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Abstract

Background: Superficial bladder cancer has been the subject of numerous studies
for many years, but the evolution of the disease still remains not well understood.
After the tumor has been surgically removed, it may reappear at a similar level of
malignancy or progress to a higher level. The process may be reasonably modeled
by means of a Markov process. However, in order to more completely model the
evolution of the disease, this approach is insufficient. The semi-Markov framework
allows a more realistic approach, but calculations become frequently intractable. In
this context, flowgraph models provide an efficient approach to successfully manage
the evolution of superficial bladder carcinoma. Our aim is to test this methodology
in this particular case.

Results: We have built a successful model for a simple but representative case.

Conclusion: The flowgraph approach is suitable for modeling of superficial bladder
cancer.

Background
Bladder tumors are a challenge in urology. They pose an important public health pro-

blem because they are biologically very aggressive and are highly prevalent in western

countries. Approximately 75-85 % of patients with newly diagnosed bladder carcinoma

have non muscle-invasive bladder carcinoma (NMI-BC), which can be managed with

transurethral resection (TUR). TUR is a surgical endoscope technique used to remove

the macroscopic tumor from the interior of the bladder. However it has a notable

tendency to recur (30-85 %) and less frequently to progress to muscle invasive stages

(10-20 %). The object of this study is the NMI-BC, that makes up 70 % of the total

health care cost of this disease. A review about the NMI-BC may be found in [1].

Biotechnological advances have allowed us to use different therapeutic procedures

(surgery, radiotherapy, chemotherapy, immunotherapy) successfully but still many

patients suffer an unfavourable outcome without control of disease. In practice urolo-

gists have a serious problem: some patients with similar characteristics undergo differ-

ent evolution. Consequently, this creates a problem as to the choice of treatment to be

applied. Urologists need tools to accurately predict the real evolution of the disease,

that help them to improve treatment modalities and follow-up schemes of non-muscle

invasive bladder cancer patients. In this regard an important contribution [2] appeared

in European Urology, the official journal of the European Association of Urology.
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By means of looking up tables the probability of recurrence and progression for a

patient is provided. However only time to first recurrence is considered, and the analy-

sis is reduced to the Cox proportional hazards regression model. Later works have stu-

died the model validation, finding some limitations [3].

Our team has been working with urologists from University Hospital La Fe for the last

ten years. We have developed several models trying to capture different aspects of the

disease evolution. Our aim for the near future is to detect the most relevant predictive

factors, and also to perform an accurate model of the disease evolution. The first objec-

tive includes investigating at the genetic and molecular level, while the second one could

be achieved with a suitable multistate model. While the process may be reasonably mod-

eled by means of a Markov process, in order to more completely model the evolution of

the disease this approach is insufficient. Specifically, it is possible that time spent in a

state influences the future evolution of the process, i.e., it not only depends on the cur-

rent state. The semi-Markov framework allows a more realistic approach, but calcula-

tions become frequently intractable. In this context, flowgraph models provide an

efficient approach for the analysis of time-to-event data, since their introduction in this

field a few years ago [4]. The present work is a first step in order to explore the evolution

of the recurrence progression process by means of this methodology.

The paper is organized as follows: first we review a few basic concepts of survival

analysis, phase-type distributions and Erlang distributions, needed to build the model.

Then we present the essentials of flowgraph models and important features of our

approach. The section that follows deals with a simple flowgraph model for the recur-

rence-progression process in NMI-BC, constructed using a database from La Fe

University Hospital of Valencia (Spain). Finally, some conclusions are discussed.

Survival analysis and phase-type distributions
Survival analysis

Survival analysis techniques deal with the analysis of data taking times from a well-

defined time-origin until the occurrence of some particular event or end-point .

To summarize survival data there are two key functions: the Survival Function and

the Hazard Function. Let T be the random variable associated with the survival time

(time until the ocurrence of the event).

The Survival Function is

S(t) = P(T ≥ t) = 1 − F(t)

where F(t) is the distribution function of T. It expresses the probability that an indi-

vidual survives from the time origin to some time beyond t.

The Hazard Function is given by

λ(t) = lim
�t→0

P(t ≤ T < t + �t|T ≥ t)
�t

,

which expresses the hazard rate or the instantaneous event rate.

In survival analysis data are frequently censored [5], which means that the event of

interest has not been observed. The follow-up time of those patients must be taken

into account, because it informs us of the fact that the individual has been free of

event until the present moment. For instance we started with 957 patients, of whom
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434 underwent a recurrence, 24 a progression, and 499 had censored times, which

means that at the time of their last check-up they had no recurrence or progression.

Phase-type distributions

In order to model lifetimes, mixtures of distribution functions are useful. In this con-

text phase-type distributions [6] are very interesting, because of their properties and

they provide computations with manageable analytical expressions. Let us summarize

the main concepts: the distribution F(-) on [0, ∞) is a phase-type distribution (PH-

distribution) with representation (a, T) if it is the distribution of the time until absorp-

tion in a Markov process on the states {1, . . . , m, m + 1} with generator(
T T0

0 0

)
,

and initial probability vector (a, am+1) where a is a row m-vector.

The matrix T of order m is non-singular with negative diagonal entries and non-

negative off-diagonal entries, T0 is a column matrix with nonnegative entries, and it

holds that

−Te = T0,

where e denotes a column vector with all components equal to one.

The distribution F(-) is given by

F(t) = 1 − α exp(Tt)e, t ≥ 0 (1)

and the density f(t) by

f (t) = α exp(Tt)T0.

The survival function is

S(t) = α exp(Tt)e (2)

and the hazard function is given by

h(t) =
α exp(Tt)T0

α exp(Tt)e
.

Finally, the Laplace transform is

L(s) = αm+1 + α(sI − T)−1T0, for Re(s) > 0. (3)

Phase-type distributions are a closed class for finite mixtures, and form a class

weakly dense in the class of general distributions defined on the positive real line.

A particular case of phase-type distribution, relevant in our approach, is the Erlang dis-

tribution. An Erlang distribution E[r, l] has a representation (a, T) as a phase-type [7]:

α = (1, 0, . . . , 0)1×r

T =

⎛
⎜⎜⎜⎜⎜⎝

−λ λ

−λ λ

. . .
. . .
−λ λ

−λ

⎞
⎟⎟⎟⎟⎟⎠

r×r
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A finite mixture of Erlangs distributions is therefore a phase-type distribution. We

are interested in the class of mixtures of three Erlang distributions studied in [8]. The

distribution function of the elements in this class is given by the expression

G(t) = p1F1(t) + p2F2(t) + p3F3(t), (4)

with p1 + p2 + p3 = 1, pi > 0, i = 1, 2, 3.

Let us denote the three Erlangs by E[r1, µ1], E[r1, µ1], E[r1, µ1], with µi > 0 and ri a

positive integer, i = 1, 2, 3. In the particular case with r1 = 1, r2 = 3, r3 = 5 the repre-

sentation as phase-type distribution is (a, T) where

α = (p1 p2 0 0 p3 0 0 0 0) (5)

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−μ1 0 0 0 0 0 0 0 0
0 −μ2 μ2 0 0 0 0 0 0
0 0 −μ2 μ2 0 0 0 0 0
0 0 0 −μ2 0 0 0 0 0
0 0 0 0 −μ3 μ3 0 0 0
0 0 0 0 0 −μ3 μ3 0 0
0 0 0 0 0 0 −μ3 μ3 0
0 0 0 0 0 0 0 −μ3 μ3

0 0 0 0 0 0 0 0 −μ3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6)

The versatility of distributions given in (4) let have us several options to fit them to

our interest distributions. The way we tried was to perform some experimental compu-

tations, considering different values of r1, r2 and r3. Mixture (5) was explicitly given in

[8], and we found it worked very well.

Flowgraph models
A flowgraph model is a graphical representation of a multistate model that consists of

directed line segments (branches) connecting the states, namely, a directed graph. The

branches are labeled with transmittances, that are the transition probability pij from

state i to state j multiplied by an integral transform Gij(s) of the transition time prob-

ability density function (PDF). This transformation can be a characteristic function

(CF), a moment generating function (MGF), a Laplace transform (LT), or even an

empirical transform [9][10]. Flowgraphs are used to represent semi-Markov processes,

given that allowed waiting time distributions go beyond the exponential distribution

directly linked to Markov processes.

For instance, Figure 1 shows the flowgraph of the three-state illness-death model that

we will use in this paper, based on [11].

Transmittances are combined according to a systematic procedure (see [12], section

2.5), in order to compute the transforms for the transitions of interest. For instance, the

rules pertaining to the graph in the Figure 1 are the following:

1) The transmittance of transitions in series is the product of the series

transmittances.

2) The transmittance of transitions in parallel is the sum of the parallel

transmittances.

These rules are applied later in building the model.
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In order to perform the model, the first step is to select a suitable distribution for

the waiting time in each transition. Our approach will be to compute the empirical dis-

tributions (Kaplan-Meier [5]) and approximate them using mixtures of Erlang distribu-

tions. Specifically we use the mixture given by (5)-(6). Note that the cumulative

distribution function is easily computed from expression (1). The parameters pi and µi
are calculated by minimizing

||Fij(t) − Gij(t)||, (7)

where Fij is the empirical distribution for the transition ij and Gij the mixture distri-

bution for the same transition. Initial values for the minimization process are needed.

In order to estimate these values (and also to decide a suitable mixture, in our case

(5)-(6)) we use a non-negative least squares fit (Lawson-Hanson algorithm [13]).

More precisely, the idea is the following. Based on [8], we try several Erlang distribu-

tions in expression (4). Given F1, F2 and F3, and an empirical distribution F we con-

sider the system

F = p1F1 + p2F2 + p3F3
1 = p1 + p2 + p3

which we fit by non-negative least squares, to compute p1, p2 and p3. In this way we

obtain reasonable initial values for the parameters pi and µi.

Once the parametric distributions have been computed, the Laplace transforms are

easily calculated from (3). Then we compute the Laplace transform relevant to the

transitions of interest, applying the above rules. The final step is to invert these trans-

forms to obtain PDFs, for which we use an inversion algorithm called EULER, devel-

oped by Abate and Whitt [14].

Figure 1 Three-state illness-death model.
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Flowgraph models for stochastic networks were introduced by Butler and Huzurba-

zar [4]. An account of the theory developed up to 2005 may be found in [12]. A recent

contribution proposing a prognostic model is [15].

A flowgraph model for bladder carcinoma
Data

The database was obtained from La Fe University Hospital of Valencia (Spain). It

records clinical-pathological information from 957 patients, followed between January

1995 and January 2010. The primary tumor is a NMI-BC, which means that it is cate-

gorized as stage Ta or T1, according to the World Health Organization (WHO) TNM

classification staging system [16]. After removal of the tumor by TUR, it may recur at

a similar stage, which we call recurrence; or it may progress to muscle invasive stages

T2, T3 or T4, which we call progression. The data record several recurrence times.

This means that some patients have no recurrence at all, some have one or more

recurrences, and some have progression (directly of after some recurrence). In our

model we have considered progression and one recurrence. As stated above, 434

patients underwent a recurrence, 24 a progression, and 499 had censored times. Then,

63 patients were lost. From the remaining 371 patients, 17 underwent a progression,

226 a recurrence and times of the remaining 128 patients were censored. A full

description of data may be found in [17].

Flowgraph model

Our aim in this paper is to test the flowgraph methodology in this particular problem,

and so we perform the simple model of Figure 1. In state 0 the patient is free of dis-

ease, after the TUR of the primary tumor. State 1 is the first recurrence, and state 2 is

progression. Time is given in years.

By way of example, we are going to model the overall risk of progression. So we are

interested in finding the probability distribution of time to reach state 2 for the first

time starting in state 0, irrespective of the path that was taken. That is to say, the first

passage distribution of going from disease free to muscle invasive stages. But the aim

of a more general flowgraph model for the recurrence - progression process would be

to predict the risk of recurrence or progression from any state.

Parametric distributions for all transitions and their Laplace transforms are per-

formed according to the procedure described above. Minimization is carried out by

means of the constrOptim function, from the R Stats Package [18]. We use the eucli-

dean norm in (7). Empirical and parametric distributions for each transition are shown

in Figures 2, 3 and 4.

Let us calculate the first passage distribution of going from state 0 to state 2. For this

we compute the Laplace transform of the time to progression. Applying the rules 1

and 2 above, it would be given by:

LT(s) = p01p12LT01(s)LT12(s) + p02LT02(s)

However, it must be taken into account that our flowgraph is actually part of a more

general graph that would model the disease process, see Figure 5. Passage from state 0

to state 2 is not certain to occur: a patient may only suffer recurrences, or even no

recurrence. The probability of taking the considered path is p01p12 + p02, and we must
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Figure 2 Erlang mixture (smooth line) and empirical distribution (step function) for transition 01.

Figure 3 Erlang mixture (smooth line) and empirical distribution (step function) for transition 02.
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divide the preceding LT(s) by this probability to obtain the true Laplace transform [12,

pag. 19]

LT(s) =
p01p12LT01(s)LT12(s) + p02LT02(s)

p01p12 + p02

Figure 4 Erlang mixture (smooth line) and empirical distribution (step function) for transition 12.

Figure 5 Recurrence - progression process.
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Probabilities pij are assigned from estimations based on our data. They simply consist

of the ratios between the number of progressions or recurrences and the number of

patients who could undergo the relevant transition. Calculations are quite sensitive to

these values. We tried with the current and also previous database. The best results

were obtained taking p01 = 0.3967742, p02 = 0.02507837 and p12 = 0.03252033.

To recover the PDF we use a variant of the inversion algorithm EULER [15]. From

this function we obtain the survival function (with regard to progression), that is

shown in Figure 6, jointly with the empirical survival function. The hazard function

may be also easily computed. Thus we have a parametric model to predict the prob-

ability of being free of progression at a given time. The procedure may be easily used

to define risk groups, simply by calculating the survival functions of patients grouped

according to common characteristics. Then the monitoring and treatment of patients

can be adjusted according to their risk.

All computations were made in R. Besides the mentioned packages, we also used the

expm [19], Matrix [20] and survival [21] packages.

Discussion
A parametric approach in the framework of flowgraph models involves exploring para-

metric models looking for the distributions that match the data better. In [12] histo-

grams of sample waiting times are suggested. In this paper we propose a fitting

procedure using mixture of Erlang distributions. Figures 2, 3 and 4 show graphically

that the fitted parametric distributions match the empirical distributions very well.

Figure 6 Survival function model (smooth line) and empirical survival function (step function).
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Figure 6 shows that parametric distribution provided by the model matches also the

empirical distribution of our interest transition very well.

In order to contrast our results with other approaches, we have performed the classical

multistate Markov model. The msm R package by C. Jackson [22] is a useful tool to man-

age Multi-state Markov and hidden Markov models in continuous time. Using this soft-

ware, we found some similarities with our results, but overall they were worse, probably

because the Markovian hypothesis is not satisfied. By way of example, Figure 7 corre-

sponds to the first passage distribution of going from state 0 to state 2.

This is only a first step in applying the flowgraph approach to bladder carcinoma.

Our aim is to incorporate covariates in a parametric model involving several recur-

rences and progression. Thus the doctors will have a useful tool to estimate the risk of

recurrence and progression of patients according to their characteristics.

Conclusions
These results suggest that the approach is suitable for modeling the evolution of the

NMI-BC. Therefore it is justified to try to extend the model to more complex situations.

Flowgraph methodology is very flexible. It allows the model to incorporate multiple

recurrences, and recently also covariates [9]. Moreover non-parametric approaches are

also available [10]. This versatility, along with the inclusion of molecular biomarkers,

allow us to expect to get a very accurate model in a not too distant future.
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Figure 7 Survival function of Markov model (smooth line) and empirical survival function (step
function).
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