis is
highly heterogeneous in terms of pathogen, source of
infection, associated comorbidity, course and complica-
tions, making clinical assessment quite difficult.

The need for rapid, accurate identification of disease pro-
gression in sepsis increased dramatically with the availa-
bility of several, novel treatment regimens. While novel
sepsis therapies are improving sepsis outcomes, they are
creating new patient management and diagnostic chal-
lenges for physicians. For example, in 2001 the Food and
Drug Administration approved activated protein C (APC)
for treatment of patients with severe sepsis and APACHE
II score of ≥ 25. In the pivotal trial of APC (PROWESS),
28-day mortality was decreased by 6% (ref. [17]). The
greatest reduction in mortality (13%) and cost effective-
ness was observed in the most seriously ill patients (those
with APACHE II score ≥ 25)[17,18]. In contrast, APC
exhibited modest survival benefit and cost-ineffectiveness
in patients with sepsis and APACHE II score < 25. How-
ever, APC therapy is associated with a 1–2% incidence of
major bleeding. For these reasons, widespread, appropri-
ate use of APC in sepsis is most likely to occur following

deployment of an objective, accurate, rapid, dynamical
model of sepsis.

Another recent therapeutic development that has shown
significant potential to reduce sepsis mortality is early
aggressive therapy to optimize cardiac preload, afterload,
and contractility (Early Goal Directed Therapy,
EGDT)[19]. Patients randomized to EGDT receive more
fluid, inotropic support, and blood transfusions during
the first six hours than control patients administered
standard therapy. During the subsequent 72 hours,
patients receiving EGDT had a higher mean central
venous O2 concentration, lower mean lactate concentra-
tion, lower mean base deficit, and higher mean pH. Mor-
tality was reduced by 16% in the EGDT group. A
dynamical model of sepsis that provides rapid, quantita-
tive, objective determination of the stage of sepsis devel-
opment and likelihood of progression is needed to guide
selection of patients for EGDT.

Other sepsis treatments that may improve survival include
intensive insulin therapy (to maintain tight euglycemia),
physiologic corticosteroid replacement therapy, protocol-
driven use of vasopressors and rapid administration of
appropriate antibiotics[20-22]. Given heterogeneity in
disease progression in sepsis patients, however, evalua-
tion of the value of novel therapies is greatly assisted by
evaluation of surrogate end-points. Efficacy with many of
these treatments appears limited to certain sepsis patient
subgroups. Furthermore, most of these emerging treat-
ments require careful patient selection and monitoring to
avoid adverse events. Patient selection for these novel
therapies would be greatly advanced by the availability of
dynamical, data-driven models of sepsis that incorporate
surrogate markers.

In summary, given the highly dynamical nature of critical,
acute illnesses such as sepsis, the existence of multiple,
alternate complications, and the availability of many ther-
apeutic and treatment intensity options, there exists a
pressing need for dynamical models of disease. Such
models, like their static, predecessor indices, should be
based upon a fundamental, comprehensive but dynami-
cal understanding of the derangement of physiologic
processes in sepsis. Unlike conventional clinical indices,
however, their development should be tailored specifi-
cally to guide treatment decisions in individual patients,
and should be predicated on changes in values observed
in serial observations. Also in contrast to conventional
indices, such models will be designed for clinical rele-
vancy with excellent predictive value for the immediate
future (in the case of sepsis, for 6 – 12 hours), rather than
long-range predictive value (such as 28-day mortality in
the case of conventional clinical indices). Indeed, efforts
are underway by several groups to create mathematical
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models of sepsis[23,24], and to evaluate their usefulness
in the design of clinical trials of investigational new
drugs[25].

Recent advances in multiplexed measurement technolo-
gies for biomolecules, biomarker development and mod-
eling of gene or protein networks or pathways in disease
states are starting to be integrated with clinical and physi-
ologic measures in human health and disease[26]. Reduc-
tionist analyses – division of physiologic states or disease
systems into component variables and "solving" of differ-
ential equations for each with empiric data – are starting
to yield dynamical models with predictive or prognostic
value, both generally[27] and specifically for sep-
sis[23,24]. Although many biological systems are com-
plex and non-linear, much of current biological
knowledge was derived from deterministic, reductionist
analyses[25,28]. Despite the underlying complexity of
disease mechanisms, disease states are frequently associ-
ated with linear dynamics[29] (or, more accurately, with
the breakdown of multi-scale fractal complexity). Reduc-
tionist methods are likely to remain useful for the foresee-
able future for quantitative prediction of responses to
perturbation of networks.

The current study represents a first step in the application
of reductionist analyses to a dynamical model of the pro-
gression of sepsis in individual patients. The goal of such
studies is to move from static, prognostic indices useful in
sepsis cohorts to relatively simple, dynamical models that
are useful in real-time guidance of treatment and treat-
ment intensity at the bedside in individual patients with
sepsis. An innovative, hybrid, infectious and vascular
model of sepsis is presented that builds upon previous
scaling models of vascular circulation[30-33] and
includes variables such as age, end-organ damage, disease
progression, and mortality.

We ground the modeling approach on fundamental proc-
esses of energy production and consumption. In a living
body these processes comprise the energy metabolism
made classic 40 years ago by M. Kleiber in his book "The
Fire of Life"[34]. From the molecular and cellular point of
view, the process of life is the process of interactions
among particles – molecules of cytokines, glucose, oxy-
gen, and others, among different cells, viruses, bacteria,
and so forth.

A necessary condition for particle interaction is their con-
tact. Two particles – a viral particle and an antibody, for
example – must contact each other in order to interact.
This contact or collision is possible due to their motion
within the blood, lymph, or interstitial spaces, as the
blood and lymph transport particles to interaction zones.
An increase in energy production increases the oxygen

consumption that is associated with a rise in the rate of
blood and lymph circulation. This rate is a crude index of
the intensity of biological life; it scales across taxa and
with biological time, such as in the average life span and
number of heart beats per life[30-33].

The above consideration leads to the recognition that the
rate of blood circulation should play an essential role in
disease origin and progression. For example, blood and
lymphatic circulatory systems play important roles in the
life of T-lymphocytes, as they migrate from the bone mar-
row, mature in the thymus, and act as effectors through-
out the body. A similar dependency on circulation takes
place during viral infections when infected cells produce
new viral particles. Production of virions is restrained by
destruction of infected cells by immune mechanisms,
viral particle inactivation through humoral mediators,
including antibodies, the complement cascade and
cytokine elaboration, and decreased viral replication
through humoral mediators or therapeutic agents. A pre-
requisite of these responses is physical interactions
between cells, viral particles and blood proteins. While a
high rate of fluid circulation enhances such interactions, it
also enhances viral and immune effector dissemination.
This can lead to organ damage both through viral cytopa-
thology and through inflammation. Thus low or high cir-
culation rates may both be sub-optimal in relation to the
competing demands during sepsis progression. A pioneer-
ing example of cellular and humoral factor interaction
models to explain the dynamics of sepsis progression used
agent-based modeling[35,36], rather than the reduction-
ist approach, described herein.

In the present paper, we have formalized this relationship
between circulatory and interaction events based on the
earlier work of ref. [37]. The parameters of the model
present the intensities of interactions among immune and
infectious components by incorporating the rate of blood
circulation as mentioned above. Thus the basic assump-
tions rely on the well known modeling techniques of par-
ticle interaction under systemic and Brownian motion
(see below).

Results
Rate of blood circulation and body size
We consider the well established correlation between the
rate of blood circulation and body mass[38]. In general,
the following allometric relation is widely supported
across taxa[32,39,40]:

V = q·m3/4  (1.1)

For humans, the coefficient q is approximately 0.256 [ref.
[38]]. V and m are rate of blood circulation (liter/min)
and body mass (kg), respectively[32]. It should be noted
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that equality (1.1) applies to individuals that have little or
no "redundant" body mass – that which has no clearly
attributable physiologic function, or the continuum of
mass in excess of ideal body weight, obesity and morbid
obesity. Redundant body mass is not necessary for normal
functioning of the individual, but increases the volume of
the circulatory system, thereby increasing demands on
cardiac output.

We incorporate redundant body mass explicitly with the
following supposition:

Supposition 1.1. The human body mass M may be pre-
sented as the sum:

M = m + R,  (1.2)

where m and R are the basal (or ideal) and redundant
body mass, respectively, and equality (1.1) is true for the
basal body mass m. Ignoring the effect of sex and size of
frame, the basal body mass is the mass that provides a
normal living activity of a body of height h(cm) and is
defined as[41]:

Resting on this supposition we can rewrite (1.1) as

Then, for a mass-specific rate of blood circulation v we
have:

If redundant body mass R is equal to zero then M = m, and

According to (1.5) the mass-specific rate of blood circula-
tion (SRBC) depends on two parameters: h and M. It is
convenient to express the influence of redundant body
mass on the SRBC with the ratio:

which presents the relative SRBC with respect to an ideal
body of the same height.

Definition 1.1. For any given patient, one can construct a
reference or basal individual, i.e. an individual having the
same height and Q = 1. In this patient relations such as
(1.1) and (1.3) are valid, in agreement with the underly-
ing model[32]. It follows from (1.5) and (1.6) that

Using the new variable

which presents the percent of redundant body mass in the
patient under consideration, we obtain:

Q = (1 + r/100)-1.  (1.8)

We verify (1.8) by considering the correlation between Q,
calculated from rate of blood circulation according to
(1.7):

and the percent of redundant body mass calculated as

where m is given by (1.3). The value of q in formula (1.9)
is calculated using a least squares fitting of the theoretical
dependence (1.8) and the observed correlation between Q
(1.9) and r% (Fig. 1). The data for the figures in this man-
uscript are from volunteers enrolled by the Moscow State
Medical Academy (Russia, courtesy of Dr. V. K. Korn-
eenkov). Body mass (kg), height (cm), lung capacity (L),
fasting glucose concentration (mmol/L), rate of blood cir-
culation (by echocardiography, in L/min), and cardiac
stroke volume (by echocardiography, L) were measured in
82 healthy males and females, aged 17 – 65 years.

The agreement of equation (1.8), derived from (1.5) and
(1.6), with the data supports equation (1.5) and ulti-
mately Supposition (1.1). However, there is also direct
evidence for the validity of Supposition (1.1). Consider
the two variables:
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If Supposition (1.1) is true the correlation between these
variables must be linear (Fig. 2).

Thus the rate of blood circulation is strongly correlated
with body height and, because this is mass-specific, it does
not change appreciably as body mass decreases or
increases. Thus we expect redundant body mass to present
a detrimental load relative to the individual's height. We
take this feature into account using specific rate of blood
circulation (1.5).

We note that Q (1.7) is inversely proportional to body
mass index (BMI)[42]. This follows immediately from
(1.3), (1.5) and (1.6) if we take into account that BMI uses
the measurement of height in meters:

The BMI is widely used in studies of human health. It is
known, that the values of BMI between 20 and 25 are gen-
erally correlated with a healthy state. Either increased or
decreased BMI with respect to a reference group (persons
with BMI of 22–23.9) corresponded to a rise in the risk of
death from all causes, though the increase needed to be
substantial (BMI ≥ 32; an increased BMI from 23.9 to 32
did not show a significant increase in risk)[43]. It follows

from (1.11) that the same conclusion should be applica-
ble to Q. In turn, according to the definition of Q (1.7),
this is associated with the variation in mass specific rate of
blood circulation, i.e. this risk is minimal when v = v.

Rate of blood circulation and particle interaction
The previous conclusion allows the inference that rate of
blood circulation plays an essential role in disease origin
and progression. In order to study this phenomenon let us
consider how the rate of blood circulation influences the
intensity of molecular interactions in blood or interstitial
fluid.

We consider an intercellular space (zone of interaction) in
a patient with sepsis (bloodstream infection), where par-
ticles (viral particles, molecules of antibodies, cytokines,
complement and coagulation factors, and others) move
and interact within the surrounding fluid. In order to cre-
ate the model let us describe the trajectory of a particle
along the direction of fluid motion in this zone.

Since intercellular space is considered an inhomogeneous
environment, we distinguish two components of particle
motion – its drift and diffusion. The first component
presents the systematic pressure on the particle travelling
together with the fluid flow; the second describes the par-
ticle's random motion within this flow. We can suppose
that due to the inhomogeneous structure of the intercellu-
lar space, the particle's motion among unmoved cells, and
collision with other particles inside the flow, constitute
properties of Brownian motion. According to this, for the
increment of the particle's coordinate during small inter-
val Δt we write:
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z(Δt) = a(v)Δt + b(v)·w(Δt),  (2.1)

where first term in the right-hand site describes the drift,
second one presents diffusion, and w(t) is the Wiener
process[44].

It is natural to equate the systematic pressure of the drift
term as proportional to SRBC, and thus we can write:

a(v) = a0·v,

where a0 > 0 is a constant. In order to obtain b(v) recall
that the coefficient of diffusion, d(v) = b2 (v), is propor-
tional to the kinetic energy of the particle, i.e.,

d(v) = b2 (v) = ·v2,

where b0 = 0 is a constant. Therefore, we can rewrite (2.1)
as

z(Δt) = a0·v·Δt + b0·v·w(Δt).  (2.2a)

Consequently for the basal patient we have:

z(Δt) = a0·v·Δt + b0·v·w(Δt),  (2.2b)

where underlining indicates the basal patient.

Using the parameter

we can rewrite equations (2.2) in the following form:

z(Δt) = a(v)· ·Δt + b(v)· ·w(Δt),  (2.4a)

and

z(Δt) = a(v)·Δt + b(v)·w(Δt),  (2.4b)

where a(v) = a0·v and b(v) = b0·v characterize the drift and
diffusion in the basal patient. Therefore, for the drift and
diffusion coefficients we have

a(v) = ·a(v) and d(v) = H·d(v).  (2.5)

Equations (2.4) and (2.5) are the starting relations where
the following results are proved[45].

Lemma 2.1. For both the system studied and the basal sys-
tem the increments in the coordinates satisfy the equali-
ties:

u(Δt) � u(Δt·H), u(Δt) � ·u(Δt),

where symbol � means stochastic equivalence, and

u(Δt) = z(Δt) - a(v)· ·Δt = b(v)· ·w(Δt),

u(Δt) = z(Δt) - a(v)·Δt = b(v)·w(Δt)

describes the particle motion within the fluid flow in the
studied and basal patients.

The particle contacts which lead to their interactions result
from their diffusion motion. The intensity of particle
interactions λ is defined as the average number of interac-
tions per unit of time:

where E is the mathematical expectation and n(Δt) is a
random number of the particle interactions in Δt.

Using Lemma 2.1 we prove the following statement:

Lemma 2.2. The intensities of interactions in the system
studied and the basal system satisfy the relation:

λ = H·λ.

Let xt be the concentration of particles of some kind in
zone of interaction at time t, and Xt, be their number. By
the definition

Xt = U·xt,

where U is the effective volume of interactions, i.e., the
measure of the domain Ω, which is formed in the fluid
flow by moving particles. In this case the following prop-
osition may be proved:

Lemma 2.3. The effective volumes of interaction U, U in
the system studied and in the basal system respectively
satisfy the condition:

Lemma 2.4. The stationary concentrations x∞, x∞ and the
number of particles of some kind X∞, X∞ in the system
studied and in the basal system are related by:

x∞ = H-1/2x∞,

X∞ = H·X∞..
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Let us suppose now that the state of a system of interacting
particles at time t is characterized by the vector xt ∈ RN,
whose components are concentrations of interacting par-
ticles of N kinds. We assume that the stationary state x∞ is
steady and the response of the system to an external dis-
turbance g in time T is described by the system of ordinary
differential equations:

where f(•,•,•) is a continuous vector-function that
describes the entry of particles, the structure of their inter-
actions, and the utilization of complexes; α ∈ RL is the vec-
tor of positive parameters. This vector takes into account
the interactions between particles with components that
are proportional to the intensity of interactions λ, defined
as the limit (2.6).

Theorem 2.1. If the relationships obtained in lemmas 2.1
– 2.4 are valid, the change in the state of the system stud-
ied is described by a model in the form (2.7) which con-
tains only the base parameters and H:

where

 or taking into account (1.7) H = Q2.

Theorem 2.1 allows us to study how the mass-specific rate
of blood circulation influences disease progression (Sec-
tion 5). First, however, let us consider the correspondence
of these results to the data and find out how the value of
H may be estimated from physiological indices.

Estimation of H from physiological measurements
The first formula for H follows directly from Lemma 2.4.
Indeed, let g and gbe the concentrations of fasting glucose
in the studied patient and in the basal patient respectively.
According to Lemma 2.4 we have:

where gis the homeostatic concentration[46] (from 3.3 to
6.1 mmol/L).

To test this, consider the definition  and the two

estimates  and . Since these two var-

iables both estimate H, the correlation between them
must be linear; moreover, it must correspond to the rela-
tion y = x (Fig. 3).

In order to test Lemma 2.3, let us suppose that effective
volume within which molecules of oxygen interact with
erythrocytes is proportional to lung capacity W. It follows
from Lemma 2.3 that

where W= 0.058·h - 4.788 for males and W= 0.038·h -
2.468 for females [47].

If our supposition is true we will obtain a linear depend-
ency between Hg and Hw (Fig. 4).

One more formula gives us the result obtained in Section
1. Since according to (1.8)
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and

Fig. 5 presents the correlation between Hv and

Thus from (1.11) and (3.3) we have .

As we noted in the end of Section 1, either increased or
decreased BMI with respect to a reference group (persons
with BMI of 22–23.9) corresponds to a rise in the risk of
death from all causes. Therefore, as H deviates from unity,
it indicates an increased risk of disease origin.

Application to disease modeling in sepsis
To apply the results obtained in Section 2 we use our
modification of the "Simple Model of an Infectious Dis-
ease" that takes into account the main principles of dis-
ease dynamics[37]. This model consists of four
differential equations:

where P(t) is the concentration of a pathogen at time t (t
= 0 is the moment of infection), F(t) is the concentration
of "humoral factors" – a summarized effect of innate and
cognate immune defense (cytokines, interferons, comple-
ment and coagulation cascades, pentraxins, antibodies,
etc.), C(t) is the concentration of various cells that elabo-
rate humoral factors (especially leukocytes, platelets and
endothelial cells), and D(t) is a relative characteristic of an
organ's damage, 0 ≤ D(t) ≤ 1. The values D(t) = 0 and D(t)
= 1 correspond to the healthy state and complete organ
failure respectively. The negative influence of the damage
on the ability of the patient to resist an infection is taken
into account by function ξ(D) (third equation of system
[4.1]). If 0 ≤ D(t) ≤ 0.1 then ξ(D) = 1, if 0.1 <D(t) ≤ 0.75
then ξ(D) = exp{-7.5(D - 0.1)}, and if D(t) > 0.75 then
ξ(D) = 0, i.e., we consider that the patient is unable to
resist when 75% or more of organ function is ablated.
Table 1 summarizes the model's parameters[34].

Model (4.1) differs from the previous model [37] by the
first term in first equation. In the original model this term
is β·P, which does not model the rate of pathogen repro-
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Correlation between two estimates of H: Hg vs. HwFigure 4
Correlation between two estimates of H: Hg vs. Hw. Hg 
is calculated from fasting glucose concentration; Hw is calcu-
lated from lung capacity. Each point presents the average 
value calculated from seven observations for g= 3.9 mmol/L.
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duction as being proportional to the undamaged part of
the organ's function. In the model of (4.1) an increase in
damage suppresses pathogen reproduction. We also use a
modified fourth equation, with σ·P·F instead of σ·P
because F(t) presents a summarized effect of immune
defense, including immunopathology that further impairs
organ function (e.g. T lymphocyte-mediated immune
destruction of an organ's cells).

Let us apply now Theorem 2.1 to this model in order to
study how SRBC influences disease progression. Applying
formula (2.8) to system (4.1) we have:

where H > 0 takes into account individual features of the
patient under consideration, and parameters {γ, ρ, μF, μC,
μm, α, τ, C∞, F∞} correspond to the basal patient.

It may be noted that for the delayed variable , we

now have  by applying equation (2.8) to the sys-

tem that describes the effect of delay as shown in ref. [37].

We note that for computational experiments it is more
convenient to use dimensionless variables:

X1(t) = P(t)/P(0), X2(t) = F(t)/F*, X3(t) = C(t)/C*, X4(t) =
D(t).

For these variables we have from (4.2):

where the parameters a1, a2, ..., a8 correspond to the basal
patient.

In order to study the influence of SRBC on disease pro-
gression and its outcome, let us consider the case where
the values of the basal patient's parameters provide a solu-
tion to system (4.3) that is interpreted as a sub-clinical
form of a disease. For the basal patient we set H = 1, with
constant parameters[48]:

a1 = 19.2, a2 = 22.1, a3 = 0.17, a4 = 8.0·10-6, a5 = 0.1, a6 =
0.5, a7 = 9.2·10-3, a8 = 0.12, τ = 0.5.
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Table 1: Parameters for Circulation, Infection, Recovery Model Parameters used in systems (4.1) and (4.2).

Parameter Interpretation

β Pathogen rate of reproduction
σ Pathogen virulence and cytotoxic action of T-lymphocytes
γ Intensity of a pathogen binding
ρ Intensity of antibody production
α Intensity of plasma cell production
η Number of antibodies needed to neutralize a single antigen

Average antibody lifespan

Average plasma cell lifespan

μm Host recovery rate
τ Period of time needed for the clone formation

C∞ Homeostatic concentration of plasma cells
P0 Initial concentration of a pathogen

μF
−1

μC
−1
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We then analyze the quantitative change of the solution
versus H.

The results are presented in Fig. 6 for the variable X1(t) =
P(t)/P(0) – the relative concentration of a pathogen.
Accordingly, H = 1 corresponds to sub-clinical disease,
while a decrease in H results in an indolent or chronic
form of disease (H = 0.85). A further decrease in H leads
to an acute form of disease (H = 0.7). As H decreases con-
siderably (H = 0.5) we obtain a lethal outcome because
end-organ damage X4(t) = D(t) has reached the upper
bound D(t) = 0.75 that corresponds to 75% impaired
function (data not shown).

Fig. 6 also shows that we stopped our calculations when
relative concentration of the pathogen X1(t) reached the
value 10-8, i.e., when P(t) ≤ P(0)·10-8. The horizontal
parts of the lines indicate a halting of the calculations.
Thus, a decrease in H leads to disease development, and
even to mortality. It should be noted that in the case con-
sidered, a further increase in H (H > 1) increases the rate
of the pathogen elimination, i.e., the negative slope of the
H = 1 line in Fig. 6. In some cases though, it may lead to a
lethal outcome for a patient with different immune sys-
tem parameters. Indeed, let us consider the case where a2,
a measure of the affinity of host antibodies to the patho-
gen, is decreased, but where a5, the rate of plasma cell pro-
duction (antibody producing cells), is increased. In order
to simulate this case, the following parameters are instruc-
tive:

a1 = 0.50, a2 = 0.14, a3 = 0.17, a4 = 8.0·10-6, a5 = 5.5, a6 =
0.5, a7 = 9.2·10-3, a8 = 0.12, τ = 0.5.

Here we simulate a stronger immune response as the rate
of plasma-cell production (a5) is increased from 0.1 to
5.5. At the same time, the affinity of free pathogen bind-
ing (a2) is diminished from 22.1 to 0.14. Thus, this exam-
ple could represent more abundant antibody production,
but of lower affinity. In this case, even for a pathogen hav-
ing a lower rate of multiplication a1, we can obtain a lethal
outcome by raising the value of H as shown in Fig. 7.

Fig. 7 shows that in the case when patients produce more
antibodies, but of lower affinity, patients having a low
mass-specific rate of blood circulation (low values of H)
incur less intense organ damage because a low rate does
not provide, for example, pathogen spreading to or within
organs (such as lung parenchyma in community-acquired
pneumonia, or CAP).

Therefore, either an increase or decrease in H can lead to
a lethal outcome (see Section 2 taking into account H =
Q2). This fact is used in the mortality model [47] that
describes the age specific mortality rate in a population.

Application to mortality modelling
In this section we use a mortality model [47] with an aim
to interpret H with respect to age. The mortality rate as the

Dynamics of organ damage during a disease at different val-ues of HFigure 7
Dynamics of organ damage during a disease at differ-
ent values of H. Increase in H leads from acute disease 
forms to lethal outcome. Y-axis is X4(t).

Dynamics of the relative concentration of the pathogen at different values of HFigure 6
Dynamics of the relative concentration of the patho-
gen at different values of H. H = 1 – sub clinical form, H = 
0.85 – chronic form, H = 0.7 – acute form, H = 0.5 – lethal 
outcome. Y-axis is the log(X1(t)).
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function of age x may be presented in the following form
[47]:

μ(x) = μ0·[exp{16·(H(x) - 1)} + exp{-16·(H(x) - 1)}] + c
 (5.1)

with a minimum at H(x) = 1. The dependence of H on age
is presented by the monotonically decreasing function:

where a, b, H0, λ, X0 are parameters (Fig. 8).

From equation (5.2) we can calculate the age specific mor-
tality rate (5.1) for this small population under the suppo-
sition that the minimal mortality rate 2μ0 and background
mortality c in this sub-population are the same as in the
population in a whole.

Conversely, having mortality model (5.1) we can calcu-
late curve H(x) for the population using the mortality rate
in the population. Let us analyze this curve given that

in accordance with the results of Section 3. Of course, we
can suppose that H(x) is calculated from lung capacity or
glucose concentration but we have chosen body mass
because this parameter is more convenient for this inter-
pretation.

As shown in Fig. 8, during youth H(x) > 1 and conse-

quently  because the growth of body

mass lags behind increases in height. In an ideal case,
when height stops increasing, for example at age x = a*,

body mass will reach the value  and also stop

increasing. In this ideal case we would have the following
dynamics for H: as H(x) decreases in accordance with
(5.2) and reaches the value H(x) = 1 at the age a*, i.e.,
H(a*) = 1, and then it remains at this level, i.e., H(x) = 1
for all x > a*. However, Fig. 8 shows that H(x) continues
to decrease after a*. Therefore, the difference 1 - H(x) for

x ≥ a* may be used as a measure of discrepancy between
the ideal and observed curves. More exactly, we use the
following integral that summarizes all differences:

Fig. 9 shows the correlation between this measure and
total mortality from cardiovascular diseases and cancer
(CVDC) in Sweden (In [5.2] X = 90 years). In order to plot
this diagram we used mortality rate curves (females and
males) for each year from 1951 to 1992 that gave us 84
pairs (S, CVDC). This diagram indicates that mortality
from CVDC increases with discrepancy S.
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Correlation between the total mortality from cardiovascular diseases plus cancer (CVDC; annual number of cases) and the measure of discrepancy (S)Figure 9
Correlation between the total mortality from cardio-
vascular diseases plus cancer (CVDC; annual number 
of cases) and the measure of discrepancy (S). S (equ. 
5.3) is calculated from female and male mortality rates in 
Sweden (1951 – 1992). Each point presents the result of 
averaging (14 cases) for close values of S.

Typical age specific dynamic of HFigure 8
Typical age specific dynamic of H. Each dot presents the 
average from 4 cases; solid line corresponds to equ. (5.2) 
when a = 2.0021, b = 0.2428, H0 = 0.8953, λ = 0.0026, X0 = 
65.5076.
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In turn, the area S increases as age a* diminishes. In con-
temporary Sweden, for example, a* < 10. However, it is
clear that at this age body height continues to increase,
and consequently the inequality H(x) < 1 means that after
age a* body mass exceeds that predicted from height
alone.

If we suppose that the process of growth is substantially
completed by the age 25, then we can expect that around
this age physiological parameters will be adjusted with
each other including height and body mass. Therefore, in
the neighborhood of this age the value of H must be close
to 1. Since a* < 25 let us consider the difference 25 - a* as
independent variable instead of S in our previous data
analysis (Fig. 10). As the above mentioned discrepancy
appears at the age a* < 25 and then increases with age, Fig.
10 indicates that the earlier it appears, the higher is the
total mortality from cardiovascular diseases and cancer in
the population. This conclusion is related not only to
body mass but is also related to the mass-specific rate of
blood circulation, fasting glucose concentration, and lung
capacity – the physiological indices that, according to Sec-
tion 4, allow us to assess the correspondence of the stud-
ied patient to the base patient using H.

Discussion
Recent advances in bioinformatics and in the precision of
technologies for comprehensive measurement of biomol-
ecules have created the novel discipline of systems biol-
ogy[26]. Defined as the analysis all of the biomolecules in
an experimental system simultaneously, systems biology
is creating the opportunity, for the first time, to under-

stand the molecular cause and course of complex traits,
including sepsis[49]. Clinical systems biology, or the
application of systems biology to human disease, holds
considerable promise for personalized medicine. One of
the first dividends of clinical systems biology has been the
identification of novel biomarker candidates – biological
markers that correlate with disease diagnosis, prognosis,
staging, progression or drug efficacy. The promise of clin-
ical systems biology is the validation of a subset of
biomarkers as surrogate end-points and their use in guid-
ing individual patient management. The key to deploy-
ment of clinically useful surrogates is their incorporation
into robust, dynamical models of disease that enable real-
time, data-driven, treatment decisions. Diseases and clin-
ical states which are excellent candidates for initial imple-
mentation of dynamic, data-driven patient management
are those where intensive physiologic monitoring and
treatment algorithms are already established. They
include labor and delivery, acute myocardial infarction,
cardiac arrest, and sepsis[50].

Concurrent with the maturation of clinical systems biol-
ogy, mathematical models are increasingly contributing
an integral role to a dynamic understanding of human
anatomy[51], physiology[54], and pathology[53-56].
Hitherto, however, few examples exist of hybrid models
(that incorporate contributions by more than one organ
system; though see, for example, ref. [35]). The present
article describes a dynamical model that represents a basic
theoretical framework for understanding how individual
progression in a systemic disease, such as sepsis, can be
driven by variations in both the immune and circulatory
systems.

Critical to the development of clinically useful, dynamical
models of sepsis is the recognition of strong and consist-
ent underlying relationships between acute physiologic
derangement and the risk of death during sepsis[13,57-
61]. In particular, the concept of mass-specific rate of
blood circulation has been introduced because the rate of
blood circulation is strongly correlated with body height
while being relatively independent of changes in patient
body mass (Section 1). Consequently, a mass-specific rate
of blood circulation decreases with the body mass growth.
The metric, H, was proposed, that is the square of the ratio
of the actual to the ideal mass-specific rate of blood circu-
lation. Deviations of H from unity lead to unfavorable
disease progression and outcomes since these deviations
influence the intensity of particulate movement and inter-
action in the blood and interstitial fluid (Section 2).

The parameter H could be considered as a quantitative
measure of the correspondence of a patient to an ideal or
basal individual and therefore, it may be used to establish
basal expectations for health monitoring with the aim of

Correlation between the total mortality from cardiac and neoplastic diseases (CND; annual number of cases) and 25 less the age when adult height is first attainedFigure 10
Correlation between the total mortality from car-
diac and neoplastic diseases (CND; annual number of 
cases) and 25 less the age when adult height is first 
attained. The difference (25 - a*), where a* is the age when 
height stops increasing, is calculated from female and male 
mortality rates in Sweden (1951 – 1992). Each point presents 
the average from 12 observations.
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disease prevention. To this end, estimates of H calculated
from easily measured physiological characteristics such as
body mass, height, fasting glucose concentration, and
lung capacity may be used (Section 4). As H deviates from
unity, it indicates an increased risk of disease origin, unfa-
vorable course and outcome. Understanding the basic
expectations of disease progression as affected by devia-
tions in blood circulation would start to allow partition
the variance of observed cases (i.e., normalizing responses
for differences in height and weight), thus increasing the
predictive power of biomarker-based models.

Predictions from this model were compared with popula-
tion mortality data from cardiovascular disease and cancer
(Section 5) and showed that, upon adjustment for age,
deviations from normal SRBC correlate with higher mor-
tality rates. Current, prospective studies will provide an
additional cohort in which to evaluate predictions from
this model.

In accord with this model, clinical studies and recent ther-
apeutic advances strongly suggest that vascular or micro-
circulatory perturbations represent a major determinant
of mortality in sepsis[50,65-68]. Septic shock (the failure
of circulatory homeostasis due to sepsis) is associated
with 50% mortality[7]. Major improvements in mortality
in severe sepsis have been achieved by algorithm-based
use of vasopressors, early goal directed therapy, and infu-
sion of activated protein C. Each of these interventions
has a major mechanism of action that is based upon res-
toration of adequate blood microcirculation[62,63].

Another advance in the present model is the introduction
of end-organ insufficiency and failure, rather than just
mortality (Section 5). The clinical course in sepsis is
highly variable and insufficiency or failure in a variety of
organs can contribute to morbidity or mortality. For
example, insufficiency in any of five end-organs is suffi-
cient to meet the definition of severe sepsis, which is asso-
ciated with a substantial increase in mortality.

Another feature of the present model that will improve
clinical utility in prediction of disease progression in indi-
vidual patients is the inclusion of age as a covariate (Sec-
tion 6). Several major clinical indices used to predict
mortality in sepsis (such as APACHE II score) include age
as covariate. Chronologic age is a well-documented risk
factor for death from sepsis that is independent of the
severity of disease[13,64]. An active area of current immu-
nologic research is the effect of age on the immune
response. Additional studies will be necessary to include
the effects of age on innate and cognate immune mecha-
nisms in sepsis.

Conclusion
Much work remains to be done to refine and validate the
base theoretical model in robust animal studies of sepsis
(such as rat cecal ligation and puncture) and in clinical
studies. In particular, future studies will need to extend
the current cross-sectional observations from relatively
small numbers of healthy individuals to longitudinal
studies of large numbers of acutely-ill sepsis patients
(such as the PROWESS data set). Recent developments in
our understanding the critical role of humoral and cellu-
lar innate immune mechanisms in sepsis outcomes need
to be reflected in the model. Finally, our understanding of
perturbations in basic physiologic mechanisms in sepsis is
still maturing: For example, the concept of septic shock
was recently expanded to include recognition of precursor
states, such cryptic shock, through measurement of objec-
tive, clinical biomarkers, such as arterial lactate[10].
Another example has been the recent recognition of a con-
tinuum of endothelial activation, endothelial damage,
increased vascular impedence and disseminated intravas-
cular coagulation, possibly represented by the surrogate of
plasma protein C levels[50,65-68]. Selective incorpora-
tion of clinically useful surrogates such as these into
robust, dynamical models of sepsis holds the promise of
enabling real-time, data-driven, treatment deci-
sions[36,49,69]. Key clinical questions that such models
might address include: Should this patient with CAP be
admitted to hospital? Has this patient's clinical course
deteriorated (or improved) in the last six hours? Would
this patient benefit from activated protein C infusion?
Would this patient benefit from early goal directed ther-
apy?

Methods
Collection of clinical data
Physiologic values (Body mass (kg), height (cm), lung
capacity (L), fasting glucose concentration (mmol/L), rate
of blood circulation (by echocardiography, in L/min),
and cardiac stroke volume (by echocardiography, L) were
measured in 82 healthy volunteers at the Moscow State
Medical Academy (Russia, courtesy of Dr. V. K. Korn-
eenkov), and were collected in compliance with the Hel-
sinki Declaration, and approval of the Institute of
Numerical Mathematics at the Russian Academy of Sci-
ences and Moscow State Medical Academy (Moscow, Rus-
sia).

Retrospective cardiovascular and cancer mortality infor-
mation was obtained from public records http://
www.mortality.org
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