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Abstract
Background: The study of the network between transcription factors and their targets is
important for understanding the complex regulatory mechanisms in a cell. Unfortunately, with
standard microarray experiments it is not possible to measure the transcription factor activities
(TFAs) directly, as their own transcription levels are subject to post-translational modifications.

Results: Here we propose a statistical approach based on partial least squares (PLS) regression to
infer the true TFAs from a combination of mRNA expression and DNA-protein binding
measurements. This method is also statistically sound for small samples and allows the detection
of functional interactions among the transcription factors via the notion of "meta"-transcription
factors. In addition, it enables false positives to be identified in ChIP data and activation and
suppression activities to be distinguished.

Conclusion: The proposed method performs very well both for simulated data and for real
expression and ChIP data from yeast and E. Coli experiments. It overcomes the limitations of
previously used approaches to estimating TFAs. The estimated profiles may also serve as input for
further studies, such as tests of periodicity or differential regulation. An R package "plsgenomics"
implementing the proposed methods is available for download from the CRAN archive.

Background
The transcription of genes is regulated by DNA binding
proteins that attach to specific DNA promoter regions.
These proteins are known as transcriptional regulators or
transcription factors and recruit chromatin-modifying
complexes and the transcription apparatus to initiate RNA
synthesis [1,2].

In the last few years, considerable efforts have been made
by both experimental and computational biologists to
identify transcription factors, their target genes and the
sensitivity of the regulation mechanism to changes in

environment [3-5]. An important technique for the iden-
tification of target genes bound in vivo by known tran-
scription factors is the combination of a modified
chromatin immunoprecipitation (ChIP) assay with
microarray technology, as proposed by Ren et al. [1]. For
instance, in the budding yeast Saccharomyces cerevisiae,
ChIP experiments have been utilized to elucidate the
binding interactions between 6270 genes and 113 prese-
lected transcription factors [2]. However, as physical bind-
ing of transcription factors is a necessary but not a
sufficient condition for transcription initiation, ChIP data
typically suffer from a large proportion of false positives.
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Several attempts have also been made to recover the net-
work structure between transcription factors and their tar-
gets using only the gene expression levels of both the
transcription factors and the targets, either with [6] or
without [7] assuming a subset of putative regulators. Such
approaches implicitly assume that the measured gene
expression levels of the transcription factors reflect their
actual activity. However, owing to various complex post-
translational modifications as well as to interactions
among transcription factors themselves, regulator tran-
scription levels are generally inappropriate proxies for transcrip-
tion factor activities (TFA).

In a few recent papers, integrative analysis of gene expres-
sion data and ChIP connectivity data has been suggested
as a way of overcoming these difficulties [8]. Most promi-
nently, Liao and coworkers have developed the technique
of "network component analysis" (NCA) [9,10], a dimen-
sion reduction approach to inferring the true regulatory
activities. In NCA one can also incorporate further a priori
qualitative knowledge about gene-transcription factor
interactions [11]. Unfortunately, a major drawback of the
original NCA method is that for identifiable reasons it
imposes very strong restrictions on the network topolo-
gies allowed, which renders application of classic NCA
difficult in many practical cases. Alter and Golub [12]
introduced an approach for integrating ChIP and microar-
ray data using pseudo-inverse projection. Like NCA, this
method is based on algebraic matrix decomposition (in
this case singular value decomposition). However, this
ignores measurement and biological errors present in
both connectivity and gene expression data. Kato et al.
[13] proposed yet another integrative approach consisting
of several steps combining sequence data, ChIP data and
gene expression data. However, here gene expression is
used only to check the coherence of expression profiles of
genes with common sequence motifs, and not to estimate
transcription factor activities. Finally, Gao et al. [14] sug-
gested the "MA-Networker" algorithm, which employs
multivariate regression to estimate TFAs and backward
variable selection to identify the active transcription fac-
tors. Unlike the other approaches, it takes full account of
stochastic error. However, for classical regression theory
to be valid it is necessary not only that the number of gene
targets is much greater than both the number of samples
and the number of transcription factors, but also that the
transcription factors are independent of each other. The
latter condition in particular is clearly not generally satis-
fied with genome data.

Here, we suggest an alternative statistical framework to
tackle the problem of network component and regulator
analysis. Our approach centers around multivariate par-
tial least squares (PLS) regression, a well-known analysis
tool for high-dimensional data with many continuous

response variables that has been widely applied, espe-
cially to chemometric data [15-17]. Using PLS we are able
not only both to integrate and generalize previous NCA
approaches, but also to overcome their respective limita-
tions. In particular, PLS-based network component analy-
sis offers a computationally highly efficient and
statistically sound way to infer true TFAs for any given
connectivity matrix. In addition, it allows statistical
assessment of the available connectivity information, and
also the discovery of interactions and natural groupings
among regulatory genes (corresponding to "meta"-tran-
scription factors).

Results
Network model
Suppose gene expression data for n genes and m samples
(= arrays, tissue types, time points etc.) are collected in a n

× m data matrix . Furthermore, let  denote the so-
called connectivity matrix with n rows and p columns.

Each column in  describes the strength of interaction
between one of p transcription factors and the n consid-

ered gene targets. The entries of  can either be binary
(0–1) or numeric (e.g. ChIP data), with a zero value indi-
cating no physical binding between a transcription factor
and a target.

In order to relate expression to connectivity data we con-
sider the linear model

where A is a n × m constant matrix,  is a p × m matrix of
regression coefficients and E is a n × m matrix containing

error terms. A contains the m different offsets, and may
be interpreted as the matrix of the true transcription factor
activities (TFAs) of the p transcription factors for each of the m
samples.

It is worth noting that in this setting, unlike in most other
gene expression analysis studies, the number of genes n is
considered as the number of cases rather than the number
of variables. In the present case the latter corresponds to
the number of transcription factors p (hence, in general, p
<n).

NCA and MA-Networker algorithms
The above model linking TFAs both with gene expression
of the regulated genes and external connectivity informa-
tion has been the subject of a series of recent studies.

In the classic network component analysis approach
[9,10] the offset matrix A is set to zero and the remainder
of Eq. 1 is interpreted as a dimension reduction that
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projects the output layer  with m samples on to a "hid-
den" layer of p <m transcription factors. In the original

NCA algorithm the coefficients  are obtained via a
novel matrix decomposition that respects the zero pattern

constraint given in the connectivity matrix . Unfortu-
nately, this also imposes rather strict identifiability condi-
tions. As a consequence, classic NCA may only be
employed with certain classes of "NCA compatible"

[9].

In contrast, the "MA-Networker" algorithm by Gao et al.
[14] employs standard multiple least-squares regression
in conjunction with step-wise variable selection to esti-

mate the true transcription factor activities . This
requires that the number of target genes is much larger
than both the number of transcription factors and the
number of samples. More important, however, is that the
step-wise model selection procedure employed is only
poorly suited if the regulator genes are themselves inter-
acting with each other. This is a major drawback as it is
biologically well-known that transcription factors often
work in conjunction with other regulators, and rarely act
independently.

Partial least squares regression
Here we propose to employ the method of partial least
squares regression [15] to infer true TFAs and the func-
tional interactions of regulators.

PLS is a well-known analysis tool for high-dimensional
data with many continuous response variables that has
been widely applied, especially to chemometric data [17].
PLS is particularly suited to the case of non-independent
predictors and for small-sample regression settings
[16,18-20]. It is computationally highly efficient, it does
not necessitate variable selection, and it additionally
infers meaningful structural components.

For these reasons PLS is now being adopted as a standard
tool for multivariate microarray data analysis, particularly
in classification problems [21-24]. We believe that PLS
also provides an excellent framework for integrative net-
work analysis, as it combines dimension reduction with
regression and variable selection, the two key elements
from both the NCA and the MA-Networker approaches.

In a nutshell, the PLS algorithm consists of the following
consecutive steps:

1. First, the data matrices  and  are centered to col-
umn mean zero, resulting in matrices X and Y, in order to
estimate and to remove the offset A. In addition, it is com-

mon practice in PLS analysis (and also recommended
here) to scale the input matrices to unit variance.

2. Second, using the linear dimension reduction T = XR,
the p predictors in X are mapped onto c ≤ rank(X) ≤ min(p,
n) latent components in T (an n × c matrix). See the sec-
tion "SIMPLS algorithm" below for the precise procedure
employed in this paper. The important key idea in PLS is that
the weights R (a p × c matrix) are chosen with the response Y
explicitly taken into account, so that the predictive performance
is maximal even for small c.

3. Next, assuming the model Y = TQ' + E, Y is regressed by
ordinary least squares against the latent components T
(also known as X-scores) to obtain the loadings Q (a m ×
c matrix), i.e. Q = Y'T(T'T)-1.

4. Subsequently, the PLS estimate of the coefficients B in
Y = XB + E is computed from estimates of the weight
matrix R and the Y-loadings Q via B = RQ'.

5. Finally, the coefficients  for the original Eq. 1 are
computed by rescaling B.

Note that it is step 2 that mostly distinguishes PLS from
related bilinear regression approaches such as principal
and independent components regression (PCR/ICR) and
the pseudo-inverse-based method of Alter and Golub
[12]. In the latter approaches the scores T are computed
solely on the basis of the data matrix X without consider-
ing the response Y [16].

Other quantities often considered in PLS include, e.g., the
X-loadings P that are obtained by regressing X against T,
i.e. X = TP' + F and P = X'T(T'T)-1.

SIMPLS algorithm
PLS aims to find latent variables T that simultaneously
explain both the predictors X and the response Y. The
original ideas motivating the PLS decomposition were
entirely heuristic. As a result, a broad variety of different,
but in terms of predictive power equivalent, PLS algo-
rithms have emerged – for an overview see e.g. Martens
[17].

For the present application to infer true TFAs, we suggest
using the SIMPLS ("Statistically Inspired Modification of
PLS") algorithm, which has the following appealing prop-
erties [18-20]:

• it produces orthogonal, i.e. empirically uncorrelated,
latent components;

• it allows for a multivariate response; and
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• it optimizes a simple statistical criterion.

A further added advantage of SIMPLS is that it is also one
of the most computationally efficient PLS algorithms.

We note that other PLS variants described in the literature
have predictive power comparable to SIMPLS. However,
these either provide orthogonal loadings rather than
orthogonal latent components T (Martens' PLS), or they
do not elegantly extend from 1-dimensional to m-dimen-
sional responses Y in terms of their optimized objective
function (NIPALS).

In SIMPLS, the latent components t1, t2,..., tc of the col-
umns in T are inferred by sequentially estimating the col-
umn vectors r1,..., rc of R according to the following
criterion [20]:

1. r1 is the unit vector (with |r1| = 1) maximizing the
length |Y' Xr1| of the m × 1 covariance vector cov(Y, t1).

2. For all j = 2,...,c, rj are the unit vectors (with |rj| = 1)
maximizing the length |Y' Xrj| of the vector cov(Y, tj) sub-

ject to the orthogonality constraint 

for all i = 1,...,j - 1.

In the actual SIMPLS procedure, the weights R and the
derived quantities T and Q are obtained by a Gram-
Schmidt-type algorithm [18].

On a practical note, we would like to mention that in
many implementations of SIMPLS (e.g. in the "pls.pcr" R
package by Ron Wehrens, University of Nijmegen), con-
ventions different from the above are used. In particular,
the X-scores T* returned will often be orthonormal (rather
than orthogonal) and consequently the weights R* will
not have unit norm as in our case. For conversion, define

M = diag(| |,...,| |,) and set T = T*M-1, R = R*M-1, Q =
Q*M, and P = P*M. This provides orthogonal scores and
unit-norm weights as assumed in our description of
SIMPLS.

The resulting estimates of the matrices B, T, and R are now
straightforward to interpret in terms of transcriptional reg-

ulation. B (and ) give the inferred activities of the p
transcription factors in each of the m experiments. The
inferred latent components T describe "meta"-transcrip-
tion factors that combine related groups of transcription
factors. R reflects the involvement of each of the p regula-
tors in the c meta-factors.

Determining the number of PLS components
A remaining aspect of PLS regression analysis is the opti-
mal choice of the number c of latent components. If the
maximal value cmax = rank(X) is chosen, then PLS becomes
equivalent to principal components regression (PCR)
with the same number of components, and if additionally
n >p both PLS and PCR turn into ordinary least-squares
multiple regression.

Hence, with PLS it is desirable to choose as small a value
of c as possible without sacrificing too much predictive
power. One straightforward statistical procedure to esti-
mate this minimum value cmin is the method of cross-val-
idation, which proceeds as follows (cf. also refs. [25] and
[26]):

1. Split the set of n genes randomly into 2 sets: a learning
set containing 2/3 of the genes and a test set containing
the remaining genes.

2. Use the learning set to determine the matrix of regres-
sion coefficients B for different values c = 1, 2,...,cmax.

3. Predict the gene expression of the n/3 genes from the
test set using B with the different values of c.

4. Repeat steps 1–3 K = 100 times and compute the mean
squared prediction error for each c.

Subsequently, the value of c yielding the smallest mean
squared prediction error is selected.

Alternatively, the optimal number of components may
also be determined by considering the value of the crite-
rion Zi = |Y'ti| for a given latent component ti. If Zi falls
below an a priori specified threshold then cmin = i is
reached.

Discussion
Data sets
Next, we illustrate the versatility of the proposed PLS
approach to network component analysis by analyzing
several real biomolecular data sets.

First, in order to validate the linear regression approach
(Eq. 1) we reanalyzed hemoglobin data from Liao et al.
[9]. Second, we analyzed two different S. Cerevisiae gene
expression data sets in conjunction with a regulator-target
connectivity matrix from the large-scale ChIP experiment
of Lee et al. [2]. The yeast expression data investigated
comprise a time series experiment from Spellman et al.
[27] and a compilation of yeast stress response experi-
ments from Gasch et al. [6,28]. Finally, we analyzed
expression and connectivity data for an E. Coli regulatory
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network containing 100 genes and 16 transcription fac-
tors from Kao et al. [10]. The general characteristics of
these four data sets are summarized in Table 1.

The data investigated were preprocessed as follows. The
yeast ChIP data set [2] contains protein-DNA interaction
data for 6270 genes and 113 transcription factors. It
includes missing values that correspond to non-interact-
ing gene-transcription factor pairs. Although ChIP data
are essentially continuous, it is common practice to
dichotomize them according to the p-values into discrete
levels of interaction (0 or 1). In this study, we used data
obtained at a p-value threshold of 0.001, as suggested by
Lee et al. [2]. However, note that in contrast to the NCA
method, dichotomization of the ChIP data is optional in
our approach.

The Spellman et al. [27] microarray data originally con-
tained the gene expression of 4289 genes at 24 time points
during the cell-cycle. From these genes, a subset of 3638

are also contained in the Lee et al. [2] ChIP data set. Our
analysis is based on these 3638 genes. Similarly, the Gasch
expression data set [6,28] contains the expression of 2292
genes for 173 arrays corresponding to different stress con-
ditions (e.g. heat shock, amino acid starvation, nitrogen
depletion). Of these 2292 genes, a subset of 1993 overlap
with the genes considered in the ChIP data.

The connectivity matrix for the E. coli data was compiled
mainly by Kao et al. [10] from the RegulonDB [11] data-
base. In addition, they incorporated a few corrections
using literature data. The temporal E. coli expression data
for 100 genes across 25 time points was also introduced in
Kao et al. [10] and is publicly available at http://
www.seas.ucla.edu/~liaoj/.

Validation of the regression approach
The hemoglobin data used in Liao et al. [9] for validation
of the classic NCA approach have the advantage that the

Comparison of true (top row) and estimated (bottom row) spectra, as obtained by multivariate PLS regression from the valida-tion data setFigure 1
Comparison of true (top row) and estimated (bottom row) spectra, as obtained by multivariate PLS regression from the valida-
tion data set.
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true coefficients  of the network model in Eq. 1 are
known, and therefore can be directly compared with the
inferred values.

Reanalyzing these data, it is straightforward to show (see
Figure 1) that the true regression coefficients can be recov-
ered exactly by multivariate regression (of which PLS is a
special case). According to Liao et al. [9], this is also true

for classic NCA but not for PCA and ICA interpretations of
Eq. 1. This discrepancy can be explained by the fact the
neither PCA nor ICA explicitly takes account of the
response Y, whereas NCA and PLS do.

PLS components and Y-loadings
Subsequently, we determined the minimum number of
PLS components for the yeast and E. coli data sets using

Top row: Mean sum of squared prediction error for E. Coli and yeast data sets over 100 cross-validation runsFigure 2
Top row: Mean sum of squared prediction error for E. Coli and yeast data sets over 100 cross-validation runs. Bottom row: maxi-
mized objective criterion for each PLS component.

Table 1: Characteristics of the analyzed data sets.

Data Reference n p m cmin

Hemoglobin [9] 7 3 321 3
S. cerevisiae [27] 3638 113 24 5
S. cerevisiae [6, 28] 1993 113 173 8
E. coli [10] 100 16 23 2

Abbreviations: n, number of genes; p, number of transcription factors; m, number of arrays resp. measurements.
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cross-validation. The results are plotted in Figure 2 (top)
after normalization (the mean cross-validation error with
one PLS component is set to one). As can be seen from
Figure 2, the minimal mean cross-validation error is
obtained with 5 PLS components for the Spellman data, 8
PLS components for the Gasch data and 2 PLS compo-
nents for the E. coli data. For comparison, the (normal-
ized) objective criterion |Y'ti| of the SIMPLS algorithm is
also represented on Figure 2 (bottom) for different num-
bers of PLS components. These results are in good agree-
ment with the cross-validation error: it increases when
PLS components with a low objective criterion are added.

The Y-loadings contained in the m × c matrix Q give the
projection of the c "meta"-transcription factors for each of
the m experiments. As can be seen from Figure 3 for the
Spellman data, both the first and the third meta-factors
explain the periodic part of the expression data, but with
different phases. The second meta-factor corresponds to
small oscillations with very short period, whereas the
fourth and fifth meta-factors reflect long-time trends
(slow and step-wise increasing, respectively). Using
Fisher's g-test as proposed in Wichert et al. [29], we
detected statistically relevant periodicity for the four first
meta-factors. In Figure 3, the Y-loadings are also repre-
sented for the E. coli data. Whereas the projection of the
first meta-factor is approximately constant over time, the
projection of the second meta-factor increases strongly
and (almost) uniformly. Thus, in both data sets, the PLS
algorithm allows us to extract meta-factors from the data
corresponding to distinct latent trends.

For the Gasch data, the m experiments do not correspond
to different time points but to 13 different stress condi-
tions (see Gasch et al. [28] for further details, and Table 2
for the list of conditions). In this case the Y-loadings may
be interestingly analyzed using Wilcoxon's rank sum test.
For each condition k and each meta-factor j, we tested the
H0 hypothesis that the median of the projection of the j-th
meta-factor is the same in condition k as in all the other
conditions ({1,..., k - 1, k + 1,..., 13}). In this situation,
Wilcoxon's rank sum test is preferable to the well-known
two-sample t-test, because some of the conditions include
only a very small number of experiments. The results
obtained with a p-value threshold of 0.05 are displayed in
Table 2. The entries 1 and 0 correspond to significant and
non-significant (FDR adjusted) p-values, respectively. As
can be seen from Table 2, each PLS component carries a
particular pattern of associated significant conditions,
indicating that the meta-factors capture a distinct direction
of the data.

Inferred transcription factor activities
One of the main objectives of our PLS-based approach is
to estimate the true transcription factor activities (TFAs).

Although all the TFAs can be estimated in the same way
for the three data sets, we display only the evolution over
time of a few interesting TFAs for the two time series data
sets (i.e. the Spellman and the E. coli data).

The TFAs (top) and expression profiles (bottom) of 4 well-
known cell-cycle regulators are depicted in Figure 4 for the
Spellman data. The TFAs of MCM1, SWI4, SWI5 and ACE2
show highly periodic patterns, which is consistent with
common biological knowledge. In contrast, the expression
profiles of MCM1 and SWI4 are not periodic (this can be
confirmed by Fisher's g-test [29]). On the other hand, the
expression profiles of SWI5 and ACE2 are periodic,
though not with the same phase as the inferred TFAs. This
may indicate either an inhibiting or a phase-shift effect of
the transcription factors on the regulated genes.

The remainder of the TFAs and the regulated genes were
also tested for periodicity using the g-test [29]. After FDR
adjustment of the p-values, we found that 62 of the 113
transcription factors (= 55%) in the Spellman/Lee data
have significantly periodic TFAs at the level 0.05. In con-
trast, only 804 of the 4289 genes (= 19%) exhibit signifi-
cantly periodic expression profiles.

For the E. coli data the time profiles of the estimated TFAs
of the 16 transcription factors are represented in Figure 5.
The TFAs of ArcA, GatR, Lrp, PhoB, PurR, RpoS decrease
over time, those of CRP, CysB, FadR, IcIR, NarL, RpoE,
TrpR and TyrR remain approximately constant and those
of FruR and LeuO increase strongly. This is consistent with
previous results obtained by NCA [10]. We point out,
however, that unlike NCA our approach may be applied
to any arbitrary network topology, whereas the present E.
coli network was chosen specifically to meet the NCA
compatibility criteria [9].

As can be seen already from the few examples depicted in
Figure 4, the TFAs do not always correlate with the respec-
tive expression profiles. We tested this for all the transcrip-
tion factors of which the expression profiles were also
included in the data sets. For the Gasch data, we found
that only 63 from the 90 available transcription factors
exhibit expression profiles that are correlated with TFAs
(at the level 0.05 with FDR p-value adjustment). For the
Spellman time series data, none of the 78 available TFA-
expression profile pairs are correlated. These results clearly
indicate that methods investigating transcriptional regula-
tion with expression data as their sole basis are likely to
miss potentially important regulation activities.

Gene-regulator coupling factors
Another topic of interest is the identification of false pos-
itives in ChIP data. Following Gao et al. [14] we investi-
gate this problem using Pearson's correlation test. For
Page 7 of 12
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each supposed gene-transcription factor pair (according
to the dichotomized ChIP data) we test if the inferred TFA
is significantly correlated with the expression profile of
the regulated gene. For the Gasch data, we find that 73%
of the 1495 gene-transcription factor pairs are correct (i.e.
the TFA is significantly correlated with the expression pro-
file at the 0.05 level with FDR p-value adjustment). The
concordance with the ChIP connectivity information is
much worse for the Spellman data, where only 32% of the

2535 gene-transcription factor pairs are significantly
correlated.

We should like to add as a note of caution that the lack of
correlation between TFA and target gene needs to be
viewed as specific to the microarray study investigated.
Other expression experiments may activate different
pathways and thus produce different patterns of correla-

Y-loadings for the E. Coli (top and middle row) and Spellman (bottom row) data setsFigure 3
Y-loadings for the E. Coli (top and middle row) and Spellman (bottom row) data sets.
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Table 2: Significant conditions for the first 8 PLS components of the Gasch yeast data set.

Condition \ PLS Component 1 2 3 4 5 6 7 8 Arrays

Heat shock 0 0 0 0 0 0 0 0 1–9,12–15
Variable temperature shocks 0 0 1 0 1 0 0 0 21–25
Hydrogen peroxide 0 0 0 0 0 1 0 0 36–45
Menadione 0 1 0 0 1 1 0 0 46–54
DTT 0 0 0 0 0 0 0 0 55–69
Diamide 1 1 1 0 0 0 1 1 70–77
Sorbitol osmotic shock 0 0 0 0 0 0 0 0 78–89
Amino acid starvation 0 0 1 1 1 0 1 1 91–95
Nitrogen depletion 0 0 1 0 0 1 1 1 96–105
Diauxic shift 0 0 1 0 0 0 1 0 106–112
Stationary phase 1 1 0 1 1 1 1 0 113–134
Continuous carbon sources 1 0 0 0 0 1 0 1 148–160
Continuous temperatures 1 0 0 0 0 0 1 0 161–173

Time profiles of the TFAs (top row) of four well-known cell-cycle transcription factors from the Spellman data compared to the respective gene expression measurements (bottom row)Figure 4
Time profiles of the TFAs (top row) of four well-known cell-cycle transcription factors from the Spellman data compared to the 
respective gene expression measurements (bottom row).
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tion in conjunction with the ChIP connectivity
information.

Conclusion
Network component analysis combines microarray data
with ChIP data with the aim of enhancing the estimation
of regulator activities and of connectivity strengths. In this

paper we have presented an approach to NCA based on
partial least squares, a computationally efficient statistical
regression tool.

Our PLS framework allows several drawbacks, inherent
both in the classic NCA methods based on matrix decom-
position and in the MA-Networker algorithm, to be over-

Time profiles of the 16 estimated TFAs (E.Coli data)Figure 5
Time profiles of the 16 estimated TFAs (E. Coli data).
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come. Its simplicity (no iterative step, no variable
selection, no stochastic search) and its flexibility (no dis-
tributional assumptions, no topological constraints, no
conditions on the dimensions) compared to competing
approaches make it particularly attractive as an integrative
method for analyzing complex regulatory networks.
Moreover, the PLS algorithm not only extracts informa-
tion on gene-regulator and on TFA-expression profile
pairs but also identifies coherent meta-factors reflecting
the main directions of variation of the data, taking

account both of the expression ( ) and the connectivity

information ( ).

Our analysis of biological data shows the versatility of our
PLS approach and at the same time dramatically confirms
the need for a combined expression-ChIP analysis for
inferring regulation. Particularly striking are the some-
times drastic differences between the measured transcrip-
tion levels and the PLS-inferred transcription activities.
According to Segal et al. [6], some transcription factors
may also not be active in all conditions. Note that this
assumption is also automatically taken into account by
our approach.

NCA in general, and the present PLS-based variant in par-
ticular, may be criticized for relying on a simple linear
model - see Buchler et al. [30] and Setty et al. [31] for
counter-examples. Therefore, more elaborate regression
approaches such as generalized linear models (GLMs) or
generalized additive models (GAMs) may be required to
further enhance our current understanding of how best to
model the complex structures governing genetic networks.

[Note added in proof: See Yang et al. [32] for a related study
in the sister journal BMC Genomics.]
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Appendix: Computer program
All algorithms have been implemented in the R language
[33]. A corresponding R package "plsgenomics" devel-
oped by the authors is available for download from the
CRAN archive http://cran.r-project.org.
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