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Abstract
Background: There is considerable controversy concerning the exact growth profile of size
parameters during the cell cycle. Linear, exponential and bilinear models are commonly considered,
and the same model may not apply for all species. Selection of the most adequate model to describe
a given data-set requires the use of quantitative model selection criteria, such as the partial
(sequential) F-test, the Akaike information criterion and the Schwarz Bayesian information
criterion, which are suitable for comparing differently parameterized models in terms of the quality
and robustness of the fit but have not yet been used in cell growth-profile studies.

Results: Length increase data from representative individual fission yeast (Schizosaccharomyces
pombe) cells measured on time-lapse films have been reanalyzed using these model selection
criteria. To fit the data, an extended version of a recently introduced linearized biexponential
(LinBiExp) model was developed, which makes possible a smooth, continuously differentiable
transition between two linear segments and, hence, allows fully parametrized bilinear fittings.
Despite relatively small differences, essentially all the quantitative selection criteria considered here
indicated that the bilinear model was somewhat more adequate than the exponential model for
fitting these fission yeast data.

Conclusion: A general quantitative framework was introduced to judge the adequacy of bilinear
versus exponential models in the description of growth time-profiles. For single cell growth,
because of the relatively limited data-range, the statistical evidence is not strong enough to favor
one model clearly over the other and to settle the bilinear versus exponential dispute.
Nevertheless, for the present individual cell growth data for fission yeast, the bilinear model seems
more adequate according to all metrics, especially in the case of wee1∆ cells.

Background
During the division cycle of individual growing cells,
most size-related parameters such as length (L), volume
(V), surface area, dry mass and others show a continuous
increase, but there is considerable controversy concerning
the exact time-profile of these increases. To describe the

growth period, commonly considered possibilities
include linear, exponential and bilinear models, and var-
ious bodies of experimental evidence and theoretical con-
siderations have been proposed to support one or the
other [1]. The same model may not apply for all species,
and because of the uncertainties in the experimental data
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and of the relatively small differences in predictions
owing to the relatively limited data-range (approximate
doubling of size during a cell cycle), it is difficult to iden-
tify the most adequate model unequivocally. Exponential
models such as V = αeβt, which are easy to rationalize (the
rate of growth is proportional to the existing size: dV/dt =
βV) and convenient to parameterize (α, β) and imple-
ment, are often employed. However, a number of cases
seem to support a bilinear-type growth pattern with
growth occurring along two (or perhaps more) essentially
linear segments, corresponding to constant rates, sepa-
rated by a transitional period around a rate-change point
(RCP) during which the rate of length-growth increases
[2-9]. The difference between the two models is most evi-
dent in the time profiles of the speed (rate) of growth
increases (dL/dt): that of the bilinear model contains two
constant segments connected by a transition period (a
characteristic sigmoid step-up function), whereas that of
the exponential model shows a continuous, accelerating
increase.

Whereas an exponential increase could be related to a
steady growth of ribosome numbers, a bilinear pattern
might be caused by effects of the cell cycle itself causing a
relatively sudden rate-increase at an RCP (or more than
one RCP). These effects have not yet been fully character-
ized. However, two different possibilities have been raised
[10], one being passage through a cell-cycle stage (a so-
called checkpoint) and the other being a doubling of
structural genes, i.e., a "gene dosage" effect at DNA repli-
cation (S phase). A bilinear model seemed most adequate
to describe the increase of cell length in fission yeast
(Schizosaccharomyces pombe) as determined from detailed
analyses of time-lapse films of single cells (wild-type, WT,
and various mutants) [6,8,9]. In this cylindrical cell spe-
cies, diameter does not change during the cycle; therefore,
cell length is proportional to volume. The adequacy of the
bilinear model has been questioned [11,12] by invoking
Occam's razor, an often-used principle attributed to Wil-
liam of Occam (c. 1280–1349) that favors the most parsi-
monious model (originally Pluralitas non est ponenda sine
necessitate, i.e., plurality should not be posited without
necessity, but most often expressed as Entia non sunt mul-
tiplicanda praeter necessitatem, i.e., entities are not to be
multiplied without necessity [13]). Accordingly, the expo-
nential model was suggested as more adequate because it
relies on fewer parameters and provides only a very slight
worsening in the quality-of-fit as judged on the basis of
the correlation coefficient (r2) [11]. However, when differ-
ently parameterized models are fitted to the same data, r2

alone is not a sufficient criterion for judging adequacy,
and a number of quantitative indicators (model selection
criteria) such as the partial (sequential) F-test, the Akaike
information criterion (AIC) [14,15] and the Schwarz
Bayesian information criterion (SBIC) [16] can be used to

decide whether or not the improvement in fitting justifies
the increased number of parameters employed (i.e.,
whether there is enough "necessity" for "entities to be
multiplied") [17-21]. Related details are briefly discussed
in the Methods section.

Here, a reanalysis of the fission yeast cell growth data is
presented on the basis of these more rigorous, quantita-
tive criteria, and a general quantitative framework is intro-
duced to judge the adequacy of bilinear versus
exponential models for describing the time-profiles of
arbitrary growth processes. This was also made possible
by extending a recently-introduced linearized biexponen-
tial model (LinBiExp) [21] to allow fitting of general bilin-
ear-type data with a single, unified model. Originally,
LinBiExp was introduced to describe quantitative struc-
ture-activity relationship (QSAR) data such as toxicities,
antimicrobial activities and receptor-binding affinities
that have a maximum or a minimum, but are essentially
linear sufficiently far away from the zone of the turning
point (the zone of the extreme value) [21,22]. However,
by extending its parameter-range, LinBiExp can easily be
generalized to describe not only data that show a maxi-
mum or a minimum, but also data that show only a rate-
change between two essentially linear portions, such as
those presented here and related to cell growth. Because
LinBiExp makes possible a smooth, continuously differ-
entiable and fully parameterizable transition between two
linear segments, it is now possible to apply a unified
model in a single fitting instead of performing two sepa-
rate individual linear regressions after visually separating
the data into two linear portions. Hence, with LinBiExp,
the minimization algorithm itself will determine the two
slope values (α1, α2) and the position of the rate change
point (tRCP) that result in the lowest sum of squared errors
(SSE), and this no longer has to be done by the user rely-
ing on preconceived assumptions or mere visual inspec-
tion. This eliminates the error-prone and bias-sensitive
procedure of performing two separate linear regressions
after separating the data on the basis of visual information
or some preconceived notion.

Methods
Data
Cell length growth data are for individual fission yeast
(Schizosaccharomyces pombe) cells (Table 1), selected as
representative during the analysis of a large number of cell
cycles (40–80 for each strain). These single cell data were
determined using time-lapse microscopic films and are
from previous publications [8,12]. The length increases
occurring during the 5 min observation periods were
often less than the smallest quantifiable unit, as the reso-
lution was 0.33 µm for the wild-type and 0.13 µm for the
wee1∆ mutant cell, depending on the final magnification.
As a consequence, the growth profiles tended to have
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stair-like patterns with a number of plateaus; these were
short inside the cycle, but there was a long plateau at the
end of the cycle. To obtain more uniform profiles, they
were smoothed using the resistant smooth (rsmooth) pro-
cedure of Minitab 7.2 (Minitab, State College, PA, USA)
using the default 4235H, twice method, similar to the orig-
inal publications. To verify consistency, smoothing has
also been redone here with Sigma Plot 8.0 (SPSS Inc., Chi-
cago, IL, USA) and with a 2D bisquare (1 – u2)2 or Loess
(1 – |u|3)3 smoothing using the nearest neighbor band-
width method and a sampling proportion of 0.3; these
resulted in almost identical values. For example, average
differences between the rsmooth and Loess values were
only 0.008 µm and 0.021 µm for the wee1∆ and WT cell
lines, respectively (Table 1). Data up to 135 min for the
WT cell and 115 min for the wee1∆ cell were considered as
part of the growth period and were used for fitting.

Model for bilinear-type data: LinBiExp
Bilinear fitting was done with the LinBiExp model [21],
which relies on the following functional form (written
here as a function of time t instead of a general independ-
ent variable x and with all adjustable parameters denoted
in Greek symbols):

Here e (e = 2.718...) denotes the base of the natural loga-

rithm (ln x = loge x), and α1, α2, χ, τc and η are adjustable

parameters. This form is somewhat more complex than

those of simple linear models, f(t) = αt + χ, because it con-
tains the logarithm of the sum of two exponentials, and it
is not suitable for linear regression because it contains

nonlinear parameters (τc, η). Nevertheless, it allows a con-

f t e et tc c( ) ln ( )/ ( )/= +



 + ( )− −η χα τ η α τ η1 2 1

Table 1: Cell length data for the wild type (WT) and the wee1∆ mutant used for fitting

Length L (µm); WT cell Length L (µm); wee1∆ cell
Time (min) Measured* Minitab rsmooth SigmaPlot Loess Measured** Minitab rsmooth SigmaPlot Loess

0 8.667 8.641 8.626 4.935 4.935 4.903
5 8.667 8.766 8.773 4.935 5.026 5.026
10 9.000 8.974 8.972 5.195 5.159 5.151
15 9.333 9.203 9.205 5.325 5.282 5.268
20 9.333 9.418 9.454 5.325 5.371 5.372
25 9.667 9.660 9.667 5.455 5.466 5.454
30 10.000 9.896 9.879 5.584 5.584 5.584
35 10.000 10.102 10.121 5.714 5.702 5.715
40 10.333 10.326 10.333 5.844 5.793 5.797
45 10.667 10.552 10.533 5.844 5.876 5.875
50 10.667 10.760 10.768 5.974 6.011 6.020
55 11.000 11.013 11.036 6.234 6.207 6.219
60 11.333 11.331 11.333 6.494 6.400 6.407
65 11.667 11.646 11.631 6.494 6.570 6.572
70 12.000 11.896 11.886 6.753 6.767 6.768
75 12.000 12.104 12.114 7.013 6.994 7.006
80 12.333 12.354 12.369 7.273 7.178 7.195
85 12.667 12.669 12.654 7.273 7.306 7.320
90 13.000 12.992 12.945 7.403 7.443 7.441
95 13.333 13.276 13.243 7.662 7.625 7.623
100 13.333 13.573 13.561 7.792 7.820 7.824
105 14.000 13.943 13.910 8.052 7.991 7.989
110 14.333 14.328 14.290 8.052 8.131 8.139
115 14.667 14.677 14.686 8.312 8.243 8.249
120 15.000 15.012 15.032 8.312 8.304 8.312
125 15.333 15.328 15.335 8.312 8.316 8.327
130 15.667 15.561 15.604 8.312 8.313 8.312
135 15.667 15.667 15.753 8.312 8.312 8.312
140 16.000 15.701 15.785 8.312 8.311 8.312
145 15.667 15.747 15.793 8.312 8.310 8.299
150 15.667 15.823 15.823 8.312 8.318 8.301
155 16.000 15.909 15.896 8.312 8.350 8.338
160 16.000 15.977 15.973 8.442 8.407 8.432
165 16.000 16.000 16.022
170 16.000 16.000 15.998

*Data from [12]. **Data from [8].
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venient extension of linear models with α1 and α2 repre-

senting the two different slopes and τc essentially

corresponding to the rate change point tRCP. LinBiExp as

defined by eq. 1 is a very general bilinear model: the tran-
sition from one linear segment to the other does not nec-
essarily have to be along a sharp break point between two
lines; it can happen along a smooth, curved portion of

adjustable width. The η parameter regulates the smooth-
ness/abruptness of the transition between the two linear
portions with smaller absolute values corresponding to
more abrupt transitions [21]. Because QSAR data are usu-
ally on a decimal log-scale and are arranged to show a
maximum, LinBiExp was implemented there in a slightly

different form, ),

and in most cases, η was considered as having a fixed
value of 1/ln10 = 0.4343 [21,22]. No such considerations

apply to the present extension; therefore, η is considered
as an adjustable parameter, the only restriction being that
its value has to remain sufficiently small to maintain a
fast-enough transition between the two linear portions
(i.e., to maintain an observably bilinear character over the
investigated time-range, meaning that the rate of increase,
dL/dt, remains constant for at least some time in both the
beginning and the ending time-periods). Depending on
the actual data, this might in some cases require an upper

limit to be imposed on η, but no such restrictions were
needed here. To be able to describe general bilinear data

of arbitrary shapes and curvatures, α1, α2 and η must be

allowed to take both positive and negative values; how-
ever, all of them are always positive for the present data.
Thus, LinBiExp uses a novel functional form, the loga-
rithm of the sum of two exponentials, to obtain a com-
pletely general bilinear functionality that can now fit not
only data with a minimum or a maximum, such as those
commonly seen in QSAR cases, but also data that show a
rate-change, such as those seen for certain growth profiles.

The nonlinear fittings required for LinBiExp can be per-
formed using either the Excel (Microsoft, Seattle, WA,
USA) worksheet or the custom-built WinNonlin (Phar-
sight Corp., Mountain View, CA) model provided with the
model [21] (or, obviously, any other implementation
with any software capable of nonlinear regression). Those
presented here were performed with WinNonlin 5.0, a
software package developed for pharmacokinetic mode-
ling [17], but well-suited for the present purposes. The
Gauss-Newton (Levenberg and Hartley) minimization
algorithm was used with the convergence criteria set to 10-

5, the increment for partial derivatives set to 10-3, and the

number of iterations set to 50. User-provided initial
parameter estimates and bounds were employed. All fit-
tings were done with unweighted data. Because LinBiExp
uses a smooth, continuously differentiable functional
form, the optimization process is relatively trouble-free;
nevertheless, sufficient care is recommended to verify that
a true and not just a local optimization minimum is
reached (i.e., using an increased convergence criterion and
starting with different initial parameter values from both
sides of the final values). Multiple linear regressions and
additional statistical analyses were performed in Excel.

Model selection criteria
Because the various models discussed here use different
numbers of parameters (npar), it is not sufficient to rely
simply on the correlation coefficient r or its square r2:

which is a measure of the variance explained in the pre-
dicted variable y = f(x) and is expressed here as a function
of the overall (total) variance, SSy = Σi (yi - ymean)2 and of
the sum of squared errors (residual variance), SSE = Σi (yi
- yi,pred)2; it is likely to increase with an increasing number
of parameters. Further discrimination between rival mod-
els (model selection criteria) is needed. Improvement
(decrease) in the residual standard deviation (s) is a first
possibility, as it accounts at least in part for the change in
the degrees of freedom, df = nobs - npar:

s = (SSE/df)1/2  (3)

More accurate indicators (model selection criteria)
include, for example, the partial (sequential) F-tests, Mal-
lows's Cp, the Akaike information criterion (AIC), the
Schwarz Bayesian information criterion (SBIC), the mini-
mum description length (MDL), cross validation (CV,
including prediction sum of squares PRESS statistics), and
Bayesian model selection [17-20]. The F-statistics, by
using the p-value of the corresponding F probability dis-
tribution, verifies whether the reduction in SSE is statisti-
cally significant as the corresponding degrees of freedom
(df) decrease:

The Akaike information criterion (AIC) [14,15] and the
Schwarz Bayesian information criterion (SBIC) [16] were
originally defined on the basis of the maximized likeli-

hood of the model with npar parameters ( ):

y ca x x b x x= − +
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AIC = -2ln  + 2npar  (5)

SBIC = -2ln  + npar ln(nobs)  (6)

AIC and SBIC have been used here as implemented in
WinNonlin [17] (resulting from the assumption of nor-
mally distributed errors):

AIC = nobs ln(SSE) + 2npar  (7)

SBIC = nobs ln(SSE) + npar ln(nobs)  (8)

They both attempt to quantify the information content of
a given set of parameter estimates by relating SSE to the
number of parameters required to obtain the fit. The
model associated with smaller values of AIC and SBIC is
more appropriate, and, as shown by their definitions,
SBIC is a more restrictive criterion on increasing npar.
Sometimes, they are used in terms of ln(SSE/nobs), but for

a given data-set with minimization of AIC and/or SBIC as
the goal, this makes no difference. AIC is similar to Mal-
lows's Cp [23]:

Cp = SSE/σ2 + 2npar - nobs≈ SSE/s2 
full model + 2npar - nobs  (9)

(being essentially the same if σ is known), and its asymp-
totic equivalence with leave-one-out (LOO) cross-valida-
tion has been demonstrated by Stone [24].

Results
Length growth pattern in wild-type fission yeast
Growth of the wild-type (WT) cell considered is less
clearly bilinear as there appears to be no sudden rate-
change. Instead, there is a curved middle part correspond-
ing to a transition section (Figure 1). Consequently, the
exponential and the bilinear LinBiExp models gave very
similar fits that are hard to distinguish visually over most
of their ranges. Nevertheless, even on these data, most





Time-profile of the length-growth in a representative WT fission yeast cell fitted with an exponential (Exp) and a bilinear (Lin-BiExp) modelFigure 1
Time-profile of the length-growth in a representative WT fission yeast cell fitted with an exponential (Exp) and a bilinear (Lin-
BiExp) model. Two linear trend-lines fitted separately on the two linear end-segments (denoted by differently colored symbols) 
are also shown to illustrate the correspondence of the two slopes with those obtained from the bilinear model.
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indicators show LinBiExp, which uses five parameters, to
be superior to the more parsimonious exponential model,
which uses only two parameters, and they both perform
much better than the linear model included here for com-
parison:

• Linear: L = αt + χ  (10)

α = 0.054(± 0.001)µm·min-1, χ = 8.260(± 0.069)µm

n = 28, df = 26, r2 = 0.9932, s = 0.1886 µm, AIC = 1.81,
SBIC = 4.47

• Exponential: L = αeβt  (11)

α = 8.605(± 0.024)µm, β = 0.0046(± 0.00003) min-1

n = 28, df = 26, r2 = 0.9988, s = 0.0761 µm, AIC = -49.03,
SBIC = -46.37

• Bilinear (LinBiExp):

α1 = 0.042(± 0.004)µm·min-1, α2 = 0.064(± 0.003)µm·min-1,

χ = 11.227(± 0.443)µm, τc = 62.62(± 6.87) min, η = 0.300(±

0.267)µm

n = 28, df = 23, r2 = 0.9992, s = 0.0680 µm, AIC = -52.74,
SBIC = -46.08

pF vs. exp = 0.04

The bilinear model of eq. 12 gives a slightly better per-
formance than the exponential one of eq. 11 as judged
from s and AIC (they decrease) but not from the more
restrictive SBIC, which is more sensitive to the increase in
the number of adjustable parameters. According to the F-
statistics, the improvement in the quality of fit is statisti-

L t t= +



 + ( )− −η χα τ η α τln ( )/ ( )/e ec c1 2 12η

Time-profile of the length-growth in a representative wee1∆ fission yeast cell fitted with an exponential (Exp) and a bilinear (LinBiExp) modelFigure 2
Time-profile of the length-growth in a representative wee1∆ fission yeast cell fitted with an exponential (Exp) and a bilinear 
(LinBiExp) model. As in Figure 1, two linear trend-lines fitted separately on the two linear end-segments (denoted by differently 
colored symbols) are also shown.
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cally significant, but just barely below the p < 0.05 level
[F5–2,23 = 3.18 (as defined by eq. 4 in the Methods section)
⇒ p = 0.04]. The width of the curved transition section of
LinBiExp, where it deviates significantly from both its lin-
ear segments, is proportional to η/(α2 - α1); here, data
points deviating by more than 0.1 µm from both linear
trend-lines were considered as part of the transition sec-
tion and denoted with a different color (Figure 1). For this
particular WT cell, the two slopes obtained from LinBiExp
(0.042 µm min-1, 0.064 µm min-1; eq. 12) correspond to
an approximately 50% rate increase and are in excellent
agreement with those obtained by separate linear regres-
sions on the two end segments (0.044 µm min-1, 0.063
µm min-1) as shown in Figure 1. This is somewhat higher
than the average of 31% observed for these cells [8], but
this is mainly due to the large scattering among individual
cells in the population. The position of the RCP at about
the 0.36 fraction of the cell cycle (at 62 min with a cycle
time of ~ 170 min; eq. 12, Figure 1) is in excellent agree-
ment with the average observed for WT cells (0.34) [8].

Length growth pattern in wee1∆ mutant fission yeast
Growth of the representative mutant cell (wee1∆) exam-
ined is much more clearly bilinear with a much more
abrupt transition (Figure 2); here, consequently, the bilin-
ear model provides a much more clearly superior fit than
the exponential model:

• Linear:  L = αt + χ  (13)

α = 0.030(± 0.001)µm·min-1, χ = 4.730(± 0.047)µm

n = 24, df = 22, r2 = 0.9880, s = 0.1191 µm, AIC = -23.96,
SBIC = -21.61

• Exponential:  L = αeβt  (14)

α = 4.865(± 0.024)µm, β = 0.0047(± 0.00006) min-1

n = 24, df = 22, r2 = 0.9960, s = 0.0687 µm, AIC = -50.35,
SBIC = -47.99

• Bilinear (LinBiExp):

α1 = 0.021(± 0.001)µm·min-1, α2 = 0.035(± 0.001)µm·min-1,

χ = 5.919(± 0.074)µm, τc = 45.90(± 2.40) min, η = 0.010(±

0.075)µm

n = 24, df = 19, r2 = 0.9992, s = 0.0349 µm, AIC = -80.45,
SBIC = -74.56

pF vs. exp = 0.000002

For these data, the difference between the two models and
the systematic error of the exponential model are much
more pronounced according to all metrics and are much
more clearly present even by visual inspection (Figure 2).
Consequently, the F-statistic also indicates a much more
significant difference [F5–2, 19 = 22.17 ⇒ p = 2.0 × 10-6]
favoring the bilinear profile. Because there seems to be no
distinguishable transition section at all, the slopes of the
LinBiExp model are in perfect agreement (0.021 µm min-

1, 0.035 µm min-1) with the two individual slopes
obtained by linear regression on all points on the left- and
right-side of the rate change point (0.021 µm min-1, 0.035
µm min-1), and they correspond to an approximately 66%
rate-increase (somewhat less than the average of 100%
observed for these mutants [8]). The rate-change point
(tRCP) is quite clearly delimited and is around 45 min (eq.
15; Figure 2), which corresponds to the 0.28 fraction of
the cell cycle, in excellent agreement with the average of
0.27 for these cells. It is also worth noting that the overall
growth-rate of the whole cell cycle, (division length –
birth length)/cycle time, corresponds to the growth-rate of
the first growth period (α1), as the increased rate in the
second growth period after the RCP (α2) only makes up
for the part that is lost during the final, constant-length
period. This can clearly be seen in both figures as the first
trend-line catches up with the length data exactly at the
end of the cycle, so that the rate-growth of the daughter
cell(s) will be exactly the same as that of the mother cell,
as it should be. For example, in this cell, the overall
growth rate is (8.41 µm – 4.94 µm)/160 min = 0.0216 µm
min-1, which is in good agreement with the corresponding
average of (8.4 µm – 5.0 µm)/155 min = 0.0220 µm min-

1 obtained from data from 129 cells [8], and corresponds
excellently with the growth rate of the first period: α1 =
0.0213 µm min-1.

Discussion
In balanced growth of asynchronous populations of uni-
cellular organisms, total cell mass increases exponentially
as a function of time in parallel with cell number; i.e.,
both exponential functions are characterized by the same
β parameter. This also means that every cell (or more pre-
cisely, the "average" cell) must double its mass between
birth and division. The simplest hypothesis supposes that
the size (volume) of individual cells during the cycle
grows by the very same exponential function character-
ized by the very same β parameter. The only problem with
this hypothesis is that many experiments with different
organisms do not support it, and, at least in some cases,
linear patterns with one or more rate change point(s) have
been found instead [1]. This is a crucial point in cell phys-
iology, since the two pattern-types reflect totally different
strategies: namely, exponential growth means that pro-
gression through the cell cycle has no effect on growth at
all, whereas the existence of rate change point(s) in a lin-

L t t= +



 + ( )− −η χα τ η α τln ( )/ ( )/e ec c1 2 13η
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Time-profiles of the speed (rate) of length-growth (∆L/∆t for the experimental data and dL/dt, the first order derivative, for the model functions) for the two types of cells investigated here, together with those obtained from the best-fitting exponential (Exp) and bilinear (LinBiExp) modelsFigure 3
Time-profiles of the speed (rate) of length-growth (∆L/∆t for the experimental data and dL/dt, the first order derivative, for the 
model functions) for the two types of cells investigated here, together with those obtained from the best-fitting exponential 
(Exp) and bilinear (LinBiExp) models.
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ear pattern means that cell cycle (at least at some stages)
influences growth at the individual cellular level.

An attractive model organism in these studies is fission
yeast, since its length (which is proportional to its vol-
ume) can be followed very easily on time-lapse micro-
scopic films. It has long been known that there are at least
two rate change points in length growth during the cell
cycle of wild-type fission yeast cells [25]. One of them is
connected to mitosis; from this point (designated rate
change point 3 in Figure 1 and Figure 2) and up to cytoki-
nesis, cell wall synthesis is restricted to septum formation
in the middle of the cell leading to a cessation of length
growth. After division, the newborn progeny immediately
start to grow in length, meaning that there must be
another RCP at the beginning of the cycle (designated rate
change point 1 in Figure 1 and Figure 2). As a conse-
quence, the cell cycle definitely influences length growth
in fission yeast; however, whether or not growth is expo-
nential between RCP1 and RCP3 remains an open ques-
tion. Experiments seem to favor a bilinear pattern with a
third RCP (designated as rate change point 2 in Figure 1
and Figure 2) over an exponential one [6,8,9]; however,
detailed statistical analysis has been lacking.

Because there is only a relatively limited range for both the
dependent (L) and the independent (t) variables in the
cases considered here, the statistical evidence suggesting a
bilinear dependence rather than an exponential one is not
strong enough to favor one model unequivocally over the
other. Nevertheless, the bilinear time-profile seems more
adequate according to model selection criteria standards,
as described in the Methods section, especially in the case
of the wee1∆ cells. This is also well illustrated by a compar-
ison of the predicted speeds of length-growth in the best-
fitting exponential and bilinear models (Figure 3): the
characteristic sigmoid step-up profile obtained from the
bilinear model fits the experimental data for wee1∆ much
better than the continuously increasing profile obtained
from the exponential model, but the case of the WT is less
clear.

A major goal of the present paper is to propose a general
quantitative framework for judging the adequacy of bilin-
ear versus exponential models for arbitrary growth pro-
files. Hopefully, in addition to the relatively limited
number of applications included here, the present
detailed description of quantitative model selection pro-
cedures will also help to differentiate accurately among
linear, exponential and bilinear models for future cell
growth data. Furthermore, by introducing the fully opti-
mizable bilinear model LinBiExp, the cumbersome
approach of performing two separate linear regressions
after separating the data at a visually determined place can
be replaced by a single, unified fitting. Hence, the nonlin-

ear regression algorithm itself will determine the position
of the rate change point (tRCP) and the value of the two
slopes on its left and right sides (α1, α2, respectively) by
minimizing the sum of squared errors (SSE), and this will
not have to be done by the user on the basis of precon-
ceived assumptions or mere visual inspection. To facilitate
the application of these models and model selection crite-
ria further, a fully functional Excel worksheet-based
implementation, which relies on Excel's powerful Solver
data analysis tool and contains detailed instructions, is
included as a downloadable supplement (see additional
file 1: Excel spreadsheet with the wee1∆ data used to per-
form this analysis.)

Finally, we are certain that from a cell biologist's perspec-
tive, it might be difficult to accept that a mutant shows a
particular phenomenon more clearly than the wild type.
In such cases, the effect of the mutation on the observed
phenomenon should also be examined. We are fortunate
to be able to say that the bilinear length growth pattern of
fission yeast is probably not an artifact produced some-
how by deleting the wee1 gene from the genome. For-
merly, we assumed that the reason for the existence of
RCP2 in WT is different from that in the wee1∆ mutant
[10]. At about 1/3rd of their cycle, WT cells are in mid-G2
phase; they are just passing through the so-called mitotic
checkpoint and are changing from unipolar to bipolar
growth (a phenomenon called new end take-off, NETO,
see [6]). It is easy to imagine that the RCP caused by NETO
is not a sharp one, since the growth rate at the new end
may continuously increase for a period. In contrast, the
small-sized wee1∆ mutant cells have a quite different type
of cell cycle: at about 1/4th of their cycle, they are just rep-
licating their DNA [26], which is a fast process on the scale
of the whole cycle. As a consequence, S phase could cause
the rate change here via the gene dosage effect, which
might be a much sharper process, leading to a clear bilin-
ear pattern. Note that the rate increase at RCP2 is also
larger in the wee1∆ mutant than in wild type [8].
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