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Abstract
Background: The problem of estimating the parameters of dynamic models of complex biological
systems from time series data is becoming increasingly important.

Methods and results: Particular consideration is given to metabolic systems that are formulated
as Generalized Mass Action (GMA) models. The estimation problem is posed as a global
optimization task, for which novel techniques can be applied to determine the best set of parameter
values given the measured responses of the biological system. The challenge is that this task is
nonconvex. Nonetheless, deterministic optimization techniques can be used to find a global
solution that best reconciles the model parameters and measurements. Specifically, the paper
employs branch-and-bound principles to identify the best set of model parameters from observed
time course data and illustrates this method with an existing model of the fermentation pathway in
Saccharomyces cerevisiae. This is a relatively simple yet representative system with five dependent
states and a total of 19 unknown parameters of which the values are to be determined.

Conclusion: The efficacy of the branch-and-reduce algorithm is illustrated by the S. cerevisiae
example. The method described in this paper is likely to be widely applicable in the dynamic
modeling of metabolic networks.

Background
The past few years have witnessed an enormous increase
in the availability and quality of high-throughput data
characterizing the status of cells at the genomic, pro-
teomic, metabolic and physiological levels. In most cases,
these data were interpreted as simple snapshots or in a
comparative setting with the goal of differentiating
between normal and perturbed or diseased cells. It is now
becoming feasible to use the same methods to record the
status of cells over time. The resulting time series data con-
tain enormous amounts of information on the dynamics

of functioning cells. Several groups of scientists around
the world have begun to develop methods for inferring
from these profiles the underlying functional networks at
the genomic or metabolic level. In principle, this task is a
straightforward matter of defining a suitable model and
estimating its structure, but numerous conceptual and
computational difficulties have made the implementation
of this inverse problem challenging. The difficulties fall
into several categories.
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First, it is necessary to select a mathematical modeling
framework that is rich enough to capture the observed
dynamics with sufficient accuracy but that is also struc-
tured in a fashion that allows interpretation of results
beyond pure parameter estimation. For instance, if one
selected a high-order polynomial and estimated parame-
ters capturing the observed time profiles, then the result-
ing coefficients would not have much meaning and could
hardly be translated into biological insight. Several groups
[1-10] have therefore focused on S-system models within
the modeling framework of Biochemical Systems Theory
(BST), which itself has a rich history of successful analysis
and application. S-systems, and the alternative variant of
Generalized Mass Action (GMA) systems, have the advan-
tage for inverse tasks that their parameter values map
essentially one-to-one onto structural and regulatory fea-
tures of biological networks. Thus, structure inference is
reduced to the simpler task of parameter estimation. BST
has been the subject of several hundred articles, reviews,
books, chapters, and presentations [11-21], which per-
mits us to review only a few features that are of particular
interest here.

The second difficulty arising in the inference problem is
the preparation of data and the preprocessing of the task
itself. Clearly, noise in the data complicates the estimation
and often leads to local minima in the search space, as
well as to unwanted redundancies in inference. Further-
more, the fact that essentially any model of a dynamic
biological system involves differential equations necessi-
tates efficient integrators, because these methods may
consume in excess of 95% of the time required to estimate
parameters in systems of differential equations [9]. In
order to reduce this computational cost, several groups
have devised methods addressing some of these prob-
lems. One efficient strategy is the estimation of slopes of
the profiles, which permits the replacement of differen-
tials with the estimated slopes at many time points and
consequently the conversion of systems of differential
equations into larger systems of more easily computed
algebraic equations [3,9,18,22,23]. A prerequisite of this
method is obviously the reliable estimation of slopes, for
which various smoothing methods have been proposed,
including neural network smoothing [3,9], filtering [6]
and collocation methods [8]. It was also shown that
decoupling of systems of n differential equations may be
achieved by treating n-1 of the data sets as inputs in the
remaining equation [2]. In complementary approaches,
the search process was simplified by making use of auxil-
iary information about the biological system, which was
translated into constraints on the parameters that had to
be estimated [3], and by priming the search process with
reasonable initial guesses, which were obtained directly
from the topology of the systems [24] or through various
means of linearization [25].

The third difficulty of the inverse problem is the estima-
tion of parameters itself. Because of the inherent nonline-
arities, the task is hampered by trapping of the search
algorithm in local minima, lack of convergence, or a con-
vergence speed that makes inference of larger systems
infeasible. In the past, this step has probably received the
least attention, and the various groups addressing the
inverse problem have resorted to standard methods of
nonlinear regression, genetic algorithms or simulated
annealing. In this article, we address this subtask of the
inference problem by replacing the regression step with a
global optimization algorithm. Specifically, we formulate
the nonconvex estimation problem as a global optimiza-
tion task that uses branch-and-bound principles to iden-
tify the best set of model parameters given observed time
profiles. The greatest advantage of this method is that it
guarantees that the optimum obtained is global within
pre-defined bounds on the parameter search space. Note
that global optimization does not guarantee that the
resulting solution is unique; the method guarantees that
no other points exist with a better objective function than
the global solution. Multiple degenerate solution points
could exist with identical unique objective function val-
ues. As an example, we estimate the parameters of a model
describing the fermentation pathway in Saccharomyces cer-
evisiae, as described in [26]. This system has five depend-
ent states and a total of 19 unknown parameters. It is
manageable in size, yet representative of the nonlineari-
ties typically encountered in metabolic modeling and has
therefore been used for a variety of analyses in the past
[18,27-29].

Model formulation
Metabolic pathway analysis is concerned with the mode-
ling, manipulation and optimization of biochemical sys-
tems. While valuable insights may be gained from the
formulation of these systems as stoichiometric networks
[30], whose functioning may be constrained as described
in Flux Balance Analysis [31], it will ultimately be neces-
sary for many purposes to formulate the processes as
dynamical systems that account for detailed kinetic fea-
tures, such as the regulation and modulation of enzyme-
catalyzed steps and transport processes. The default
approach for this purpose may seem to be a model repre-
sentation in the tradition of Michaelis and Menten. How-
ever, it was recognized early on that this representation is
not particularly well suited for the analysis of large net-
works [32-34], and this led to the development of alterna-
tive methods, among which BST, Metabolic Control
Analysis [35] and the "log-linear" approach [36] have
received the most attention. In particular, it was shown
that the S-system variant within BST has favorable features
for the optimization of nonlinear metabolic systems
[15,37]. As an alternative to the S-system formulation,
which may be criticized for its manner of flux aggregation,
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the GMA variant overcomes this issue, even though it
loses some of the advantages of the S-system form such as
its linearity at steady state [12] and its sometimes slightly
higher accuracy [38,39]. GMA representations have the
advantage that they are closer to biochemical intuition
and that production and degradation terms do not vanish
if one of the contributing fluxes disappears, as is the case
with S-systems. GMA systems are also interesting in that
they include both stoichiometric systems and S-systems as
special cases so that they allow a seamless transition from
linear to fully kinetic models. Our task in this article is
thus the estimation of GMA parameters from time series.

In the GMA formulation within BST, the change in each
dependent pool (state variable) is described as a differ-
ence between the sums of all fluxes entering the pool and
all fluxes leaving the pool. Each flux is individually linear-
ized in logarithmic coordinates, which in Cartesian coor-
dinates corresponds to a product of power-law functions
that contains those and only those variables that directly
affect the flux, raised to an exponent called its kinetic
order. The product also contains a rate constant that deter-
mines the magnitude of the flux or speed of the process.
The mathematical formulation of any GMA model is thus

where γi1,...,γik are rate constants corresponding to k reac-
tions of production/consumption, and ζijk are kinetic
orders for species i in reaction k involving species j. In
cases where species j does not have any influence on a
given power-law term, ζijk = 0. The number of reactions in
one differential equation, k, may be different for each spe-
cies. Reaction terms for consumption of one species may
appear as a production term for another species. The sys-
tem consists of n differential equations, representing the
time-dependent variables, but also contains m time-inde-
pendent variables that affect the system but are not
affected by the system and are typically constant from one
experiment to the next. The power-law terms in Eq. (1) are
the result of a straightforward Taylor approximation,
which is applicable to an essentially unlimited variety of
underlying processes and may include different types of
interactions, activation, inhibition and processes associ-
ated with dilution and growth.

It is interesting to note that every parameter of a GMA
model has its unique role and interpretation. This situa-
tion is significantly different from using unstructured fit-
ting models such as higher-order polynomials or splines.
In a generic polynomial representation, every coefficient
is likely to change if additional data points are used for fit-
ting or if points are removed. Thus, except for the fact that
the higher-order coefficients are associated with higher
derivatives, which otherwise are not very meaningful, not
much can be said about their biological role in the mod-
eled process. In the GMA model, by contrast, every param-
eter has a unique meaning in the subject area of the
model. Each kinetic order quantifies solely the effect that
a particular variable has on a given process. For example,
the first kinetic order in a later example is ζ121 = -0.2344
(see Figure 7). Thus, it uniquely describes the effect of
metabolite X2 on the first production process of X1. The
effect is inhibitory, which is indicated by the negative sign,
and is only moderately strong, which is reflected in the
small magnitude of the parameter. In this fashion, there is
a one-to-one relationship between kinetic orders and
structural features of the model. The interpretability of the
parameters can also been seen from a different point of
view: in principle, each kinetic order can be obtained
directly from local information on the system. Namely, if
it possible to vary X j while keeping all other variables con-
stant, and to measure the consequent changes in the pro-
duction of Xj, then the slope of the production process as
a function of Xj, in log space, is exactly the kinetic order in
question. This type of interpretation is usually not possi-
ble in global fitting models such as high-order polynomi-
als. The constant multipliers are rate constants that, as in
elemental chemical kinetics, quantify the turnover rate in
each process and are always non-negative. Their magni-
tudes depend on the scales (time, concentration, etc.) of
the modeled system.
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Convex relaxation using linear constraints.
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The S-system representation within BST is formally a spe-
cial case of a GMA system with at most one positive and
one negative term. The correspondence between the bio-
logical network and the mathematical representation is
slightly different in an S-system because all fluxes entering
a pool are collectively linearized in logarithmic coordi-
nates and the same is done with all fluxes leaving the
pool. Thus, each S-system equation has at most one influx
and one efflux term and thus reads

where αi, βi are the rate constants and gij, hij are kinetic
orders. These S-system parameters are directly tied to the
corresponding GMA system through constraints [18].

Both forms are nonlinear and rich enough to capture any
dynamic behavior that can be represented by any set of
ordinary differential equations [38]. If set up as alternative
descriptions of the same biological system, the two are
equivalent at one operating point of choice and typically
differ if the system deviates from this point, though the
differences are often small in realistic situations [18].

Working with metabolic models consists of three phases:
Model design, model analysis and model application. The
present work focuses on the first phase of model design.
This step is usually executed by assembling a topological
map of the phenomenon of interest based on biological
knowledge. Kinetic orders and rate constants are then esti-

mated from measured or published kinetic information.
In the case of S-systems, it would also be feasible to use
steady-state data from multiple experiments with different
values of independent variables. Because the steady-state
equations of S-systems are linear (in logarithmic coordi-
nates), such data would allow use of a simple matrix
inversion leading to optimal parameters, a pseudo-inverse
method or a linear programming approach [37]. In the
alternative GMA approach, logarithmic transformation
does not completely transform the estimation problem
into a linear formulation, thus requiring nonlinear meth-
ods.

In addition to this traditional bottom-up approach, a top-
down approach is becoming increasingly feasible. This
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Left: A single branch-and-bound step for a nonconvex function of a continuous variableFigure 2
Left: A single branch-and-bound step for a nonconvex function of a continuous variable. Right: Demonstration of implicit enu-
meration search for a branch-and-bound tree.
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complementary approach is based on time profiles that
are used for the determination of system parameters
through some type of estimation and their interpretation
in terms of structural and regulatory information. We
describe in the following how this estimation is facilitated
with a branch-and-bound method, which has not previ-
ously been used for this purpose.

Optimization formulation
The goal of model identification is to estimate the "best"
set of parameter values, which minimizes the error
between the process data and the model response. This
parameter estimation problem can be formulated as a
nonconvex nonlinear optimization problem and can
therefore be solved using global optimization techniques.
The parameters to be estimated in GMA systems are rate
constants γ and kinetic orders ζ as shown in Equation 1
leading to the following formulation:

The parameter r denotes the r-norm considered for mini-
mization. It usually takes the values 1 (min sum abso-
lute), 2 (min sum square), or ∞ (min max error). P is the
number of data points sampled at times t, hi are the non-
linear rate expressions from Eq. (1) that define the pro-
duction and consumption rates for species i given vectors
of model parameters γ and ζ, ei(t) are the errors associated
with each constraint equation for species i at time t, and n
is the number of dependent variables. In the formulation
described above, the objective function is linear because
the maximum absolute error is minimized. The noncon-
vexity arises from the equality constraints, which are non-
linear. It is useful to split these nonlinear equality
constraints into two inequality constraints, at least one of
which will be nonconvex.

Following strategies proposed in the literature [6,8,9], it is
possible to smooth the raw time profiles, which subse-
quently allows the computation of slopes at many data
points and thus the replacement of differentials on the
left-hand side of Equation 1 with estimated slopes. Thus,
assuming that the rate of change of each species is obtain-

able at each desired time point, (t), and the values of

the concentrations Xi(t) at time i are known, the optimiza-

tion task in Eq. (3) can be formulated as a general non-

convex nonlinear programming problem in the form
shown in Eq. (4):

where the vector x ∈ RN is a vector of N unknowns includ-
ing the error terms and unknown parameters and f(x),
gk(x) : RN → R1. Here, the index k represents constraint k
of m total constraints.

This formulation is rather general in that the functions
f(x) and gk(x) may be nonlinear and nonconvex. In partic-
ular, the formulation allows the estimation of globally
optimal GMA systems, given time profiles. Deterministic
methods for global optimizations of this type depend on
the generation of convex function relaxations of the non-
convex nonlinear functions. Numerous methods have
been proposed for constructing such relaxations. For this
work, we use a reformulation method for factorable
expressions [40]. This method converts the original factor-
able nonconvex nonlinear problem into an equivalent
form through the introduction of new variables zik for
every product of power-law terms at measurement sample
time t in the system [15]:

Note that the species concentration Xi(t) in the preceding
equation is assumed to be known from the observed data.
If it is not, it may be obtained through interpolation from
a preparatory smoothing of the observed data [3,9]. If no
information at all is available on the variable, the GMA
representation should probably be reduced in complexity
[18]. As an example for such a reduction, suppose that X1
is converted into X2 and X2 is converted into X3. If X2 is not
observable, then one would probably formulate the sys-
tem without X2, and make X3 a function of X1. Since the
mathematics underlying the GMA representation is
directly based on Taylor's theorem, X3 then simply
becomes a power-law term containing X1. Such omissions
of variables have been discussed in the literature [31,41].

For simplicity of discussion, we assume that a complete
data set is available. The problem specified in Eq. (3) is
then of the form:
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where sik for reaction k of production or consumption of
species i is either +1 or -1. The variables in this reformu-
lated problem can be collected into the vectors z, e, γ, and
ζ

To obtain efficacious solutions, the problem must be for-
mulated such that it contains only linear and "simple"
nonlinear constraint functions for which one can con-
struct relaxations that use the convex envelopes already
known for simple algebraic functions. The nonlinear
equality constraints in the original GMA formulation
become simple (linear) sums when they are expressed in
the new variables, z. Furthermore, taking the logarithm of

each definition for z from Eq. (5) leads to a new set of lin-
ear equations and simple nonlinear equations. The con-
nection between these two sets is a set of simple
logarithmic constraints. To streamline notation, the addi-
tional new variables are defined as: wik = ln(zik) and Γik =
ln(γik). Thus, we obtain a sum of logarithmic functions for
each term zik(t), namely:

For the purpose of convexification, one can omit the log-
arithm of the rate constant because it simply shifts the
optimal solution by a constant. This results in the follow-
ing formulation:

As sij, Xi(t), and (t) are known at time values t, the only

unknowns are w Γ, z, ζ and e. Values for γ can be deter-

mined easily when the solution value for Γ is found. All
constraints other than wik(t) = ln(zik(t)) are linear.
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Model equations for simple GMA system.

Ẋ1 = 0.8X−1
2 X−1

3 X0.5
4 − 3X0.5

1 X−0.1
2 − 2X0.75

1 X−0.2
3

Ẋ2 = 3X0.5
1 X−0.1

2 − 1.5X0.5
2

Ẋ3 = 2X0.75
1 X−0.2

3 − 5X0.5
3

X4 = 0.25

Table 1: Time series data of the states and slopes for the didactic example

Data Points X1 X2 X3

1 5.00e-1 5.00e-1 1.00 -2.66 1.21e -3.81
2 2.91e-1 5.86e-1 6.498e-1 -1.52 5.59e-1 -3.17
3 1.96e-1 6.22e-1 3.73e-1 -3.82e-1 2.08e-1 -2.34
4 2.20e-1 6.42e-1 1.90e-1 9.11e-1 2.69e-1 -1.28
5 3.65e-1 6.87e-1 1.16e-1 1.69 6.39e-1 -2.59e-1
6 4.88e-1 7.63e-1 1.15e-1 6.24e-1 8.42e-1 1.08e-1
7 5.04e-1 8.46e-1 1.24e-1 -1.66e-1 7.85e-1 5.54e-2
8 4.75e-1 9.18e-1 1.25e-1 -3.31e-1 6.49e-1 -3.05e-2
9 4.45e-1 9.76e-1 1.197e-1 -2.52e-1 5.25e-1 -6.29e-2
10 4.26e-1 1.02e-1 1.14e-1 -1.43e-1 4.35e-1 -5.59e-2
11 4.15e-1 1.06e-1 1.09e-1 -8.07e-2 3.73e-1 -3.81e-2
12 4.08e-1 1.099e-1 1.06e-1 -5.99e-2 3.26e-1 -2.51e-2

X1 X2 X3
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As mentioned earlier, the parameter r in Eq (3) denotes
the r-norm considered for minimization. In the case with
r = 1, the sum absolute value of the error, which is linear,
is desired for minimization. In the case of r = 2, the objec-
tive function is nonlinear, but at least convex. This nonlin-
earity increases the complexity of the task during the
generation of problem relaxations, requiring additional
variables and constraints in the linear relaxation. It is well
known that when minimizing the absolute value of some
variable, constraints of the form |f(x)| = e can be written
as two inequality constraints, f(x) ≤ e, and -f(x) ≤ e. The
formulation then may be written as follows:

Note that the variables Γik, ζijk and ei(t) can be consoli-

dated into the vector y. The variables in this vector y only
appear in linear constraints, while w and z are related
through a simple nonlinear expression. Thus, in compari-
son with the formulation of Equation 4, the variables x
include w, z and y. The objective function f(x) and many
of the constraint functions gk(x) are linear. The objective

function (1) represents a sum of the absolute value of
errors on the balance equations. The balance equations in

(2) and (3) relate the rate of change, (t) of the species

at time t, to the individual reaction rates that consume or
produce that species, zik(t), as well as the absolute error for

that equation at that point in time. Constraints (4) and
(5) result from the transformation of the power-law
expressions for the rate equations.

The convex relaxation using linear constraints for a loga-
rithmic function is illustrated in Figure 1. In this figure,
the solid line corresponds to the nonlinear function w = 2
* ln(x), the dashed line represents the linear underestimat-
ing function, and the dash-dot lines serve as the linear
overestimating functions.

As bounds are known for the concave nonconvex func-
tion, the secant can be used as a linear underestimation
function. Multiple outer approximation linearizations can
be used as linear overestimation functions. The intersec-

tion of these linear constraints is a relaxation of the origi-
nal nonlinear function.

Taking the formulation in Eq. (9), coefficients for the lin-

ear inequality constraints are the constant values of (t)

and sik. The linear equality constraint coefficients include

the constant values ln(Xj(t)), while e, z, w, Γ and ζ, are the

unknowns. The reformulated nonconvex Non-Linear Pro-
gramming (NLP) problem is now in the form

where all linear inequality constraints are represented by
A1[wT zT yT]T ≤ b1, and A2[wT zT yT]T = b2 defines the new lin-
ear constraints obtained from reformulation, while w =
η(z) provides the relationship between w and z. Bounds
on w are determined from the bounds on z using interval
methods. Note that η consists of simple nonlinear (loga-
rithmic) terms and that the formulation in Equation 10 is
the same as that in Equation 4 with the vector of
unknowns x made up of w, z and y. Additionally, f(x) and

min
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Dynamic response for the simple GMA system having feed-back inhibitionsFigure 5
Dynamic response for the simple GMA system having feed-
back inhibitions.
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many of the gk(x) are linear functions in Eq. (4). Note that
any equality constraint gk(x) = 0 can be written equiva-
lently with two inequalities as 0 ≤ gk(x) ≤ 0 or gk(x) ≤ 0, -
gk(x) ≤ 0.

Convex relaxations for this task are constructed with DAE-
PACK [42,43], an automated code generation tool. The
advantage of using the DAEPACK tool for this purpose is
that it can be applied directly to legacy models coded in
standard FORTRAN. The convex relaxations can be
denoted as:

(w, z, wl, wu, zl, zu) ≤ w ≤ (w, z, wl, wu, zl, zu)  (11)

where  and  are the convex under-estimates and con-

cave over-estimates of the reformulated problem, respec-
tively.

A linearization strategy [42,44] is then used to generate a
Linear Programming (LP) relaxation of the convex NLP
created using DAEPACK. The resulting LP is of the form:

where A3 [wT zT yT]T ≤ b3 expresses the new linear con-
straints resulting from the linearization process as illus-
trated in Figure 1. This linearization technique is ideal
because it yields a linear program for which robust solvers
exist (e.g. ILOG CPLEX 8.0 [45] and the IBM OSL library
[46]). Note that A3, b3, wl and wu are updated as zl and zu

change in the spatial branch-and-bound algorithm.

Solution methodology
The branch-and-bound algorithm [47] can be used as a
deterministic method to solve the nonconvex nonlinear
problem formulated above. This is illustrated in Figure 2.
Branch-and-bound methods depend on generating tight
upper and lower bounds for the objective function value
at the global solution. A lower bound is generated by solv-
ing the convex relaxation of the original nonconvex NLP
problem. Any local minimizer for the original NLP prob-
lem may serve as an initial upper bound for the objective

function value. If the lower bound is sufficiently close to
the upper bound, within ε tolerance, the algorithm termi-
nates. If not, the feasible region is divided into partitions
and lower bounds are generated for the new partitions.
Any partition can be removed from further consideration
if it is determined that the particular partition cannot con-
tain a better solution than the best solution found so far,
or that the lower bounding problem associated with the
partition is found to be infeasible. In either case, the par-
tition needs no additional separation. In general, the fath-
oming criteria can be expressed as follows:

1. If the relaxed problem associated with the partition is
infeasible, adding additional constraints will not make
the problem feasible. The partition itself is infeasible and
hence can be removed from further consideration.

2. If the objective function value of the relaxed problem
associated with the current partition is greater or equal to
the best solution found so far, then the partition can be
removed from further consideration.

Any feasible solution to the original problem may serve as
an upper bound for the global solution. The algorithm ter-
minates when the lower bounds for all partitions either
exceed or are sufficiently close to the best upper bound. At
this point, a global optimum has been determined within
the originally preset bounds on the parameter search
space. This global optimum is the best value of the objec-
tive function. It is noted that multiple points in the
parameter space may lead to equivalent values of the
objective function.

For the optimization problem shown in Eq. (3), a branch-
and-reduce method [48] was implemented. This is an
extension of the traditional branch-and-bound method
with bound tightening techniques for accelerating the
convergence of the algorithm. Within this branch-and-
reduce algorithm, infeasible or suboptimal parts of the
feasible region are eliminated by using range reduction
techniques such as optimality-based and feasibility-based
range reduction tests [48-50] or interval analysis tech-
niques [51]. These techniques render tighter variable
bounds for a given partition in the search tree, thereby
leading to more rapid convergence.

Didactic example
The identification of model parameters is first illustrated
with a simple GMA system adopted from [18] and shown
in Figure 3. The system has 3 dependent variables, 1 inde-
pendent variable and 13 parameters. The initial condi-
tions of the three dependent variables are: X1(0) = 0.50,
X2(0) = 0.50 and X3(0) = 1.0. The parameters to be esti-
mated are rate constants and kinetic orders; their true val-
ues are shown in Figure 4. It is assumed that the
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concentration and rate of change for each individual spe-
cies are known at a series of sampling times.

The chosen initial conditions do not correspond to a
steady-state, resulting in a transient response before the
system reaches its stable steady-state. Independent varia-
bles are held constant and the dynamic data are generated
using a single time series. Twelve data points from the
transient response are used in this example. This response
includes the concentration and rate of change for each
individual species. This transient response is shown in Fig-
ure 5 and the corresponding data are presented in Table 1.
This information is used to formulate the optimization
problem given in Eq. (3).

The parameters were estimated by means of the branch-
and-reduce global optimization algorithm for various sce-
narios that differed in both the initial guesses and the
bounds for the parameter values. The initial guesses were
selected in different ways. In the first series of experiments
they were randomly chosen (with uniform distribution)

within a predefined range between lower bounds and
upper bounds on the parameters. Computational results
are presented here with the initial guesses selected as the
lower bounds on the parameter search space. Initial
parameter guesses can be based on collective experience
with GMA and S-systems as described in [18]. Any reason-
able initial solution may serve as the initial upper bound
on the solution. For our illustration, the upper and lower
bounds were selected at 10%, 100%, 200% and 500%
around the true value. For instance, in the latter case, they
were set at -500% and +500% of the true parameter val-
ues, which we knew for this didactic example. The initial
bounds on the parameters can thus be computed as:

[ktrue - 500% × ktrue, ktrue + 500% × ktrue]  (13)

where ktrue is the true parameter value. This technique
leads to search regions in parameter space centered on the
nominal values. However, in the branch-and-reduce algo-
rithm, various range reduction techniques are imple-
mented prior to the global search for the solution. For

Table 2: Estimated parameters using local and global optimization algorithms for the simple GMA system

Actual 
Parameters

Estimated parameters with varying bounds

0 % 10 % 100 % 200 % 500 %

Local Global Local Global Local Global Local Global Local Global

0.8 0.8 0.8 0.8 0.8 0.799 0.799 -0.8 0.8 0.8 0.8
1.0 1.0 1.0 1.0 1.0 1.0 1.0 3.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 -1.0 1.0 1.0 1.0
3.0 3.0 3.0 3.0 3.0 2.99 2.99 -1.09 3.0 3.0 3.0
0.5 0.5 0.5 0.5 0.5 0.5 0.5 -0.45 0.5 0.5 0.5
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.1 0.1
2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.019 2.0 2.0 1.999
0.75 0.75 0.75 0.75 0.75 0.75 0.75 -0.40 0.75 0.75 0.749
0.2 0.2 0.2 0.2 0.2 0.199 0.199 -0.2 0.2 0.2 0.2
1.5 1.5 1.5 1.5 1.5 1.499 1.499 -1.5 1.5 1.5 1.5
0.5 0.5 0.5 0.5 0.5 0.499 0.499 -0.5 0.499 0.5 0.499
5.0 5.0 5.0 5.0 5.0 5.0 5.0 6.074 5.0 5.0 4.999
0.5 0.5 0.5 0.5 0.5 0.499 0.499 0.611 0.499 0.5 0.5

Table 3: Total time taken for global solution, number of partitions created during the Branch-and-Reduce algorithm, nonconvex and 
convex problems solved, and objective function values for both local and global solution methods for the small GMA system.

Time for Global 
Sol (sec)

No of Partitions Nonconvex 
Problems

Convex Problems Obj fun Value 
(Global)

Obj fun Value 
(Local)

0 % 0.252 1 1 1 0.0 0.0
10 % 0.662 1 1 1 0.0 0.0
100 % 1.453 1 1 1 0.0 0.0
200 % 12.005 11 13 11 0.0 0.917
300 % 14.412 13 15 13 0.0 0.884
400 % 10.372 9 11 9 0.0 0.867
500 % 20.042 15 17 15 0.0 0.846
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instance, one may derive tighter variable bounds on a
given partition that are not centered around the nominal
parameter values. In a realistic situation the true values are
of course unknown, but considerable experience has been
amassed throughout the years suggesting natural default
values. We also included a 0% interval as a check that the
true solution was recouped.

The estimated parameter values using both the local and
global searches are given in Table 2. The total time
required to obtain the global solution, the number of par-

titions created during the branch-and-reduce procedure
and the number of nonconvex and convex problems
solved; the objective function values for both local and
global solutions are provided in Table 3.

The numerical results demonstrate that both the local and
global solvers give the same solution when the parameter
space is small and the bounds are tight. When the bounds
are increased beyond 100%, the local solver may fail to
find the true parameters, while the global solver still suc-
ceeds. For instance, one notes that the local search with
200% bounds yielded a different solution, which however
was inferior, as indicated by the value of the objective
function.

Case study
As a more complex illustration, consider the fermentation
pathway in Saccharomyces cerevisiae described in [26]. This
is a relatively simple metabolic pathway system of which
the structural and numerical specifications are however
directly based on careful kinetic experiments and bio-
chemical analyses [52]. The metabolic pathway map is
given in Figure 6. The GMA model equations adapted
from [26,53] are given in Figure 7. The model has 5
dependent variables, 9 independent variables and 19
unknown rate constant and kinetic order parameters.

According to Galazzo and Bailey [52] and Curto et al.
[26], the observed concentrations (mM) of the dependent
variables at steady state are: X1(GIn) – Internal Glucose =
0.0346, X2(G6P) – Glucose-6-phosphate = 1.011,
X3(FDP) – Fructose-1,6-diphosphate = 9.1876, X4(PEP) –
Phosphoenolpyruvate = 0.0095, and X5 – Adenosine tri-
phosphate (ATP) = 1.1278. The values of the independent
variables (mM min-1) are: X6 – Glucose uptake = 19.7, X7 –
Hexokinase = 68.5, X8 – Phosphofructokinase = 31.7, X9 –
Glyceraldehyde-3-phosphate dehydrogenase = 49.9, X10 –
Pyruvate kinase = 3,440, X11 – Polysaccharide production
(glycogen + trehalose) = 14.31, X12 – Glycerol production
= 203, X13 – ATPase = 25.1, and X14 – NAD+/NADH ratio
= 0.042.

GMA model equations for fermentation model in Figure 6Figure 7
GMA model equations for fermentation model in Figure 6.
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Simplified model of anaerobic fermentation of glucose to eth-anol, glycerol, and polysaccharides in Saccharomyces Cerevi-siaeFigure 6
Simplified model of anaerobic fermentation of glucose to eth-
anol, glycerol, and polysaccharides in Saccharomyces Cerevi-
siae.
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A typical dynamic response for the system is shown in Fig-
ure 8. It was obtained by subjecting the glucose uptake to
artificial step changes, which could have been imple-
mented experimentally through externally controlled
changes in substrate availability. Illustrative data were
obtained by integrating the system and collecting the state
and the slope values for each dependent variable every 6
seconds over a time horizon of length P. For a single time
series, the horizon length is the number of data points col-
lected for the state and slope values that are used in the
optimization formulation.

For any given scenario, nP equations were written, and
these served as the nonlinear equality constraints in the
formulation given in Equation 3, which includes the
unknown parameters (θ) that were to be estimated. For a

single time series, 10 data samples for the states and slope
values were collected right after the first step change was
introduced. The transient response data are presented in
Table 4. The resulting optimization formulation thus
required 70 variables (parameters) and 50 nonconvex
constraints. The convex relaxation resulted in 276 total
variables and 832 total convex constraints.

The parameters were estimated with the MINOS noncon-
vex NLP solver for local searches and the branch-and-
reduce algorithm for the global searches. As in the didactic
example, we explored various scenarios that again differed
with respect to the initial guesses for the parameters as
well as the bounds on the parameter space to be searched.
The lower and upper bounds on the parameters were
selected at 100%, 200%, 300 %, and 500% around the

Dynamic response of independent variables when the external glucose uptake is subjected to step changesFigure 8
Dynamic response of independent variables when the external glucose uptake is subjected to step changes.
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true value. The initial guesses for the parameters were
selected to be the lower bounds of the parameters search
space.

It is known that the performance of any MINOS NLP
solver is significantly affected by the specified tolerances.
The convergence tolerances such as row, optimality and
feasibility tolerances were set to 10-5. The maximum
number of iterations was set to 5000, and the maximum
number of major and minor iterations between successive
linearizations of nonlinear constraints was set to a value
of 60. During the branch-and-reduce algorithm, only the
parameters (γ and p) were considered for branching. The
ratios of the difference in the current bounds and the dif-
ference in the original bounds for all variables (parame-
ters) were computed. The particular variable with the
worst (largest) ratio was then selected for branching. The
algorithm was implemented using best-first search strat-
egy and was able to guarantee the global solution within
an ε = 0.0001 tolerance.

The computational results were generated using MINOS
for NLP solution and CPLEX for the LP solution. An Ath-
lon 1900+ dual processor machine was used with Linux
Debian OS. The computational results demonstrate that
the chosen optimization technique guarantees conver-
gence to the global solution for all ∆ values tested. The
global solution time, number of partitions, nonconvex
and convex problems solved during the branch-and-

reduce search, and the objective function value for both
the local and global solutions, are given in Table 5. The
estimated parameters for the different scenarios are
shown in Table 6.

Conclusion
The first step of any modeling effort is the definition of
symbolic equations and the numerical definition of their
parameter values. In the past, the latter has typically been
accomplished by reformulating literature information on
local processes, such as enzyme-catalyzed reaction steps,
within the biological system of interest. High-throughput
data are beginning to change this situation dramatically.
Instead of working from the bottom up, it is becoming
possible to infer the structure and regulation of biological
systems from measured time profiles. An important com-
ponent of this inference is the efficient estimation of
parameters, which in the case of GMA and S-systems
within BST can directly be interpreted as biological fea-
tures, thereby potentially yielding novel insights.

We have shown here that the parameter estimation task
may be posed as a nonconvex nonlinear optimization
problem. Consequently, deterministic global optimiza-
tion techniques can be applied, and among them the
branch-and-reduce algorithm appears to be a very suitable
choice, because it is guaranteed to find the global solu-
tion. This is in stark contrast to local solvers, such as non-
linear regression algorithms, which may not be able to

Table 4: Time series data of the states and slopes for the anaerobic fermentation case study (In every cell, the first value represents 
the state and the second value represents the slope)

Data Points X6 
External Glucose X1 

(GIn)
X2 
(G6P)

X3 

(FDP)
X4 

(PEP)
X5 

(ATP)

1 19.7 3.46e-2 1.011 9.188 9.53e-3 1.1278
-1.78e-15 1.10e-13 -1.97e-9 3.93e-9 3.93e-9

2 19.9 3.46e-2 1.011 9.188 9.53e-3 1.1278
1.62e-1 1.10e-13 -19.7e-9 3.93e-9 3.93e-9

3 19.9 3.498e-2 1.017 9.196 9.51e-3 1.1175
-7.399e-5 1.021e-2 1.38e-1 -9.79e-6 -4.68e-2

4 19.9 3.498e-2 1.017 9.21 9.52e-3 1.1167
-3.69e-5 2.04e-3 1.32e-1 2.04e-4 1.76e-2

5 19.9 3.497e-2 1.018 9.22 9.54e-3 1.1193
-1.177e-4 8.28e-3 1.06e-1 2.16e-4 2.91e-2

6 19.5 3.495e-2 1.019 9.232 9.56e-3 1.1221
-3.24e-1 9.67e-3 8.59e-2 1.821e-4 2.568e-2

7 19.5 3.41e-2 1.0075 9.22 9.63e-3 1.1449
5.68e-5 -1.36e-2 -2.03e-1 1.595e-4 1.131e-1

8 19.5 3.41e-2 1.008 9.201 9.616e-3 1.148
-1.34e-5 2.35e-3 -2.03e-1 -2.85e-4 -1.79e-2

9 19.5 3.412 1.0072 9.182 9.58e-3 1.145
1.47e-4 -1.02e-2 -1.63e-1 -3.26e-4 -4.32e-2

10 19.7 3.41e-2 1.006 9.168 9.55e-3 1.1406
1.62e-1 -1.38e-2 -1.32e-1 -2.77e-4 -3.91e-2

X1 X2 X3 X4 X5
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converge to the global solution when the parameter
search space is large or the error surface is ragged. As a
proof of concept, we demonstrated the features of the glo-
bal search method with a didactic example and a simple
yet realistic biological case study, which has been used by
others for the exploration of new methods [18,26-29]. In
order not to cloud the demonstration of the functioning
of the branch-and-reduce search algorithm, both exam-
ples were selected free of experimental error. While this
may seem somewhat artificial, the omission of noise was
intentional (a) in order to see how the method performs
under ideal conditions and (b) because a preparatory
smoothing step can significantly reduce if not eliminate
noise. Nonetheless, it is now necessary to consider data
that are corrupted by noise, and to compare the efficacy of
the branch-and-reduce method with alternate methods
such as nonlinear regression and genetic algorithms.

For the limited range of illustrative examples shown here,
the computational results demonstrate that the branch-
and-reduce algorithm is fast and reliable. Of course, it is
difficult to judge in general to what degree this algorithm,
combined with estimation of species concentration rate of
change, outperforms other methods, but it seems clear
that direct parameter estimation in systems of differential
equations can be extremely time consuming. As a case in
point, Kikuchi et al. [4] used a genetic algorithm to iden-
tify the parameters of a five-variable S-system from noise-
free data and showed that every cycle of the genetic algo-
rithm took about 10 hours on a cluster of over 1,000
CPUs and that seven cycles were needed to complete the
identification. Voit and Almeida [9] demonstrated that
this computation time may be reduced drastically if the
estimation of slopes, as we used here, is employed to
replace the differential equations with sets of nonlinear

Table 6: Result of estimation analysis with the anaerobic fermentation pathway model. Total time required for global solution, 
number of partitions created during the Branch-and-Reduce search, number of nonconvex and convex problems solved, and the value 
of the objective function for both local and global solution methods.

Time for Global 
Sol (sec)

No of Partitions Nonconvex 
Problems

Convex Problems Obj fun Value 
(Global)

Obj fun Value 
(Local)

100 % 38.13 27 15 27 0.0 1.36 × 10-4

200 % 19.28 9 6 9 0.0 1.34 × 10-4

300 % 56.98 27 15 27 1.61 × 10-7 1.31 × 10-4

400 % 58.39 25 14 25 0.0 1.31 × 10-4

500 % 57.15 25 14 25 3.51 × 10-8 1.25 × 10-4

Table 5: Estimated parameters for anaerobic fermentation pathway using Branch-and-Reduce algorithm

Actual Parameters 
(θ)

Estimated parameters with varying bounds

100 % 300 % 500 %

Local Global Local Global Local Global

0.8122 0.8112 0.8122 0.8112 0.8122 0.8112 0.8122
0.2344 0.2393 0.2344 0.2396 0.2344 0.2398 0.2344
2.8632 2.8557 2.8632 2.8521 2.8632 2.8485 2.8632
0.7464 0.7460 0.7464 0.7456 0.7464 0.7452 0.7464
0.0243 0.0259 0.0243 0.0256 0.0243 0.0253 0.0243
0.5232 0.5221 0.5232 0.5214 0.5232 0.5206 0.5232
0.7318 0.7364 0.7318 0.7373 0.7318 0.7382 0.7318
0.3941 0.3941 0.3941 0.3949 0.3941 0.3954 0.3941
0.0009 0.0018 0.0009 0.0036 0.0009 0.0054 0.0009
8.6107 0.0000 8.6107 0.0000 8.6107 0.0000 8.6107
0.011 0.0109 0.011 0.0109 0.011 0.0109 0.011
0.6159 0.6169 0.6159 0.6177 0.6159 0.6185 0.6159
0.1308 0.1302 0.1308 0.1305 0.1308 0.1308 0.1308
0.04725 0.0337 0.034 0.0174 0.0467 0.0089 0.0464

0.05 0.1 0.1 0.2 0.0517 0.3000 0.0528
0.533 0.4852 0.486 0.3915 0.531 0.2977 0.5303
0.0822 0.0638 0.063 0.026 0.0816 -0.011 0.0811

1.0 0.9975 1.0000 0.9937 1.0000 0.9899 1.0000
1.0 0.9979 1.0000 1.0013 1.0000 1.0047 1.0000
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algebraic equations. Still they found the subsequent
regression to be slow and not necessarily reliable, because
of convergence to local minima or no convergence at all.
Irrespective of computational speed, the branch-and-
reduce algorithm employed here was shown to be success-
ful in rather quickly finding global solutions within an ε
tolerance, which is a great advance, because local search
methods cannot guarantee convergence to the true solu-
tion.
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