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Abstract

In the current era of antiviral drug therapy, combining multiple drugs is a primary
approach for improving antiviral effects, reducing the doses of individual drugs,
relieving the side effects of strong antiviral drugs, and preventing the emergence of
drug-resistant viruses. Although a variety of new drugs have been developed for HIV,
HCV and influenza virus, the optimal combinations of multiple drugs are incompletely
understood. To optimize the benefits of multi-drugs combinations, we must investigate
the interactions between the combined drugs and their target viruses. Mathematical
models of viral infection dynamics provide an ideal tool for this purpose. Additionally,
whether drug combinations computed by these models are synergistic can be assessed
by two prominent drug combination theories, Loewe additivity and Bliss independence.
By combining the mathematical modeling of virus dynamics with drug combination
theories, we could show the principles by which drug combinations yield a synergistic
effect. Here, we describe the theoretical aspects of multi-drugs therapy and discuss their
application to antiviral research.
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Background
Several landmark mathematical modeling studies of anti-retroviral therapy were

reported in 1995 [1-4]. Thereafter, mathematical modeling has provided quantitative

insights into antiviral drugs targeting HIV [5-13], HCV [14-18], HBV [19,20] and influ-

enza virus [21,22]. These studies have elucidated the key steps of viral replication

cycles and viral infection dynamics, such as the half-life of viruses and how viruses rep-

licate in cells (reviewed in [23-27]). Although mathematical viral models could also

search for drug combinations that improve antiviral effects and prevent the emergence

of drug-resistant viruses, this potential of viral modeling has yet to be properly ex-

plored. Multi-drug administration is a standard treatment for HIV and HCV infection,

and is also required in HBV and influenza. The established combination drug therapy

for HIV, known as highly active anti-retroviral therapy (HAART), remains prohibitively

expensive in developing countries. Additionally, HIV patients receiving long-term

HAART may experience severe side effects such as lipodystrophy, hepatotoxicity, renal

dysfunction, peripheral neuropathy and cardiovascular diseases (reviewed in [28]). By
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optimizing drug combinations, we could reduce the doses of individual drugs, thereby

lowering the cost of treatment, reducing side effects, enhancing the antiviral effects and

reducing the risk of drug-resistant viruses.

To accelerate the above benefits of drug combinations, we need to know whether or

not a drug combination exerts a synergistic effect (reviewed in [29,30]). A non-

synergistic drug combination requires a larger than expected dose to achieve a regular

antiviral effect. Although multi-drug therapy is standard practice, the complexity of the

combined drugs’ responses is improperly understood, and rendered counter-intuitive

by drug absorption, distribution, metabolism, and excretion through drug transporters

[28]. To overcome these difficulties, comprehensive trials (or experiments) of various

combinations and doses of drugs have been required. The combined effect has been in-

vestigated by empirical methods such as Loewe additivity [29,31] and Bliss independ-

ence [29,32]. Both theories have evolved from pharmacological research, and are used

to classify combination effects as synergistic, additive or antagonistic [29,33,34]. These

empirical frameworks have become widely accepted in pharmacology and have pro-

vided quantitative insight into drug combinations. However, because their underlying

mechanics are unknown, the frameworks cannot provide reasons for a given combin-

ation effect (e.g. why is this drug combination additive, whereas that combination is

antagonistic?). Showing the mechanisms of drug combination effects is expected to re-

markably advance the development of multicomponent therapeutics. Thus, in addition

to judging drug combination effects, knowledge of the mechanism is crucial to funda-

mental antiviral research.

Here we discuss two primary concepts of drug combination theory: Loewe additivity

and Bliss independence. We apply these models to viral replication in a host cell, and

discuss their utility for understanding two-drug interactions and viral dynamics. Finally,

we discuss how drug combination theory might be applied to cancer chemotherapies

and antiviral therapies. Combining mathematical models of viral replication with drug

combination theory, we can establish an efficient framework for optimizing drug com-

binations.
Basic drug combination theory: Loewe additivity

Loewe additivity is regarded as a primary criterion for evaluating drug combination

effects [29]. To conceptualize Loewe additivity, let us consider the simplest situation, in

which a combination of drugs A and B has a synergistic, additive or antagonistic effect.

If the effect is additive, the Loewe additivity is defined as [31]:

C�
A

CA
þ C�

B

CB
¼ 1; ð1Þ

where c�A and c�B are the concentrations of drugs A and B respectively in the com-
bined dose, and CA and CB are the respective concentrations of drugs A and B that

produce the same effect as the drug combination. That is, the Loewe additivity specifies

the concentration ratio of a single drug and its combination with another drug. Note

that Loewe additivity assumes that two drugs target the same molecule or pathway. If
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two drugs do not mutually interact, they can be related through the combination index

(CI) based on the mass action law derived by Chou and Talalay [35]:

CI ¼ C�
A

CA
þ C�

B

CB
; ð2Þ

where the right hand side of Eq. (2) is identical to the left side of Eq. (1).

When CI < 1, the relationship is synergetic, when CI = 1, it is additive, and when

CI > 1, it is antagonistic. For example, suppose that 4 μM of drug A and 5 μM of

drug B exert the same effect as a combination of 1 μM of A and 2 μM of B. Substi-

tuting these concentrations into Eq. (2), we obtain CI = 0.65 (=1/4 + 2/5 < 1), implying

that the drug combination is synergistic. Note that the CI does not express the extent

of synergy or antagonism; it is merely a criterion that separates the two behaviors with-

out quantifying them.

To evaluate a drug combination effect by the CI, we require dose–response curves of

drugs A and B, from which we can determine c�A and c�B. The effect of a single drug E is

modeled by the Hill function as follows:

E ¼ Emax
ch

ch þ ICh
50

; ð3Þ

where Emax is the maximum effect, c is the drug concentration, h is the Hill coeffi-

cient that determines the steepness of the dose–response curve, and IC50 is the concen-

tration at which E exerts 50% of its maximum effect. Substituting Eq. (3) into Eq. (1)

and rearranging in the case of Emax = 1, we obtain:

C�
A

IC50A
E

1−E

� � 1
hA

þ C�
B

IC50B
E

1−E

� � 1
hB

¼ 1: ð4Þ

Numerically solving Eq. (4) for E, we can predict the additive effect at any drug con-
centrations c�A and c�B [35,36]. The following section explains an example of applying

Loewe additivity to estimate rational drug combinations and optimal doses.
Application of Loewe additivity for estimating rational drug combinations and optimal

doses

We here explain the usefulness of combining the Loewe additivity with mathematical

modeling of hepatitis C virus (HCV) replication. The aim is to optimize the antiviral

drug combination. Combining multiple drugs such as interferon-α and ribavirin is a

standard therapy for enhancing the antiviral effects and reducing the risk of drug-

resistant viruses. However, the conventional anti-HCV drugs fail to eradicate HCV

genotype 1 in about 40% patients and may cause severe side effects. To overcome these

problems, researchers have developed and administered direct acting antiviral (DAA)

drugs that target viral-specific proteins such as viral proteases, as adjuncts to conven-

tional anti-HCV drugs. To understand the principle behind optimal drug combinations

and doses, we focused on the essential features of HCV replication and the mechanisms

of the antiviral drugs (Figure 1A). Using previous mathematical models of HCV replica-

tion in a host cell [37-40], a modified mathematical model accounting for the mechanisms



Figure 1 Estimating the optimal drug combination from the mechanism of drug effects on viral
replication. A) Conceptual diagram showing the effects of two anti-HCV drug effects on HCV replication.
Drug A inhibits virus release, and drug B inhibits the production of viral polymerase. To calculate the effect
of co-administered A and B on HCV production, the dynamics of each viral component during the replication
are expressed by differential equations [37-40]. The presence of both drugs decreases the parameters, a
production rate of viral proteins and a releasing rate of virions. B) Estimation of the optimal dose point in
a drug combination. Each point (corresponding to a specific dose) denotes the difference between the
effects of the combined drugs obtained by modeling the viral dynamics and the additive effects calculated by
Loewe additivity. A positive (red) difference indicates that the drug combination surpasses the expected
additive effect. At such synergistic dose points, the antiviral effect can be achieved by administering the
drug in combination at doses below the single drug dose (the synergistic point).
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of drug actions would quantitatively simulate the anti-HCV effects at any dose of a drug

combination. The effects of the drug combination at specific doses could then be evalu-

ated by the Loewe additivity. In this way, we could estimate the synergistic dose point of a

drug combination that enhances the anti-HCV effects (Figure 1B). The above analysis

could predict the optimal drug combination that both reduces the total dose of each drug

and enhances their anti-HCV effects.

The alternative drug combination theory: Bliss independence

Bliss independence is the other major criterion for clarifying drug combination effects

[32]. Bliss independence defines the expectation of a combined drug effect, calculated

by multiplying the probabilities of the individual drugs. It assumes that each drug inde-

pendently targets a different stage of viral replication via a different mechanism, with

no interaction between the drug actions. Bliss independence expresses the unaffected

probability of a two-drug combination UAB as the product of the unaffected probabil-

ities UA and UB of drugs A and B:

UAB ¼ UA � UB: ð5Þ

Intuitively, Eq. (5) implies that targets bypassed by drug A will be intercepted by drug
B. The total probability of missed targets is obtained by multiplying the probabilities of
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the unaffected targets. Substituting U by 1 − P, where P denotes the probability of an

intercepted target, Eq. (5) can be expressed as (1 − PAB) = (1 − PA) × (1 − PB), or

PAB ¼ PA þ PB−PAPB: ð6Þ

If the combined effect of the single drug doses is consistent with Eq. (6), this drug
combination is evaluated as additive according to the Bliss independence measure. For

instance, suppose that drugs A and B exhibit 50% and 60% inhibition, respectively. The

Bliss independence predicts that drugs A and B will exert a combined inhibitory effect

of 80%, calculated as PAB = 0.5 + 0.6 − 0.5 × 0.6 = 0.8.

Unlike the Loewe additivity, the Bliss independence can evaluate the effect of a drug

combination without requiring dose–response curves of the single drugs. If we attempt

to assess a drug combination by the Loewe additivity, we must measure the effects at

several single doses for constructing the dose–response curve. In contrast, the Bliss in-

dependence can assess the effects of a drug combination from a single point. Thus, the

Bliss independence is useful if experimental data are limited. Additionally, in specific

cases, the Bliss independence and Loewe additivity can be rendered equivalent using

the Hill function Eq. (3) [41]. The following section explains an example of applying

Bliss independence to quantifying the antiviral effects of intrinsic factors on HIV

replication.

Quantifying the antiviral effects of APOBEC3G on HIV replication by Bliss independence

The Bliss independence measure can predict antiviral effects as well as evaluate drug

combinations. To illustrate this idea, we estimate the anti-HIV effect of a well-known

antiviral host factor by Bliss independence [42]. Apolipoprotein B mRNA editing en-

zyme catalytic polypeptide-like 3G (APOBEC3G) suppresses HIV replication in cells by

two main mechanisms: (1) inhibiting viral reverse transcriptase and (2) mutating cyti-

dine (C) to uracil (U) in viral DNA by cytidine deaminase activity (Figure 2A). Al-

though the anti-HIV effect of reverse transcriptase inhibition can be measured using a

mutated APOBEC3G (with its C-to-U activity removed) (Figure 2A), the extent to

which the mutation itself inhibits HIV replication cannot be experimentally deter-

mined. To quantify the anti-HIV effect of C-to-U mutation by APOBEC 3G, we can

use Bliss independence to model the unaffected fractions of viral infectivity of wild-

type (WT) and mutant APOBEC3G, denoted fWT and fCI respectively, in terms of the

unaffected fractions of viral infectivity by reverse transcription inhibition and C-to-U

mutation, fRT and fMu, as follows:

f WT xð Þ ¼ f RT xð Þ � f Mu xð Þ ¼ 1−
xhRT

xhRT þ IChRT
50RT

 !
� 1−

xhMu

xhMu þ IChMu
50Mu

 !
;

and
f CI xð Þ ¼ f RT xð Þ ¼ 1−
xhRT

xhRT þ IChRT
50RT

 !
;

where x is the expression level of APOBEC3G, hRT and hMu are Hill coefficients, and

IC50RT and IC50Mu are the expression levels required to achieve 50% inhibition by re-

verse transcription inhibition and C-to-U mutation, respectively. We estimated 4



Figure 2 Estimating the antiviral effects of C-to-U mutation by APOBEC3G on HIV production. A)
Mechanism of APOBEC3G inhibition in HIV replication. B) Quantification of antiviral effects of mutant
APOBEC3G on HIV infection. HIV production reduces with increasing expression of APOBEC3G (dots:
experimental data, solid lines: theoretical predictions, purple: WT APOBEC3G, blue: mutated APOBEC3G).
Red dotted line shows the expected anti-HIV effect of C-to-U mutation activity, determined by
Bliss independence.
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parameters (hRT, hMu, IC50RT , and IC50Mu ) by fitting to experimental data of WT and

mutated APOBEC3G (Figure 2B). Thus, the anti-HIV effect of C-to-U mutation by

APOBEC3G can be quantitatively estimated by a Bliss independence-based modeling

approach.

Potential applications of drug combination theory

The Loewe additivity and Bliss independence form the basis of sophisticated protocols

for assessing drug combinations, especially in cancer-targeted chemotherapy [33,34].

Research on biological network systems, as well as the biochemical characteristics of

drugs, has also unraveled the mechanisms by which drug combinations produce syner-

gistic effects (reviewed in [41,43-45]). Such research is important because (1) it facili-

tates rational drug discovery and (2) it predicts unknown connectivities in biological

networks. Regarding the first point, the effects of a developing drug combined with

conventional drugs are maximized by investigating biological networks, and rational

drug targets are decided. For example, using computational modeling of cancer signal-

ing networks and animal experiments, Kirouac et al. [46] identified the optimal inhibi-

tor combination for suppressing the growth of ERBB2-amplified breast cancer. They

adopted Bliss independence as a synergy criterion. Supplementing this computational

approach with experimental data is useful for developing theoretically effective novel

drugs. Regarding point (2), the biological networks of signaling pathways constructed

by various components can be predicted from the dose–response shapes of drug

combinations (reviewed in [47]). Lehar et al. [48] used several drug combination

criteria, including Loewe additivity and Bliss independence, to connect biological
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components from the results of cellular responses to chemical combinations. This ap-

proach assumes that the dose–response shape of a drug combination depends on how

drug targets are connected in a biological system.

The above research potentially benefits not only cancer chemotherapy, but also antiviral

therapy development. For instance, Owens et al. [49] showed how HCV replication re-

sponds to chemical combinations that inhibit some enzymes involved in the sterol biosyn-

thesis pathway. Supplementing computational simulation with in vitro experiments, they

identified a rational inhibitor combination as a novel drug candidate. Mathematical

models of HCV dynamics during drug therapy have also been investigated at the intracel-

lular level [18], the intercellular level [14-17,50,51], and on a scale encompassing both

levels [51-54]. These studies have quantitatively elucidated the properties of anti-HCV

drugs such as interferon and protease inhibitors. Furthermore, by inputting clinical data

to a mathematical model of HCV dynamics, Rong et al. [55] derived a mechanism by

which drug-resistant viruses can rapidly emerge during single-drug therapy. Applying

drug combination theories to these studies, mathematical models of HCV dynamics could

be used to optimize the anti-HCV drug dosage and combination, thereby enhancing the

anti-viral effect and reducing the risk of drug-resistant viruses (Figure 3).
Conclusion
We have reviewed two major drug combination theories, Loewe additivity and Bliss inde-

pendence, and discussed how combining these theories with mathematical modeling of

viral dynamics might assist antiviral drug therapy. In addition, we have proposed an effi-

cient framework for optimizing drug combinations and quantifying the anti-viral effect.

Based on previous studies of computational virology, the integration of drug combination

theory and dynamic modeling is a new approach with great potential for showing viral re-

sponses to drug combinations, and accelerating novel antiviral drug discovery.
Figure 3 Concept of integrating drug combination theory and viral dynamics. The effect of a drug
combination calculated by mathematical modeling of viral dynamics could be assessed by the Loewe
additivity and Bliss independence. This approach could improve antiviral therapy by predicting the effect of
a drug combination in vivo and in vitro, estimating the optimal drug dosage and combination, and
discovering how the drugs interact.
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