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Abstract
Background: A prominent theoretical explanation for 3/4-power allometric scaling of metabolism
proposes that the nutrient exchange surface of capillaries has properties of a space-filling fractal.
The theory assumes that nutrient exchange surface area has a fractal dimension equal to or greater
than 2 and less than or equal to 3 and that the volume filled by the exchange surface area has a
fractal dimension equal to or greater than 3 and less than or equal to 4.

Results: It is shown that contradicting predictions can be derived from the assumptions of the
model. When errors in the model are corrected, it is shown to predict that metabolic rate is
proportional to body mass (proportional scaling).

Conclusion: The presence of space-filling fractal nutrient exchange surfaces does not provide a
satisfactory explanation for 3/4-power metabolic rate scaling.

Background
Physiological variables (e.g., cardiac output) or structural
variables (e.g., pulmonary alveolar surface area) in mam-
mals of mass M in many cases are closely approximated by
an exponential function, R = R1Mb, which is termed an
allometric relationship [1,2]. A prominent example is
Kleiber's law for scaling the basal metabolic rate (BMR) in
mammals [3,4], B = B1M3/4, which is equivalent to scaling
the specific BMR, B/M, proportionally to M-1/4.

In the report, "The Fourth Dimension of Life: Fractal
Geometry and Allometric Scaling of Organisms," West,
Brown and Enquist (WBE) [5] derive the 3/4-power law in
part from the claim that mammalian distribution net-
works are "fractal like" and in part from the conjecture
that natural selection has tended to maximize metabolic
capacity "by maximizing the scaling of exchange surface

areas" for the delivery of oxygen and nutrients to body
tissues.

WBE derive an expression describing scaling of surface
area for nutrient exchange by considering a scale transfor-
mation that increases the linear dimensions of arteries
and other internal structures (with the exception of capil-
laries) by the factor λ. The dimensions of individual cap-
illaries are assumed to be invariant. WBE express scaling
of the total internal exchange area as

(1)

where a is the area following the transformation and ar is
the area before. The authors describe the exponent 2+εa as
the "fractal dimension of a" to justify the restriction 0 ≤ εa
≤ 1 (Assumption 1). They justify the upper limit of εa by
stating that εa = 1 "represents the maximum fracticality of
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a volume-filling structure in which the effective surface
area scales like a conventional volume." This makes it
clear that the structures in their model exist in 3-dimen-
sional Euclidean space, E3.

Similarly, they express scaling of v, the internal volume
associated with a (and assumed to be proportional to
body mass), as

(2)

where 3+εv is termed the "fractal dimension of v" and εv
satisfies 0 ≤ εv ≤ I (Assumption 2). They then write v = al,
defining a new function l, which is assumed to be an inter-
nal linear dimension other than that of capillaries. The
scaling of l is described by the equation

(3)

where εl is again a parameter that satisfies 0 ≤ εl ≤ 1
(Assumption 3). From the above equation for v, it follows
that

(4)

The last assumptions of the theory are that natural selec-
tion has tended to maximize metabolic capacity "by max-
imizing the scaling of exchange surface areas"
(Assumption 4) and that BMR is proportional to a
(Assumption 5). Maximization of a/v requires εa = 1, and
εl = 0 (Result 1). Consequently, the fractal dimension of a
is 3 (Result 2), and the fractal dimension of v is 4 (Result
3). Substitution of these values into Equations (2) and (4)
followed by elimination of λ leads to

a/v ∝ v-1/4         (5)

which is a form of Kleiber's law if Assumption 5 is true.

In a critical review of the WBE model, Dodds et al. [6]
claim that "the bounds 0 ≤ εa, εv, εl ≤ 1 are overly restric-
tive." They analyze the example where 0 ≤ εa, εv ≤ 1, as in
the WBE model, but where -1 ≤ εl ≤ 1. Optimization leads
to the conclusion that the fractal dimension of l is 0, that
the fractal dimension of both a and v is 3 and that
exchange surface area a scales with volume. Conse-
quently, a/v is constant in this example.

Agutter and Wheatley [7] also critically reviewed the WBE
model, pointing out that the maximal metabolic rate
(MMR) is plausibly limited by nutrient supply while the
BMR is not limited by nutrient supply. Therefore, the
model of WBE should predict the scaling of MMR. How-
ever, the scaling exponent for MMR appears to be different
from 3/4. Weibel et al. [8] estimate this exponent to be
0.872 with a 95% confidence interval of (0.812 – 0.931).

While the issue raised by Agutter and Wheatley may not
be resolvable using mathematical analysis, the issue raised
by Dodds et al. is readily addressed by mathematical anal-
ysis. In the following, the theory of WBE is evaluated by
first using a model of a 3-dimensional fractal-like net-
work. Then the rigor of the arguments used in deriving the
results of the theory is evaluated using properties of
Hausdorff n-dimensional measure, the concept that is the
basis for the general definition of fractal dimension.

Results
If the argument used by WBE to "prove" 3/4-power scaling
is valid, it should require 3/4-power scaling for a specific
example of a fractal distribution network. Examples of the
"fractal-like" arterial networks previously described by
WBE [9] are shown in Figures 1 and 2. The supply network
for a square starts with an H-shaped network that is con-
nected to the nutrient source (Figure 1a). The network is
extended by iteratively connecting each terminal site to an
H-shaped structure that is one-half the size (in terms of
linear dimension) of the structures added in the previous
step (Figure 1b). For a network that supplies a cube, we
start with two parallel H-shaped structures that are con-
nected by a conduit. This structure, termed an H-H struc-
ture, is illustrated in Figure 2a. This network is extended
by iterative additions of H-H structure of one-half the
dimension of the previously added H-H structure. Each
added structure is connected at its midpoint. Iterative
addition of smaller and smaller H-shaped structures in
Figure 1 gives the fractal lung model of Mandelbrot [10],
and iterative addition of H-H structures gives a 3-dimen-
sional fractal model. An infinite sequence of additions
gives an area-filling network of fractal dimension 2 for the
2-dimensional network and a space-filling network of
fractal dimension 3 for the 3-dimensional network. The 2-
dimensional network in Figure 1 is equivalent to the frac-
tal-like network illustrated in Figure 4 of Turcotte et al.
[11], and the 3-dimensional network in Figure 2 is equiv-
alent to the fractal-like network in Figure 7 of Turcotte et
al.

We now compare the maximum nutrient exchange surface
area for the network shown in Figure 2a with that of the
network shown in Figure 2b. We assume that, for both
networks, each terminus is connected to capillaries that
have an associated fractal surface. Their "maximum fracti-
cality" is the dimension 3, which corresponds to a space-
filling surface. The measure of the exchange surface area is
the volume of the space within V that is filled by the sur-
face. This volume is assumed by WBE to be proportional
to total body volume and to body mass. Therefore, we can
write A = cV, where c ≤ 1. Consequently, exchange surface
area and metabolic rate scale proportionally to volume for
the networks in this example. This in turn implies that λ3

is proportional to V. However, WBE conclude that V is

v vr
v== λ ε3+

l lr l= +λ ε1

v vr
a l= + +λ λε ε2 1
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proportional to λ4. Consequently, there must be an error
in their argument.

The source of the contradiction is Equation (4), which
WBE justify by claiming "v can always be expressed as v =
al, where l is some length characteristic of the internal
structure of the organism." In conventional geometry, this
assertion is correct for certain types of figures when area is
defined as the cross-sectional area. For example, the vol-
ume of a right cylinder is equal to the area of its circular
cross section multiplied by the length of the cylinder. The
volume is not equal to the exterior surface area of the cyl-

inder multiplied by its length. Unfortunately, WBE
assume that in fractal geometry, unlike the arithmetic of
conventional geometry, volume is exterior surface area
multiplied by length. The assumption that fractal volume
is equal to fractal cross-sectional area multiplied by length
leads to the conclusion that volume scales as λ3. This is
because a cross-section of a fractal in E3 is the intersection
of a plane and the fractal, i.e., it is a set of points in 2-
dimensional space, just as is the case for conventional
geometric objects. With this correct calculation of the
(maximum) dimension of a fractal object with surface
area a and length l, it follows that the metabolic rate is

A 2-dimensional fractal-like, branching network model for an arterial treeFigure 1
A 2-dimensional fractal-like, branching network model for an 
arterial tree. Blood enters the network through the struc-
ture represented as a thick horizontal line. Terminal arteries 
are represented by thin horizontal lines. a. A network that 
uniformly supplies a 2 × 2 area where the unit distance is the 
spacing between adjacent termini of small arteries. b. A net-
work that uniformly supplies a 4 × 4 area.

a

b

A 3-dimensional fractal-like, branching network model for an arterial treeFigure 2
A 3-dimensional fractal-like, branching network model for an 
arterial tree. Blood enters the network through the struc-
ture represented as a thick horizontal line. Terminal arteries 
are represented by thin horizontal lines. a. A network that 
uniformly supplies a 2 × 2 × 2 volume where the unit dis-
tance is the spacing between adjacent termini of small arter-
ies. b. A network that uniformly supplies a 4 × 4 × 4 volume.

a

b
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proportional to volume and body mass, as illustrated by
the example in Figure 2.

Discussion
At the heart of the argument of WBE is the hypothesis that
a 3-dimensional object in E3 with volume V can be filled
with a fractal surface to produce an object with fractal
dimension 4. This hypothesis is false because the volume
of an object has the same, finite value whether an object
contains a space-filling fractal surface or not. Because the
volume is finite (and not equal to 0), the Hausdorff
dimension (which is a general definition of fractal dimen-
sion) must be equal to 3 [12]. If the presence of a space-
filling surface within the object changes its fractal dimen-
sion to a value greater than 3, then the Hausdorff dimen-
sion is greater than 3 and the conventional volume is
infinite. This contradiction in the WBE model is resolved
by rejecting all assumptions that allow for the Hausdorff
dimension of a mammalian body to be greater than 3, the
maximum dimension of an object in E3. These are Equa-
tions (2), (3) and (4) and Assumptions (2) and (3). Equa-
tion (3) and Assumption (3) must be rejected because l is
not a set of points in space and therefore has no fractal
dimension. When these assumptions are removed, the
maximum nutrient exchange surface area principle of
WBE leads to the prediction that metabolic rate is directly
proportional to body mass.

The assumption that relates exchange surface area to met-
abolic rate, Assumption 5, is a common assumption used
to explain diffusion-limited nutrient uptake. It seems
plausible for non-fractal exchange surfaces such as the
walls of capillaries, which are approximately cylindrical.
For such surfaces, area is proportional to Hausdorff 2-
dimensional measure. Hausdorff 3-dimensional measure
of such surfaces is 0. Therefore, metabolic rate must be
proportional to 2-dimensional measure of the surface if
the WBE formulation is to be biologically meaningful.
However, when the capillary surface is extended to a
space-filling fractal that scales as volume, Hausdorff 2-
dimensional measure is infinite, but Hausdorff 3-dimen-
sional measure is proportional to the volume filled by the
fractal. Therefore, the Hausdorff 3-dimensional measure
must be used to scale metabolic rate for space-filling sur-
faces if the formulation is to be biologically meaningful.
While this dichotomy in the computation of rate-deter-
mining area is not a mathematical contradiction, it does
result in losing the standard justification for Assumption
5, because nutrient diffusion rate and metabolic rate can-
not be proportional to exchange surface area when the
fractal dimension of exchange surface area is 3. Further-
more, Assumption 5 leads to the conclusion that all space-
filling exchange surfaces filling the same volume V of a
mammalian body must confer exactly the same metabolic
rate on the organism. This seems peculiar because the con-

nection of function with biological form appears to have
been lost as a result of the application of WBE's maximi-
zation principle, Assumption 4.

As discussed in the background section, Dodds et al. [6]
claim that the bounds on fractal dimensions in the WBE
model are "too restrictive" and replace Assumption 3 by
extending the allowable values of the fractal dimension of
l to the interval [0, 2]. However, their criticism is not valid
because the bounds on fractal dimensions in the WBE
model are not too restrictive. They are not restrictive
enough.
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