
RESEARCH Open Access

Application of genetic algorithms and
constructive neural networks for the analysis of
microarray cancer data
Rafael Marcos Luque-Baena1,2*, Daniel Urda1,2, Jose Luis Subirats1,2, Leonardo Franco1,2, Jose M Jerez1,2

From 1st International Work-Conference on Bioinformatics and Biomedical Engineering-IWBBIO 2013
Granada, Spain. 18-20 March 2013

* Correspondence: rmluque@lcc.
uma.es
1Department of Computer Science,
University of Málaga, Málaga, Spain

Abstract

Background: Extracting relevant information from microarray data is a very complex
task due to the characteristics of the data sets, as they comprise a large number of
features while few samples are generally available. In this sense, feature selection is a
very important aspect of the analysis helping in the tasks of identifying relevant
genes and also for maximizing predictive information.

Methods: Due to its simplicity and speed, Stepwise Forward Selection (SFS) is a
widely used feature selection technique. In this work, we carry a comparative study
of SFS and Genetic Algorithms (GA) as general frameworks for the analysis of
microarray data with the aim of identifying group of genes with high predictive
capability and biological relevance. Six standard and machine learning-based
techniques (Linear Discriminant Analysis (LDA), Support Vector Machines (SVM), Naive
Bayes (NB), C-MANTEC Constructive Neural Network, K-Nearest Neighbors (kNN) and
Multilayer perceptron (MLP)) are used within both frameworks using six free-public
datasets for the task of predicting cancer outcome.

Results: Better cancer outcome prediction results were obtained using the GA
framework noting that this approach, in comparison to the SFS one, leads to a larger
selection set, uses a large number of comparison between genetic profiles and thus
it is computationally more intensive. Also the GA framework permitted to obtain a
set of genes that can be considered to be more biologically relevant. Regarding the
different classifiers used standard feedforward neural networks (MLP), LDA and SVM
lead to similar and best results, while C-MANTEC and k-NN followed closely but with
a lower accuracy. Further, C-MANTEC, MLP and LDA permitted to obtain a more
limited set of genes in comparison to SVM, NB and kNN, and in particular C-MANTEC
resulted in the most robust classifier in terms of changes in the parameter settings.

Conclusions: This study shows that if prediction accuracy is the objective, the GA-
based approach lead to better results respect to the SFS approach, independently of
the classifier used. Regarding classifiers, even if C-MANTEC did not achieve the best
overall results, the performance was competitive with a very robust behaviour in
terms of the parameters of the algorithm, and thus it can be considered as a
candidate technique for future studies.
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Introduction
DNA microarray technology has been widely used in cancer studies for prediction of

disease outcome [1]. It is a powerful platform successfully used for the analysis of gene

expression in a wide variety of experimental studies [2]. However, due to the large

number of features (in the order of thousands) and the small number of samples

(mostly less than a hundred) in this kind of datasets, microarray data analysis faces the

“large-p-small-n” paradigm [3] also known as the curse of dimensionality. In this

sense, feature selection preprocessing refers to decide which genes to include in the

prediction, and it is a crucial step in developing a class predictor. Including too many

features could reduce the model accuracy and may lead to overfit the data [4]. Two

different algorithms have been widely used in literature to carry out feature selection,

the Stepwise Forward Selection algorithm (SFS) and the Genetic Algorithms (GA). In

the SFS algorithm the choice of predictive features is carried out by an automatic pro-

cedure that starts from single variable models and tests the addition of each feature

using a comparison criterion. This algorithm has been used to identify a predictive

gene signature whose size is minimum [5,6]. GA are also well considered as suitable

evolutionary strategies for feature selection in problems with a large number of fea-

tures [7,8], and are applied to different areas, from object detection [9] to gene selec-

tion in microarray data [10].

On the other hand, model selection is another important step in the estimation of

expression profiles to predict diseases outcome[11]. In this regards, different well-

known machine learning-based techniques have been used recently in literature

wrapped into features selection algorithms to develop a class predictor, e.g. Support

Vector Machines (SVM)[12], Multilayer Perceptron (MLP)[13], k-Nearest Neighbor-

hood (kNN)[14], Linear Discriminant Analysis (LDA)[15] and NaiveBayes. Neverthe-

less, few of these related works brings together different learning algorithms, features

selection schemes and input datasets. Besides, some of them are focused mainly on

optimising the prediction accuracy, and lack of any biological analysis for the resulting

molecular signatures via specialised software as Ingenuity Pathway Analysis (IPA),

GeneOntology (GO) or KEGG [16].

This paper presents an exhaustive analysis of performance for SFS and GA as general

frameworks to estimate expression genes profiles from microarray data with high pre-

dictive capability and biological relevance. Five standard and machine learning-based

techniques (MLP, SVM, kNN, LDA, NaiveBayes) are used within both frameworks

using six free-public cancer datasets (breast, colon, leukemia, lung, ovarian and pros-

tate cancer) for the task of predicting cancer outcome. Moreover, an important goal of

the present study is to test the performance of a new constructive neural network clas-

sification algorithm (C-MANTEC) in the mentioned framework. C-MANTEC have

been previously proved to get similar classification results than traditional multi-layer

perceptrons (MLP) or support vector machines (SVM), with the advantage that the

architecture is dynamically estimated [17]. This is a critical factor in the wrapper selec-

tion methods combined with neural networks, because the subsets analysed are differ-

ent sizes (or even the complexity of the features selected need projections in higher

spaces), which implies that the use of the same architecture is not always appropriate.

On the other hand, considering that using non redundant variables is commonly pre-

ferable in feature selection, the evolutionary strategy presented in this work
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incorporates a mutual information filter to minimise the correlation between the

selected features while increasing the classifier performance. Furthermore, a biological

analysis of the relevance of the selected genes is performed using IPA tool, which can

lead us to conduct an understanding of microarray data.

Methodology
Feature selection techniques can be organised into three broad categories: filter, wrap-

per and embedded methods [18]. Filter methods use statistical properties of the vari-

ables to discard poorly descriptive features and are independent of the classifier.

Wrapper methods are more computationally demanding than filter methods, as subsets

of features are evaluated with a classification algorithm in order to obtain a measure of

goodness to be used as the improvement criteria. Embedded methods are also classifier

dependent, but they can be viewed as a search in the combined space of feature sub-

sets and classifier models, with the additional restriction that it is not possible to

replace the classifier used since feature selection and classification methods work as a

whole.

In this work a comparison between a SFS and GA based approach is done. As the

data input space is quite large for microarray data a pre-selection approach is first

applied in order to reduce the size of the input features to a 5% of the total. After this

reduction, six different classifiers are applied within both frameworks.

Pre-selection step

Since cancer datasets normally contain a large number of genes, a pre-selection step to

reduce the initial number of variables is required. In terms of the quality of the fea-

tures ranked, it has been found that using the Student t-test is generally more success-

ful than other filter methods[19]. In particular, the Welch t-test [20], an adaptation of

the t-test, is used for the pre-selection step assuming the two classes (patient has can-

cer or not) have unknown and unequal variances, as it is not advisable to use the basic

t-test if both requirements are not clearly satisfied [18]. A 5% of the total number of

genes are retained (between 400 and 2000 genes, approximately, in the datasets

selected), which will be the input for the two approaches (SFS and GA) applied, and

described below.

Stepwise forward selection procedure

An exhaustive evaluation of all the possible subsets of n features involves a complexity

of O(2n) which becomes infeasible for large values for n. In this sense, several heuristic

algorithms have been proposed to reduce the computational complexity of wrapper

algorithms. Stepwise forward procedures for feature selection analyse the inclusion of

one or several features in order to improve the performance of the classification task.

Thus, sequential forward selection [21] chooses the best variable in each iteration by

minimising the misclassification rate, and includes it in the final subset of features.

The algorithm will continue to add variables until the performance stops to improve.

Evolutionary approach

GAs are a class of optimisation procedure inspired by the biological mechanisms of

reproduction. One of the key aspects of GA is the so called fitness function f(x), that

should be maximised or minimised over a given space X of arbitrary dimension, in an
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iterative search process in which the population of selected genes evolves as described

in detail below.

Encoding and initial population

A simple encoding scheme to represent as much as possible of the available informa-

tion was employed. A string of bits whose length is equal to the total number of genes

is used, using a binary variable associated with each bit. If the ith bit is active (value 1),

then the ith gene is selected in the chromosome (a value of 0 indicates that the corre-

sponding feature is ignored). Both, the active features and the number of them were

generated randomly, and in all the experiments a population size of 100 individuals

was used.

Selection, crossover and mutation

A selection strategy based on roulette wheel and uniform sampling was applied, while

an elite count value of 10 (number of chromosomes which are retained for the next

generation) was selected. Scattered crossover, in which each bit of the offspring is cho-

sen randomly, was the choice for combining parents of the previous generation, using

a crossover rate set to 0.8. In addition to that, a traditional mutation operator which

flips a specific bit with a probability rate of 0.2 was considered. Since it was empirically

verified that the best subsets include few features, a modification which involves

mutating a random number of bits between 1 and the number of active features of the

individual was also applied, as this change avoids the increment on the number of

active features in the last generations of the GA.

Fitness function

The fitness function assesses each chromosome in the population so that it can be

ranked against all the other chromosomes. Three aspects where considered for con-

structing the fitness function: i) The main objective is to obtain the highest perfor-

mance ii) Among two subsets that achieve equal performance, the one that contains a

lower number of features is preferred. iii) The combination of features with low redun-

dancy among them and with a certain resemblance to the target class, are beneficial for

improving performance rates [22]. Therefore, the fitness function contains three terms:

the misclassification error, the number of features selected and a redundancy measure

among them. Datasets are splitted into training and testing sets in order to evaluate

the generalisation ability of the proposed chromosome.

Statistical techniques such as mutual information [23] can be used for measuring the

correlation between a pair of features. The mutual information between two continu-

ous random variables y and z is given by the following equation:

I(y, z) =
∫ ∫

p(y, z) log
(

p(y, z)
p(y)p(z)

)
dy dz (1)

where p(y, z) is the joint probability density function of y and z, and p(y) and p(z) are

the marginal probability density functions of y and z respectively.

Mutual information is a non-negative quantity, with a zero value indicating that the

variables are completely independent. The more correlated two variables are, the

greater their mutual information. Advantages of this measure are that the dependency

between variables is no longer restricted to linear correlation and that it can handle

nominal or discrete features. Although it is hard to compute it for continuous data,

the probability densities can be well estimated by discretising it through the use of
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histograms[24]. A measure which incorporates the correlation of features with the tar-

get class and penalises the redundancy among the selected features is described as

follows [22]:

corr(x) =
1
t

k∑
i=1

k∑
j=i+1

I(xj, xi) − 1
k

k∑
j=1

I(xj,C) (2)

where k is the number of features selected, C is the target class and t is the number of

combinations between the pairs of the chromosome x analysed. Finally, the function to be

minimised ( the f itness(x) function) is represented as follows for a given subset x.

fitness(x) = (1 − ACC(x)) + λ
k
N + βcorr(x) (3)

where ACC(x) is the accuracy rate obtained by the classifier on the test set (the per-

centage of well-classified patterns with regards to the total patterns analysed); N is

the total number of extracted features; and finally, corr(x) defines the correlation

among the features and the target class, with the aim of avoiding the redundancy in

the feature vector (equation 2). The parameters l and b can take values in the interval

(0, 1) and show how influential are the terms minimisation of the number of genes and

mutual information in the fitness function. Further information is provided in the

results section.

C-MANTEC algorithm

C-MANTEC (Competitive Majority Network Trained by Error Correction) [17] is a

novel neural network constructive algorithm that utilises competition between neurons

and a modified perceptron learning rule to build compact architectures with good pre-

diction capabilities. The novelty of C-MANTEC is that the neurons compete for learn-

ing the new incoming data, and this process permits the creation of very compact

neural architectures. At the single neuronal level, the algorithm uses the thermal per-

ceptron rule, introduced by Marcus Frean in 1992 [25], that improves the convergence

of the standard perceptron for non-linearly separable problems. C-MANTEC, as a

CNN algorithm [26,27], has in addition the advantage of generating online the topol-

ogy of the network by adding new neurons during the training phase, resulting in fas-

ter training times and more compact architectures. Its network topology consists of a

single hidden layer of thermal perceptrons that maps the information to an output

neuron that uses a majority function.

The C-MANTEC algorithm has 3 parameters to be set at the time of starting the

learning procedure. Several experiments have shown that the algorithm is very robust

against changes of the parameter values and thus C-MANTEC operates fairly well in a

wide range of values. The three parameters of the algorithm to be set are: (i) Imax as

maximum number of iterations allowed for each neuron present in the hidden layer

per learning cycle, (ii) gfac a growing factor that determines when to stop a learning

cycle and include a new neuron in the hidden layer, and (iii) Phi (�) that determines

in which case an input example is considered as noise and removed from the training

dataset according to Eq. 4:

∀X ∈ {X1, ...,XN}, delete(X) |NTL ≥ (μ + ϕσ ) (4)
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where X represents a given pattern among the N patterns of the dataset, NTL is the

number of times that pattern X has been learnt on the current learning cycle, and the

pair {µ,s} corresponds to the mean and variance of the normal distribution that repre-

sents the number of times that each pattern of the dataset has been learnt during the

learning cycle. Thus, Eq. 4 specifies that if a given pattern (X) has been tried to be

learnt by the network a number of times larger than � standard deviations above the

mean for the population it should be removed from the training set.

Experimental results

In this section, six free-public cancer datasets (http://datam.i2r.a-star.edu.sg/datasets/

krbd/index.html) have been used to test the proposed methodology. The main charac-

teristics (# genes, # samples, and class distribution) for each dataset is shown in Table 1.

A comparison between the two analyzed frameworks is conducted, where for each meth-

odology six classification techniques are applied, namely: LDA, SVM, NaiveBayes,

C-MANTEC, kNN and MLP.

Before applying the methodology based on genetic algorithms, it is necessary to esti-

mate the parameters a and b associated with the fitness function and referred in a pre-

vious section. This estimation is carry out for all the cancer datasets, although only the

information related to the Lung and P rostate datasets are shown by the sake of simpli-

city. Different combinations of the l and b parameters together with the accuracy

results on average and number of selected genes are shown in Table 2. The differences

in the accuracy rates for each parameter combination are not statistically significant,

which implies that, for these cancer datasets, any combination of parameters can be

chosen. Specifically, the combinations a = 0.4, b = 0.25 and a = 0.1, b = 0.25 (Table 2,

in italic), lead to the obtention of the largest success rate, taking into account that

when a is reduced (a = 0.1) the number of genes in the solution is a little higher

(12.78 in P rostate and 4.73 in Lung) than when we try to minimise the solution with

more emphasis (a = 0.4, 9.32 genes in P rostate and 4.25 in Lung, on average).

Table 3 shows the set of parameters that have to be set for each classifier, together

with the different values that have been tested in this paper. For each classifier, a hold-

out validation strategy is used by dividing the entire dataset on a 60 − 40% proportion;

the first set to train the model and the second to obtain the accuracy in the prediction

of cancer outcome. The training-testing procedure is repeated 50 times randomly vary-

ing the training and testing set to avoid a biased evaluation, permitting also to analyse

the dispersion of the results.

A thorough analysis of the parameter setting is presented in Figure 1, where its influ-

ence for the different algorithms is evaluated in the variability of the classification

Table 1 Cancer datasets

Dataset #Genes Samples Class 0 (normal) Class 1 (cancer) Data Proportion

Leukemia 7129 72 25 47 0.347

Lung 12533 181 150 31 0.829

Colon 2000 62 22 40 0.355

Breast 24481 78 33 44 0.423

Ovarian 15154 253 91 162 0.360

Prostate 12600 102 50 52 0.490

Main characteristics of the six cancer datasets analysed.
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accuracy. The horizontal axis corresponds to the average percentage across the 50

samples considered of the false positives (FP) of the data, while the vertical axis is

associated with the false negatives values (FN). Each point of the plot represents the

FP and FN values of a generated configuration with a given parameter setting. The clo-

ser the points are to the origin, the better the classification accuracy, with optimum

performance occurring for FN = FP = 0 (a perfect match between the output of the

algorithm and the observed outcome of the dataset). All points are located always

below the contradiagonal of the plot (FN + FP = 1) as it is verified that FN + FP ≤ 1.

The variability observed for each classifier depends largely on the analysed dataset,

but with the robustness of each of the method having also a strong influence, as more

robust methods yield to more compact configuration clouds of points (a compact con-

figuration cloud means that the results do not vary significantly after a change in the

classifier parameters). Thus, the compactness can be defined as the standard deviation

of the accuracy measures. As shown in Figure 1, the compactness for kNN, SVM and

MLP methods is rather poor in general, while the C-MANTEC approach leads to con-

figurations that are very close together, indicating clearly that the performance of this

method is not very sensitive to the parameter selection. Additionally, C-MANTEC lead

to the lowest values for the distance of the mean of the configuration values (FP and

Table 2 Parameters estimation for GA

Prostate dataset Lung dataset

a b Accuracy #Genes a b Accuracy #Genes

0.8 0.6 0.9838±0.0097 2.67±1.19 0.8 0.6 0.9730±0.0107 8.65±2.82

0.8 0.4 0.9899±0.0072 3.30±1.02 0.8 0.4 0.9748±0.0093 7.28±1.20

0.8 0.25 0.9914±0.0054 3.52±0.91 0.8 0.25 0.9801±0.0106 9.85±3.12

0.4 0.6 0.9827±0.0086 2.56±1.01 0.4 0.6 0.9743±0.0103 8.80±3.18

0.4 0.4 0.9912±0.0069 3.75±1.44 0.4 0.4 0.9763±0.0094 9.55±1.08

0.4 0.25 0.9938 ± 0.0061 4.25 ± 1.95 0.4 0.25 0.9849 ± 0.0089 9.32 ± 1.64

0.1 0.6 0.9837 ± 0.0104 3.04 ± 1.71 0.1 0.6 0.9770 ± 0.0095 7.83 ± 2.06

0.1 0.4 0.9895 ± 0.0065 2.88 ± 0.70 0.1 0.4 0.9763 ± 0.0118 9.63 ± 2.53

0.1 0.25 0.9966 ± 0.0041 4.73 ± 2.10 0.1 0.25 0.9854 ± 0.0101 12.78 ± 1.61

Parameter estimation for the a and b parameters of the fitness function of the GA for the Lung and Prostate datasets.

Table 3 Parameters settings

Algorithm Test Parameters

LDA No parameters

SVM Kernel type, t= {linear, polynomial, radial base function, sigmoid}
Cost, C = {1, 3, 5, 7, 9, 10, 12, 15}
Degree, d = {1, 2, 3, 4, 5}
Gamma, g = {0.001, 0.005, 0.1, 0.15, 0.2, 0.4, 0.6, 0.8, 1, 2, 3, 5}
Coef0, r= {0, 1, 2}

NaiveBayes Kernel density, K = {0, 1}
Supervised discretization, D = {0, 1}

C-MANTEC Max. Iterations, Imax = {1000, 10000, 100000}
GFac, gfac = {0.01, 0.05, 0.1, 0.2, 0.25, 0.3}
Phi, � = {1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6}

kNN Neighbours, k = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
Distance type, d= {Euclidean, chi-squared, cosine-similarity}

MLP Hidden neurons, N Hidden = {2, 3, 4, 5, 6}
Alpha, a = {0.05, 0.1, 0.2, 0.3, 0.5}
Number cycles, N Cycles = {10, 25, 50}

Parameter settings tested during evaluation of the classification algorithms. The combination of all the values of the
parameters generate a set of configurations for each method.
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FN) to the origin, confirming the robustness in the parameter setting (the LDA classi-

fier does not have parameters to be set and thus it is not represented in the graph). In

order to quantify the distribution of the prediction accuracy observed for the several

configuration analysed, the legend for each classifier shows the distance to the plot ori-

gin plus/minus the standard deviation

(√
(FP)2 + (FN)2 ± std-dev

)
. For example, for

the Ovarian, Colon and Prostate datasets, the distance to the origin for the mean value

observed for the C-MANTEC algorithm is significantly lower than for the rest of alter-

natives (0.0109, 0.102 and 0.0602, respectively).

Figure 1 Quantitative measures. False Positives (FP) and False Negatives (FN) ratios after applying each
method to the test sequences with all the parameter configurations. Each coloured point ‘*’ is considered
as a different configuration for the indicated method. The closer the points are to the origin, the better the
segmentation. Additionally, the method is less sensible to a parameters’ change if the cloud of points is
more compact (see the text for more details). The datasets are different and so the scales are.
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Comparison results between the two frameworks are shown in Table 4, where the best

parameter configuration for each classification model is selected to perform the evalua-

tion over the six datasets. In both frameworks, the accuracy rates for the Leukemia,

Lung and Ovarian datasets are close to 100% regardless of the classifier applied, suggest-

ing a low data complexity (in prediction terms). The complexity the Breast, Colon and

Prostate seems higher, permitting to observe clear differences between the two

approaches. The prediction accuracy obtained with the GA methodology was in almost

all cases higher that the obtained within the SFS approach. Additionally, the robustness

of the selected features is considerably higher in the GA (lower standard deviation

Table 4 Performance comparison of classification techniques

GA SFS

Classifier Parameters mean ± std #genes mean ± std #genes

Leukemia LDA - 99.959 ± 0.07 12 97.609 ± 2.86 2

SVM {polynomial,15,1,0.6,0} 99.982 ± 0.06 8 99.918 ± 0.52 4

NaiveBayes {1,0} 99.974 ± 0.03 12 98.060 ± 2.19 3

C-MANTEC {1000,0.01,4.5} 99.038 ± 0.25 7 98.837 ± 2.46 3

kNN {1,Euclidean} 99.994 ± 0.02 10 99.844 ± 0.77 5

MLP {3,0.5,50} 99.944 ± 0.05 5 95.784 ± 3.38 2

Lung LDA - 99.971 ± 0.03 5 99.057 ± 1.00 3

SVM {linear,10,-,-,-} 100 ± 0 11 99.828 ± 0.70 3

NaiveBayes {1,0} 99.998 ± 0.01 4 99.991 ± 0.07 3

C-MANTEC {100000,0.25,2} 99.678 ± 0.08 6 99.673 ± 0.94 2

kNN {1,Euclidean} 99.969 ± 0.02 4 99.969 ± 0.22 4

MLP {4,0.1,50} 99.996 ± 0.01 4 99.778 ± 0.79 2

Colon LDA - 98.676 ± 0.35 11 87.179 ± 6.15 2

SVM {polynomial,1,1,0.4,2} 89.917 ± 1.26 20 91.738 ± 5.21 5

NaiveBayes {0,1} 90.583 ± 0.49 15 89.076 ± 7.79 4

C-MANTEC {10000,0.01,1} 94.315 ± 0.48 11 87.593 ± 6.69 2

kNN {3,cosine-similarity} 95.060 ± 0.38 19 93.577 ± 4.43 6

MLP {5,0.3,50} 99.026 ± 0.30 12 88.733 ± 5.51 2

Breast LDA - 99.788 ± 0.12 15 74.169 ± 6.52 1

SVM {polynomial,7,2,0.001,2} 99.744 ± 0.14 31 81.029 ± 5.80 3

NaiveBayes {0,0} 97.759 ± 0.23 27 73.499 ± 6.34 1

C-MANTEC {10000,0.01,1.5} 97.342 ± 0.39 23 76.645 ± 6.53 1

kNN {3,Euclidean} 97.485 ± 0.30 34 80.975 ± 6.37 2

MLP {4,0.3,50} 99.828 ± 0.09 18 79.191 ± 6.43 2

Ovarian LDA - 99.980 ± 0.01 4 100 ± 0 3

SVM {polynomial,9,1,0.2,0} 100 ± 0 4 99.978 ± 0.13 4

NaiveBayes {1,0} 99.951 ± 0.03 5 99.980 ± 0.13 4

C-MANTEC {1000,0.3,1.5} 99.844 ± 0.05 4 99.659 ± 0.75 3

kNN {1,Euclidean} 99.984 ± 0.01 4 99.982 ± 0.11 3

MLP {5,0.3,50} 99.999 ± 0 3 100 ± 0 3

Prostate LDA - 99.720 ± 0.12 9 95.677 ± 2.81 4

SVM {polynomial,5,1,3,1} 99.428 ± 0.31 20 98.622 ± 1.79 5

NaiveBayes {0,0} 98.817 ± 0.16 14 98.331 ± 2.13 7

C-MANTEC {1000,0.25,4} 98.681 ± 0.24 8 95.351 ± 3.40 4

kNN {3,cosine-similarity} 99.633 ± 0.11 20 97.146 ± 2.28 6

MLP {3,0.5,50} 99.996 ± 0.02 12 96.921 ± 2.37 4

Performance comparison among the two different feature selection frameworks used (GA and SFS) and the six classifiers
analyzed (LDA, SVM, NaiveBayes, C-MANTEC, kNN and MLP) for each cancer microarray dataset. The results correspond
to the best simulation for each dataset, showing the accuracy for method in the format of mean ± standard deviation
and the number of selected genes.
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values), fact that can be partially attributed to the larger set of genes selected. Regarding

the computational complexity of both approaches, the SFS strategy involves approxi-

mately a number of comparisons of nsel × #genes (nsel: number of pre-selected features,

#genes : mean number of genes selected), while the GA approach utilises a maximum of

20.000 profile comparisons regardless of the dataset (length of the chromosome (100) ×

number of generations (200)). For example, for the Prostate dataset in the SFS approach,

approximately 3000 comparison are needed in the present study since nsel ≈ 600,

#genes = 5 , unlike the genetic proposal which requires a greater number of combina-

tions. However, if the number of pre-selected genes increases, the SFS method begins to

loose its efficiency and may be intractable when handling thousands of genes.

Table 5 shows average results across all six datasets for the both frameworks used,

noting that C-MANTEC lead to competitive classification performance with a reduced

number of genes.

Further, we analyzed the differences between classifiers for the SFS and GA feature

selection procedures used and for the six datasets, showing the results in Table 6. The

corresponding p-value obtained after applying a Friedman’s test is indicated in the

third column [28]. In case this p-value is lower than 0.05, the lowest performant classi-

fier is taken as a control group and the last column of the table lists the classifiers that

lead to statistically significant results (from the lowest to the highest difference);

Table 5 Performance comparison of feature selection frameworks

GA SFS

Classifier mean ± std #genes mean ± std #genes

LDA 99.682 ± 0.12 9.33 92.282 ± 3.22 2.5

SVM 99.082 ± 0.25 15.67 95.185 ± 2.36 4

NaiveBayes 97.847 ± 0.16 12.83 93.156 ± 3.11 3.67

C-MANTEC 98.150 ± 0.25 9.83 92.960 ± 3.46 2.5

kNN 98.688 ± 0.14 15.17 95.249 ± 2.36 4.33

MLP 99.798 ± 0.08 9 93.401 ± 3.08 2.5

Average performance comparison among two different feature selection frameworks (GA and SFS) and six classifiers
(LDA, SVM, NaiveBayes, C-MANTEC, kNN and MLP) over all dataset.

Table 6 Differences between classifiers.

FS procedure Dataset p-value Control Statistically different classifiers

SFS Leukemia < e−16 LDA SVM

Lung < e−16 LDA kNN, NB

Colon < e−16 LDA SVM, kNN

Breast < e−16 NB kNN, SVM

Ovarian < e−16 CM LDA, NN

Prostate < e−16 CM NB, SVM

GA Leukemia < e−16 CM NB, NN, LDA, SVM, kNN

Lung < e−16 CM SVM, NB, NN

Colon < e−16 SVM LDA, NN

Breast < e−16 SVM NN, LDA

Ovarian < e−16 CM SVM, NN

Prostate < e−16 CM NN, LDA

Differences between classifiers for the two feature selection (FS) procedures used (first column). The lowest performance
classifier is taken as control group and the last column of the table lists the classifiers that lead to statistically significant
results (corresponding p-value indicated in the third column).
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otherwise, non statistically significant results are reached (represented with a “-” on the

table).

Table 7 shows a similar comparative analysis but among the SFS and GA feature

selection procedures when a common classifier is used (first column of the table).

Biological analysis

Figures 2 and 3 present the ten most selected genes for each of the six datasets consid-

ered, where each dataset is represented in a row of the table. The first three columns

show information about the gene, such as the internal index (ID), the gene symbol

(name of the gene) and the probe set ID, which is related to the chip where the dataset

Table 7 Differences between feature selection algorithms

Classifier Dataset p-value Control Statistically different FS procedures

LDA Leukemia 1.54e−12 SFS GA

Lung 1.54e−12 SFS GA

Colon 1.54e−12 SFS GA

Breast 1.54e−12 SFS GA

Ovarian 3.28e−11 GA SFS

Prostate 1.54e−12 SFS GA

SVM Leukemia 3.65e−5 SFS GA

Lung 1.54e−12 SFS GA

Colon 2.86e−9 GA SFS

Breast 1.54e−12 SFS GA

Ovarian 9.13e−11 SFS GA

Prostate 1.54e−12 SFS GA

NB Leukemia 4.71e−9 SFS GA

Lung 1.54e−12 SFS GA

Colon 1.54e−12 SFS GA

Breast 1.54e−12 SFS GA

Ovarian 0.157 - -

Prostate 1.54e−12 SFS GA

CM Leukemia 4.71e−9 SFS GA

Lung 1.54e−12 SFS GA

Colon 1.54e−12 SFS GA

Breast 1.54e−12 SFS GA

Ovarian 0.157 - -

Prostate 1.54e−12 SFS GA

kNN Leukemia 1.54e−12 SFS GA

Lung 0.0897 - -

Colon 1.54e−12 SFS GA

Breast 1.54e−12 SFS GA

Ovarian 0.6547 - -

Prostate 1.54e−12 SFS GA

NN Leukemia 4.71e−9 SFS GA

Lung 1.54e−12 SFS GA

Colon 1.54e−12 SFS GA

Breast 1.54e−12 SFS GA

Ovarian 0.157 - -

Prostate 1.54e−12 SFS GA

Differences between SFS and GA feature selection algorithms for the six different classification methods used (first
column). The lowest performant FS procedure is taken as control group (fourth column) while the last column of the
table lists the procedures that lead to statistically significant results (corresponding p-value indicated in the third
column)

Luque-Baena et al. Theoretical Biology and Medical Modelling 2014, 11(Suppl 1):S7
http://www.tbiomed.com/content/11/S1/S7

Page 11 of 18



has been extracted (e.g., Affymetrix). The bar graph of the last column splits the fre-

quency of selection (fourth column) of each feature according to the GA-LDA, GA-

SVM, GA-CMANTEC, GA-kNN, GA-NaiveBayes and GA-MLP strategies. Most of the

gene symbols have been found from their probe set ID by using tools as IPA (Ingenuity®

Figure 2 Frequency selection of genes for Leukemia, Lung, Colon and Breast databases. The ten
most selected features for the analysed datasets. Frequency selection is represented by an horizontal bar,
divided according to the six classifiers used in the analysis: LDA, SVM, C-MANTEC, kNN, NaiveBayes and
MLP. The index, gene symbol and probe set ID of each gene is shown in columns one to three.

Figure 3 Frequency selection of genes for Ovarian and Prostate databases. The ten most selected
features for the analysed datasets. The structure of this figure is the same than Figure 2.
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Systems, http://www.ingenuity.com) or NCBI (http://www.ncbi.nlm.nih.gov/gene/),

although it has not been possible for the Ovarian dataset (first row of Figure 3) because

there is no reference of the chip from which the data have been extracted.

A higher frequency of selection might imply a higher relevance of the gene in the

prognosis of the disease. Those genes that are selected with similar frequency for all

classifiers are considered independent with respect to the classification method. For

instance, in the Prostate dataset (second row of Figure 3), the MAF gene is more sig-

nificant than the JUNB gene, since it has been selected more times and all the classi-

fiers selects it with the same frequency. Thus, NaiveBayes barely takes into account

the JUNB gene whereas for MLP classifier it is one of the main genes.

Not only are we interested in getting good results in prognosis prediction but also in

examining whether the selected genes provide biological information related to the dis-

ease studied. Therefore, if the proposed models provide this consistency between the

computational and biological field, the results would be more confident and the

selected genes would be more reliable from a clinical perspective, in order to their

implementation in microchips and treatment in real patients. We can see that this

statement is true in the proposed model using genetic algorithms.

In the case of the Prostate dataset is possible to find references in the literature where

the genes MAF, which encodes a protein related to DNA-binding (most frequent gene,

99.67%) [29], SERPINB5, a serpin peptidase inhibitor (second most frequent, 58%) [30],

HPN, officially named hepsin which encodes a type II transmembrane serine protease

(fourth most frequent, 50%) [31] and GSTP1, belonging to the family of Glutathione

S-transferases (GSTs) enzymes (sixth most frequent, 36.33%) [32] are biologically related

to the absence or presence of prostate cancer. This supports the idea that our computa-

tional approach is robust and consistent with the results obtained in biological studies.

For the Breast dataset, several of the most selected genes among which are UBC

[33,34], ZNF222 [35] and EWSR1 [36], are biologically associated with breast cancer.

The same happen for the Leukemia disease, where the enforced expression of the

CD19 molecule (fifth selected, 19%) can reduce the proliferation of the malignant

plasma cells [37]; the gene homeobox A9 (HOXA9, second selected, 33%) influences

hematopoietic progenitors and acute leukemias [38]; and the CD33 molecule (seventh

selected, 17.33%) has been shown to sharply inhibit the in vitro proliferation of both

normal myeloid cells and chronic myeloid leukemias [39].

From a computational point of view, Table 8 shows the best selected genes obtained

by the genetic approach which also have been extracted in several related papers (last

column of the table) for the particular case of the Leukemia dataset. It should be

noted that the applied methodology is different from one paper to another. For

instance, five of the ten genes are also reported in the list of the 50 most important

genes (selected from 7129) suggested in [40].

Focusing on the Leukemia dataset (one of the most studied dataset in the litera-

ture), and as a biological analysis of the features selected, Figure 4 displays a com-

parison between the most selected genes, after 50 independent executions and with

independence of the classifier used, for both GA and SFS selection procedures.

Moreover, the IPA tool is used in order to explore the functional involvement of

each gene set obtained by GA and SFS in the studied disease. In concrete, three of

the fifteen most frequently genes are highlighted in bold on the x-axis in Figure 4 as
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founded genes in the IPA database with biological relevance on the Leukemia cancer

disease.

A deeper biological analysis is performed using the IPA tool for the GA-CMANTEC

strategy considering the Leukemia dataset. Figure 5 shows those genes that are selected

at least a 5% of the times both with GA-CMANTEC or SFS-CMANTEC strategy after

50 independent executions. The names shown on this figure correspond to the symbol

of each gene according to Figure 2. It is important to highlight the difference on the

number of genes selected through the GA and SFS strategy due to the casuistic of

each algorithm. Additionally, on the left side are represented in bold nine of the ten

most frequently selected genes with independence of the classifier used. Moreover,

using C-MANTEC as classifier allow to obtain these nine most selected genes. Finally,

filled in genes represent those genes that have demonstrate biological relevance on the

Leukemia disease. In this sense, the GA-CMANTEC strategy presents 10 out of 37

genes as a result while the SFS-CMANTEC strategy presents 2 out of 7. Although

these results are similar in proportion, the GA-CMANTEC strategy could be consid-

ered more explicative from a biological point view with no detriment on the classifica-

tion performance. Furthermore, the connections among the selected genes

(represented by links in Figure 5), which are more numerous in the GA approach, sug-

gest as well a significant relationship with the occurrence of the disease.

Conclusions
In this work, a new methodology approach combining genetic algorithm with con-

structive neural networks has been proposed in order to predict cancer outcome. For

six free-public cancer datasets, we compared under GA and SFS frameworks the pre-

diction accuracy of the C-MANTEC algorithm against the following five standard clas-

sifiers: LDA, SVM, NaiveBayes, kNN or MLP.

On average, the strategy based on the GA approach leads to better prediction rates,

observing that these results are independent of the classifier used, noting also that pre-

diction results under the GA framework show lower variability, and thus can be con-

sidered as more robust. On the other hand, it should be noted that the SFS approach

is less computationally intensive, involving in the present study approximately seven

times less gene comparisons, and also leading to a group of selected genes much smal-

ler than those selected under the GA approach. Nevertheless, when complex datasets

Table 8 Selected genes for the Leukemia dataset

ID Probe Set ID Gene Description References

4951 Y07604_at NME/NM23 nucleoside diphosphate kinase 4 [41-43]

3847 U82759_at Homeo box A9 [40,44,43]

6169 M13690_s_at C1NH Complement component 1 inhibitor [43,45]

6184 M26708_s_at PTMA Prothymosin alpha [45]

6225 M84371_rna1_s_at CD19 Molecule [46]

1882 M27891_at CST3 Cystatin C [40,41,43,44]

1834 M23197_at CD33 antigen [40,44,46]

4847 X95735_at Zyxin [40,41,44,46]

3320 U50136_rna1_at LTC4 synthase [40,43,44,46]

5094 Z24727_at TPM1 Tropomyosin alpha chain [47]

The best selected genes ranked with the GA approach for the Leukemia dataset which also appear in other studies in
the literature.
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are studied like Breast or Colon, cancer prognosis results are quite poor when using

the SFS approach, presumably since the search in the state space is much more restric-

tive. Additionally, an analysis done using the IPA methodology suggests that the biolo-

gical relevance of the genes selected under the GA framework is higher than the

observed using the SFS approach, as indicated by the reference frequency in the litera-

ture and also regarding the relationship between them (even if this effect might be due

to the size of both selected sets).

Figure 4 Comparison of the most frequently selected genes. Comparison of the most frequently
selected genes (in 50 independent executions) by the GA and SFS strategy in Leukemia dataset, with
independence of the classifier used.
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Regarding the comparison between the different classifiers implemented, standard feed-

forward neural networks (MLP), LDA and SVM lead to similar and best results while

C-MANTEC and kNN followed closely but with a bit lower accuracy. C-MANTEC, MLP

and LDA permitted to obtain a more reduced set of genes in comparison to SVM, NB and

kNN. Further, C-MANTEC resulted in the most robust classifier in terms of changes in

the parameter settings, a relevant feature for its use in wrapper feature selection methods

(as it will reduce execution times related to parameter tuning). Additionally, we are con-

sidering the use of a ensemble of all these classifiers as a further work, in order to obtain a

greater consensus on the classification result, which could lead to greater robustness and

accuracy of the resulting model.
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