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Abstract

Background: Determining the pandemic potential of an emerging infectious disease
and how it depends on the various epidemic and population aspects is critical for the
preparation of an adequate response aimed at its control. The complex interplay
between population movements in space and non-homogeneous mixing patterns
have so far hindered the fundamental understanding of the conditions for spatial
invasion through a general theoretical framework. To address this issue, we present an
analytical modelling approach taking into account such interplay under general
conditions of mobility and interactions, in the simplifying assumption of two
population classes.

Methods: We describe a spatially structured population with non-homogeneous
mixing and travel behaviour through a multi-host stochastic epidemic metapopulation
model. Different population partitions, mixing patterns and mobility structures are
considered, along with a specific application for the study of the role of age partition in
the early spread of the 2009 H1N1 pandemic influenza.

Results: We provide a complete mathematical formulation of the model and derive a
semi-analytical expression of the threshold condition for global invasion of an emerging
infectious disease in the metapopulation system. A rich solution space is found that
depends on the social partition of the population, the pattern of contacts across
groups and their relative social activity, the travel attitude of each class, and the
topological and traffic features of the mobility network. Reducing the activity of the less
social group and reducing the cross-group mixing are predicted to be the most
efficient strategies for controlling the pandemic potential in the case the less active
group constitutes the majority of travellers. If instead traveling is dominated by the
more social class, our model predicts the existence of an optimal across-groups mixing
that maximises the pandemic potential of the disease, whereas the impact of variations
in the activity of each group is less important.

Conclusions: The proposed modelling approach introduces a theoretical framework
for the study of infectious diseases spread in a population with two layers of
heterogeneity relevant for the local transmission and the spatial propagation of the
disease. It can be used for pandemic preparedness studies to identify adequate
interventions and quantitatively estimate the corresponding required effort, as well as
in an emerging epidemic situation to assess the pandemic potential of the pathogen
from population and early outbreak data.
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Background
The spatial spread of directly transmitted infectious diseases depends on the inter-
play between local interactions among hosts, along which transmission can occur, and
dissemination opportunities presented by the movements of hosts among different com-
munities. The availability of increasingly large and detailed datasets describing contacts,
mixing patterns, distribution in space and mobility of hosts have enabled a quantita-
tive understanding of these two factors [1-11] and led to the development of data-driven
mechanistic models to capture the epidemic dynamics of infectious diseases [7,12-14].
Although numerical simulations have crucially contributed to our current ability to

explain observed spatial epidemic patterns, predict future epidemic outcomes and evalu-
ate strategies for their control, analytical methods offer an alternative valuable avenue for
the assessment of an epidemic scenario that is able to clearly identify the key mechanisms
at play and shed light on some of the complexity inherent in data-driven approaches.
In the context of models for spatially transmitted infectious diseases, the metapopula-
tion approach offers a theoretical framework that explicitly maps the spatial distribution
of host population and mobility [15-18], while offering a tractable system under certain
approximations [19,20]. Originally introduced in the field of ecology and evolution [15],
it considers a population subdivided into discrete local communities, where the infection
transmission dynamics is described through standard compartmental schemes, coupled
by connections representing the movements of hosts. Despite the mathematical complex-
ity of explicitly considering the spatial dimension and non-trivial topologies connecting
local communities, epidemic metapopulation approaches have shown their ability to ana-
lytically explain the failure of feasible mobility restriction measures [19-21], alert on
the possible negative impact that adaptive travel behaviour of individuals may have on
epidemic control [22], and interpret pathogen competition in space [23].
Based on network theory and reaction-diffusion approaches, these studies have quan-

tified the potential for a global epidemic to occur in terms of a mathematical indicator,
R∗ [19,20], measuring the average number of subpopulations that an infected subpopu-
lation may transmit the disease to, through mobility of infectious individuals during the
outbreak duration. Values larger than 1 indicate that transmission can spatially propa-
gate in the metapopulation system and reach global dimension, whereas epidemics with
R∗ < 1 are contained at the source. Different mobility modes, traffic dynamics and path
choices have been explored so far within the metapopulation framework [19,20,22,24-27],
however all these properties have been considered at aggregated fluxes level, implic-
itly assuming that all individuals resident in the same location are indistinguishable
and equivalent. Therefore individuals are also considered homogeneous in their mixing
pattern.
Empirical studies of social and contact networks relevant for disease transmission have

however identified several heterogeneities in specific features at the individual or group
level – including, e.g., the number of contacts, their frequency and duration, contacts’
clustering, assortativity, and their structure into communities – that affect the dynam-
ics and control of infectious diseases [6,8,9,28-39]. A particularly efficient theoretical
framework that takes into account variations in population features is the transmission
matrix approach that divides the population into groups and considers inter-group het-
erogeneities [40-42]. Individuals within the same group are assumed to be homogeneous
with respect to their ability to contract and transmit the disease, and this approach can
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be used when variations at the individual level are considered to be negligible within
the same group. Its advantage is to allow for a full parameterization of the model with
the information available from empirical studies and for a mathematical formulation for
the analytical computation of important epidemic parameters and observables, such as
the basic reproductive number (measuring the average number of secondary cases per
primary case) [41], the final size of the epidemic [42] and its extinction probability [43].
Although interactions between individuals of different types and at different scales

throughmobility have been included in numerical approaches, and each of them has been
separately addressed in mathematical approaches, their joint integration into a general
theoretical framework has yet to be developed. A clear example of the importance of both
aspects acting together on the dynamics of an epidemic spreading through a population
was recently put forward by the 2009 H1N1 pandemic outbreak, where age was observed
to be a relevant factor differentiating between local community outbreaks (mainly driven
by children) and case importation into unaffected regions (mainly driven by adults)
[44-46]. Broken down to the basic mechanisms at play, the observed pattern could be
explained through the interplay between two classes of individuals – children and adults –
having different mixing behaviours [6,47] and travel habits [46]. Other classifications of
the population may be also relevant for the spatial spread of an infectious disease and
the risk of an epidemic invasion, as prompted by the empirically observed dependence of
travel frequency and contact patterns on different features of the population [10,48].
In the present study, we present a general theoretical framework for the assessment

of the pandemic risk for an infectious disease spreading through a spatially struc-
tured population characterized by contact and mobility heterogeneities. We integrate
the metapopulation framework with the transmission matrix approach using a parsimo-
nious model based on the subdivision of the population into two groups for each local
community. We consider different types of mixing patterns across classes to provide a
fundamental analytical understanding of the dependence of the global invasion parameter
R∗ on epidemiological parameters and population features. By restricting to two classes,
it is possible to provide a complete mathematical formulation of the model and recover
an equation for R∗ that can be solved numerically, with approximate analytical solutions
being possible under limit conditions on the parameters. These theoretical results are fur-
ther tested against mechanistic Monte Carlo simulations of the infection dynamics in the
metapopulation system individually tracking hosts in time and space. The framework is
completely general and can be applied to different social settings, where host partition
may depend on demographic or socio-economic factors, or to roles/conditions of individ-
uals in specific settings (e.g. health-care workers and patients in hospitals [10], students
classified by gender or class and teachers in schools).

Model description
The modelling approach is based on a metapopulation scheme where individuals are
distributed in subpopulations, or patches, connected by a network of mobility flows
(Figure 1). It can be described as the integration of two distinct layers: a social layer,
accounting for heterogeneities in the contact structure among individuals and a spa-
tial layer, modelling the distribution of individuals in space and their mobility. Epidemic
dynamics occurs inside each patch and is ruled by a transmission matrix approach
accounting for the different contact properties of the social classes considered. Mobility
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Figure 1 Scheme of the model. (A) The spatial layer, based on the metapopulation approach, describes the
space structure and the mobility of individuals. (B) The social layer describes the contact structure within
each subpopulation.

properties per class are accounted for in the modelling of individuals movements from
one patch to another. In the following we present the two layers in detail, along with the
models for infectious disease transmission and for mobility.

Social layer and infectious disease transmission model

We consider a population socially stratified in two types of individuals (groups), 1 and 2,
differing in contact and travel behaviour. We indicate with α the proportion of individuals
of type 1 (0 < α < 1), so that group sizes are given by Nl,1 = αNl and Nl,2 = (1 − α)Nl,
whereNl is the total number of individuals in a given subpopulation l. Interactions among
groups can be described by a 2 × 2 contact matrix encoding the average behaviour of
the two groups (in the following we drop the l suffix of the subpopulation under study to
simplify our notation) [40]:

C =
(
C11 C12

C21 C22

)
=

⎛
⎜⎜⎝

p1 q1
α

(1 − p2) q2
α

(1 − p1) q1
1 − α

p2 q2
1 − α

⎞
⎟⎟⎠ , (1)
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where Cij stands for the contact rate of individuals of type i with those of type j that can
be expressed in terms of qi, representing the average number of contacts per unit time
established by an individual of type i, and pi, representing the fraction of those contacts
occurring with individuals of the same type. qi measures the overall social activity of the
group i, whereas pi quantifies how this social activity is distributed among the two groups.
Asymmetry in the social activity can be expressed in terms of a parameter η:

η = q2
q1

.

Interactions are reciprocal in that the number of contacts between individuals of group
1 and individuals of group 2 is the same as the number of contacts between group 2
individuals and group 1 individuals, requiring the matrix to be symmetric, i.e. Cij = Cji.
This corresponds to the following condition to be satisfied:

(1 − α) (1 − p2) η = α (1 − p1) ≡ ε, (2)

where the parameter ε here defined quantifies the degree of mixing in the way links are
established across classes. It is defined in the range 0 < ε < min{α, η (1 − α)}, where
values of ε close to zero indicate assortativity of the system (i.e. a tendency of individuals
in a given class to preferably interact with individuals of the same class), whereas the
upper bound of the range describes a scenario where individuals tend to avoid making
contacts within their group. Far from the extremes we have a random or proportionate
mixing where individuals distribute randomly their contacts in the population.
The matrix of Eq. (1) can be rewritten as a function of η, α and ε as:

C = q1

⎛
⎜⎜⎝

α − ε

α2
ε

α (1 − α)

ε

α (1 − α)

η(1 − α) − ε

(1 − α)2

⎞
⎟⎟⎠ . (3)

Without loss of generality, we consider that individuals in the group 1 are on average
more social than those in group 2, so that the parameter η is defined within the [0, 1]
interval. This simplified theoretical framework can be calibrated to describe a real social
system, once empirical data on demography and contact behaviour among given classes
are available. An example in which individuals are stratified by age is discussed in the
Section Application to the 2009 H1N1 pandemic influenza. A list of all variables used to
define the population classes is reported in Table 1.
Disease transmission is modelled with a Susceptible-Infectious-Recovered (SIR) com-

partmental scheme [40]. Susceptible individuals may contract the infection from infec-
tious individuals and enter the infectious compartment; all infectious individuals then
recover permanently and enter the recovered compartment.We indicate with β andμ the
transmission rate and the recovery rate, respectively. The infection dynamics is described

Table 1 Population groups variables

Variable Definition Range

α group 1 fraction of the population ]0;1[

q1, q2 average number of contacts established by individuals in group 1 and 2

η = q2
q1 ratio of the average number of contacts ]0;1]

ε total fraction of contacts across groups ]0;min(α, η(1 − α))]

r group 1 fraction of traveling population ]0;1]
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by the next generation matrix R = {Rij} [41] representing the average number of sec-
ondary infections of type i generated by primary case of type j in a completely susceptible
population. If we assume that disease transmission may only occur along the contacts
described by the matrix C = {Cij}, then we can express the next generation matrix as a
function of the Cij entries:

RRR = β

μ
��� ·CCC = β

μ

(
C11α C12α

C21(1 − α) C22(1 − α)

)

= β q1
μ

⎛
⎜⎝ 1 − ε

α

ε

1 − α
ε

α
η − ε

1 − α

⎞
⎟⎠

(4)

where the matrix �, is a diagonal matrix whose entries correspond to the relative sizes of
the groups. The basic reproductive number R0 is calculated as the largest eigenvalue of the
matrix R [41] and it provides a threshold condition for a local outbreak in the community;
if R0 > 1 the epidemic will occur and will affect a finite fraction of the local population,
otherwise the disease will die out.
If we consider an epidemic with R0 > 1, the final fraction zi of infected individuals in

each group (also called epidemic size) can be calculated for the two types of individuals
(i = 1, 2) as the solution of the following coupled transcendental equations [49]:

1 − zi = e−
∑

j Rij zj . (5)

Spatial layer andmobility model

The spatial component of the model is based on the metapopulation approach. Indi-
viduals are divided into V subpopulations, called also patches, or nodes of the mobility
network. We assume that all subpopulations of the system are characterised by the same
social and demographic features in terms of the two groups introduced, so that the param-
eters α, η and ε are homogeneous across the system. This assumption allows us to treat
the problem analytically, however it can be easily relaxed in the numerical simulations.
Population size and connectivity of the patches are instead heterogenous quantities. Each
subpopulation l has Nl inhabitants and kl connections through mobility to other sub-
populations (also called degree of the node). The mobility network is characterised by a
random connectivity pattern described by an arbitrary degree distribution P(k). In the
following we will explore the role of realistic heterogeneous network structures, adopt-
ing power-law degree distributions P(k) ∝ k−γ that was found to well reproduce the
behaviour of human mobility patterns at different spatial levels [1-3,5,7]. Traffic along the
links is also heterogeneously distributed. In particular the average number of people wlm
travelling along a link from a subpopulation l to a subpopulation m is defined according
to the following scaling property observed in real-world mobility data [2]:

wlm = w0(klk′
m)θ , (6)

where kl and km represent the degrees of the two ending nodes, and θ is system-dependent
(θ � 0.5 in the worldwide air transportation network [2]). Travellers are chosen randomly
in the origin subpopulation, the traveling rate being simply defined as dlm = wlm/Nl,
however we need to take into account that the two social groups have different attitudes
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towards mobility. We thus introduce a parameter r indicating the fraction of individuals
of type 1 among the wlm travellers, and express the traveling rates of the two groups as:

dlm,1 = r
w0(kl km)θ

Nl,1
= r

α
dlm ,

dlm,2 = (1 − r)
w0(kl km)θ

Nl,2
= 1 − r

1 − α
dlm .

(7)

The full list of variables used to define the metapopulation model is provided in Table 2.

Analytical treatment and results
Identifying and understanding the conditions for the spatial invasion of an infectious dis-
ease, once it emerges in a given population or community of individuals, requires the
consideration of all scales at play in the system. At the local scale, the reproductive num-
ber R0 provides a threshold condition for the occurrence of an outbreak locally. At the
global scale, however, additional mechanisms need to be considered that may impede
the spatial propagation of the disease from the seed of the epidemic to other regions of
the system. Even in the case the condition R0 > 1 is satisfied, the epidemic may indeed fail
to spread spatially if the mobility rate is not large enough to ensure the travel of infected
individuals to other subpopulations before the end of the local outbreak, or if the amount
of seeding cases is not large enough to ensure the start of an outbreak in the reached
subpopulation counterbalancing local extinction events. It is then possible to identify
at the metapopulation scale an additional predictor of the disease dynamics, R∗, that
defines the condition for spatial (or global) invasion, R∗ > 1 [19,20,50,51], analogously to
the reproductive number R0 at the individual level. An analytical expression for R∗ has
been found in metapopulation models characterized by homogeneous or heterogenous
mobility structures and different types of mobility processes: markovian mobility [19,20],
adaptive traveling behaviour in response to the pandemic alert [22], time varying mobil-
ity patterns [26], non-markovian mobility with uniform return rates (i.e. commuting-type
of mobility) [24,25], or with heterogeneous length of stay at destination [27,52]. In all
cases, the analytical expression of R∗ is obtained with a mean-field approximation assum-
ing that all subpopulations with the same degree are statistically equivalent (degree-block
approximation) [19,20,29]. This translates in assuming that all features characterising

Table 2Metapopulationmodel variables

Value used

in numerical

Variable Definition simulations

k degree of a subpopulation, i.e. number of connections
to other subpopulations

[1;
√
V]

P(k) = k−γ ; γ subpopulation degree distribution; power-law exponent γ = 2.3, 3

V ; Vk total number of subpopulations; number of subpopulations
with degree k

V = 104

average population of a node, population of a node;
N̄,Nk = N̄kφ

〈kφ 〉 ; with degree k N̄ = 104

φ; power-law exponent; φ = 3/4
w0 mobility scale w0 = 0.05

number of travelers from a subpopulation with degree kl
wlm = w0(klkm)θ ; to a subpopulation with degree km ;
θ power-law exponent θ = 0.5
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the metapopulation systems (e.g. population size, traveling flux between two subpopu-
lations, in/out traffic of a subpopulation) can be expressed as functions of the degree
of the considered subpopulations. While disregarding more specific properties of each
subpopulation that may be related for instance to local, geographical or cultural aspects,
such assumption is grounded on a large body of empirical evidence obtained from dif-
ferent transportation infrastructures and mobility systems at a variety of scales, pointing
to a degree-dependence of average quantities characterising the system [2,20]. In addi-
tion, this simplifying assumption enables an analytical treatment of the problem while
accounting for the large degree fluctuations empirically observed in the data [19,20].
Here we consider the same analytical approach adopted in previous works with the aim

of exploring the effects of contact and travel heterogeneities in the host population on the
invasion potential of an epidemic. We first define the general theoretical framework and
present its analytical treatment, and then focus on different cases representing different
interaction types between social groups.

General framework

Following the approach of [19,20], we describe the disease invasion at the subpopulation
level using a branching tree approximation [51]. The invasion process starts from an ini-
tial set of infected subpopulations of degree k, denoted by D0

k . Before the end of the local
outbreak, each of them may infect some of its neighbours, leading to a second generation
of infected subpopulations, D1

k . We can generalise the notation by indicating with Dn
k the

number of infected subpopulations of degree k at generation n. The spatial invasion of the
epidemic is then described by the equation relating subsequent generations of infected
subpopulations, Dn

k and Dn−1
k :

Dn
k =

∑
k′

Dn−1
k′ (k′ − 1)P(k|k′)

n−1∏
m=0

(
1 − Dm

k
Vk

)
·

· 
k′k
(
λk′k,1, λk′k,2

)
.

(8)

Here each of theDn−1
k subpopulations has (k′−1) possible connections along which the

infection can proceed (−1 takes into account the link through which each of those sub-
populations received the infection). In order to infect a subpopulation of degree k, three
conditions need to occur: (i) the connections departing from nodes with degree k′ point
to subpopulations of degree k, as indicated by the conditional probability P(k|k′); (ii) the
reached subpopulations are not yet infected, as indicated by the probability 1−Dn−1

k /Vk ;
(iii) the outbreak will be seeded in the new population with probability
k′k

(
λk′k,1, λk′k,2

)
.

The latter term is the one that relates the dynamics of the local infection at the individual
level to the coarse-grained view that describes the disease invasion at the metapopula-
tion level. It accounts for the contribution of the two classes of individuals, thus including
the effects of non-homogeneous travel behaviours and mixing patterns. The number of
infectious individuals of each class moving from a subpopulation with degree k′ to a
subpopulation with degree k during the entire duration of the outbreak is given by:

λkk′,1 = dkk′,1
z1Nk′,1

μ
= r dkk′

z1Nk′

μ

λkk′,2 = dkk′,2
z2Nk′,2

μ
= (1 − r) dkk′

z2Nk′

μ
,

(9)
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where z1 and z2 are the epidemic sizes in a single population, as computed by Eq. (5), and
μ−1 is the average time during which an individual is infectious, hence the individual can
seed the disease in a new population in case of travel. We indicate with π1 (π2) the extinc-
tion probability associated to λkk′,1 (λkk′,2) infected individuals seeding a fully susceptible
population. Assuming that the seeding processes of the two classes are independent, the
outbreak probability 
k′k

(
λk′k,1, λk′k,2

)
is given by


k′k
(
λk′k,1, λk′k,2

) = 1 − π
λk′k,1
1 π

λk′k,2
2 . (10)

The extinction probabilities are determined by the contact patterns of each type of indi-
viduals within the subpopulation. Under the assumption that the infectious period is the
same for all hosts, π1 and π2 can be obtained by solving the following quadratic equation
[43,53,54]:

πi = 1
1 + R1i(1 − π1) + R2i(1 − π2)

, (11)

where the index i refers to the two types of individuals (i = 1, 2) and Rij are the terms of
the next generation matrix of Eq. (4). If the infection is not able to produce an outbreak
in a single population (R0 < 1), the only solution is π1 = π2 = 1, that is, the epidemic
dies out. Otherwise, Eq. (11) have solutions in the domain of values (0, 1) for π1 and π2,
yielding a non zero probability of global outbreaks. Notice that in the case the system is
socially homogenous and there is only one type of individuals the two probabilities reduce
to 1/R0.
Eq. (8) can be simplified under the following assumptions: (i) the mobility network is

uncorrelated, namely P(k′|k) = k′P(k′)/〈k〉 [55]; (ii) few subpopulations only are infected,
i.e. Dn−1

k /Vk 
 1, a good approximation of the state of the system during the initial
phase of the outbreak; and (iii) the system is very close to the local epidemic threshold,
i.e. R0 − 1 
 1. We first notice that the third assumption implies π1,2 � 1 that allows the
linear expansion of Eq. (10) into the following expression:


k′k
(
λk′k,1, λk′k,2

) � (1 − π1) λkk′,1 + (1 − π2) λkk′,2 =
= [(1 − π1) r z1 + (1 − π2) (1 − r) z2]

w0
μ

(k k′)θ .
(12)

By plugging Eq. (12) into the Eq. (8) we obtain:

Dn
k = [(1 − π1) r z1 + (1 − π2) (1 − r) z2]

w0
μ

kP(k)
〈k〉

∑
k′

Dn−1
k′ (k′ − 1) (kk′)θ . (13)

Bymultiplying both sides of the above equation by kθ (k−1) and summing over all values
of k, we obtain a recursive equation in terms of the functional term n = ∑

k kθ (k−1)Dn
k

[19,20]:

n = R∗ n−1, (14)

where R∗ encodes the global invasion threshold for the epidemic to occur. The condi-
tion R∗ > 1 guarantees indeed the growth of the number of infected subpopulations in
the system and therefore the spatial spread of the epidemic. From Eq. (13) we derive the
explicit form for R∗:

R∗ = [(1 − π1) r z1 + (1 − π2) (1 − r) z2]
w0
μ

χ , (15)
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where χ is a combination of moments of the degree distribution of the system encoding
the information on mobility fluxes and topology:

χ = 〈k2+2θ 〉 − 〈k1+2θ 〉
〈k〉 . (16)

If we assume that the parameters characterising social interactions and travel behaviour
are uniform across all subpopulations, the social and spatial layers of the system factor-
ize. R∗ can be then evaluated by computing the combination of moments χ , and solving
numerically Eq. (5) and Eq. (11) for the epidemic sizes z1,2 and the probabilities π1,2
respectively. Differently from previous works focusing on homogeneous populations of
hosts, an explicit analytical solution of R∗ cannot be recovered in the general case, due to
the z1,2 and π1,2 terms, however special cases can be solved through series expansion as
discussed in the following subsections.
The global invasion parameter R∗ quantifies the potential for the spreading at the spatial

level of a specific infectious disease in a given social, demographic and mobility setting
and it can thus be used to provide an estimate of the pandemic risk associated to an
emerging epidemic. As an example, we address in Section Application to the 2009 H1N1
pandemic influenza the case of the 2009 H1N1 influenza pandemic in Europe, highlight-
ing the important role of age classes in determining local transmission and spatial spread
of the disease.
Here we focus on a generic partition of the population into two groups and explore the

impact of the various ingredients of the system (social, demographic, mobility, and disease
ingredients) on the global invasion threshold R∗. Figure 2A shows the dependence of R∗
on the reproductive number R0 for different levels of heterogeneity of the humanmobility
networks, as indicated by the parameter γ , and considering two boundary scenarios, r =
0 and r = 1, corresponding to the cases in which only individuals of one group (group 2
or 1, respectively ) travel. R∗ is an increasing function of R0 and assumes larger values for
larger heterogeneities in the mobility network (i.e. smaller values of γ ), confirming the
results obtained on socially homogenous systems [19,20]. Moreover, R∗ assumes values
roughly 50% larger in the case r = 1 with respect to the case r = 0, highlighting the role
of different travel behaviour in a partitioned population. When r assumes its boundary
values only one group is allowed to travel, whereas the other does not move from the
origin subpopulation. If r = 1, this corresponds to let the most socially active group to
travel, thus increasing the probability to start an outbreak at the reached subpopulation,
and overall increasing the pandemic potential of the disease considered. This simple result
highlights the importance of the characterisation of the passengers profile, in that it may
strongly affect the probability of global invasion.
The role of local contact structure is investigated in Figure 2B. Given a reproductive

number R0 > 1 ensuring the occurrence of a local outbreak in the seeding region, our
results show that there exist a region of values of the parameters η and ε for which con-
tainment at the source is predicted (grey area). Low enough values of the social activity
of group 2 vs. group 1 (measured by η) coupled with large enough assortativity (i.e. low
enough values of ε) do not provide the conditions for the spatial invasion of the disease.
A more extensive characterisation of the global invasion threshold can be obtained for

two specific social systems for which approximate analytical expression of Eq. (15) can be
obtained. We discuss these systems in the following subsections.
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Figure 2 Numerically computed invasion threshold parameter R∗. (A) R∗ as a function of R0 for two
different values of the parameter γ ruling mobility network heterogeneity (γ = 2.3 and γ = 3) and for
boundary values of the traveling partition, r = 0 and r = 1. Here we consider a recovery rate μ = 0.5, a traffic
rescaling factor w0 = 0.05, and parameters α, η and ε set to 0.2, 0.5, 0.1, respectively. (B) Heat map of R∗ as a
function of ε and η for α = 0.4, R0 = 1.2 and γ = 2.3. We consider r = 0. The colour code is proportional to
the value of R∗ , the region of no-invasion R∗ < 1 being coloured in grey.

Proportionate mixing

We indicate with proportionate mixing the case in which individuals are heterogenous in
terms of social activity, but distribute their contacts among the two groups in an unbiased
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way. As such this model represents the simplest framework to be adopted for describing
social stratification [42], in the case heterogeneities on social activity of individuals are
documented but no information on the distribution of across-group contacts is available
[6]. The number of social encounters an individual of group imakes with an individuals of
group j is simply determined by the proportion of social contacts of group jwith respect to
the total number of contacts made by the whole population. Since the number of contacts
made by group i per unit time is qi Ni, proportionate mixing imposes an extra condition
on the probability pi of internal contacts:

pi = qi Ni
q1N1 + q2N2

. (17)

This condition must be fulfilled together with the symmetry relation of Eq. (2). Both
conditions translate, in turn, into a relation between the parameters p1, p2, α and η:

p1 = αD,

p2 = η (1 − α)D, (18)

where D = (α + (1 − α)η)−1. By referring to expression of the contact matrix of Eq. (3),
the two relations written in Eq. (18) yield a condition for ε, which is not in this case a free
parameter but is given by:

ε = η α (1 − α)D . (19)

Notice that, being ε constrained by Eq. (19), the other two parameters α and η can now
take values freely in the range [0, 1] without any inconsistency in the model. The contact
matrix can be rewritten as:

C = q1
N
D

(
1 η

η η2

)
. (20)

From C, we then derive the next generation matrix:

R = β

μ
q1D

(
α α η

(1 − α) η (1 − α) η2

)
. (21)

The calculation of the epidemic size becomes easier for the proportionate mixing case,
as the relation z2 = 1− (1− z1)η is satisfied [42]. Close to the epidemic threshold, where
R0 � 1 and z1,2 are vanishing, we can write z2 ≈ η z1 + η (1 − η) z21/2 and obtain the
following expression from Eq. (5):

z1 ≈ 2 (R0 − 1)
(
α + (1 − α) η2

)
R0

(
R0 (α + (1 − α) η2) − (1 − α) (1 − η) η2

) . (22)

The expressions for πi cannot be obtained in a close form. Still, a series expansion
provides an approximate solution for the cases η → 0 and η → 1. The details of the
calculations are reported in the Additional file 1. The first case, η → 0, corresponds to
a population partition in which the less active group, group 2 in our framework, is fairly
isolated and establishes very few contact links. The invasion threshold parameter can be
expressed in this case as:

R∗ � 2 (R0 − 1)2

R2
0

w0
μ

χ ·
[
r + η2 − rη2

(
1 − (1 − α) (R0 + 1)

α R0

)]
.

(23)
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In the case r = 0, when only individuals of the type 2 travel, the threshold R∗ converges
rapidly to zero (the order being η2), implying that the epidemic remains local and no
global spread is possible. On the other hand, if only individuals of type 1 travel (r = 1),
R∗ approaches rapidly Rh∗ = 2(R0−1)2

R20
w0
μ

χ , that is the expression of the homogenous case
where no partition of the population is considered [20]. This indicates that individuals of
group 2 play a negligible role on the spread of the epidemic.
The case η → 1 represents the homogenous limit, as individuals of the two groups

have similar contact patterns, therefore the population looses its criterium for partition.
Consistently the linear expansion yields the homogeneous solution Rh∗ in addition to a
linear correction in (1 − η):

R∗ � 2 (R0 − 1)2

R2
0

w0
μ

χ ·
[
1 + (1 − η)

1 − 2α + r − R0 (1 − r)
R0

]
.

(24)

Figure 3 summarises the results of the proportionate mixing case and presents the com-
parison between the approximate analytical solutions and the numerical ones. Panels A
and B show R∗ as a function of η for the two boundary cases r = 0 and r = 1. In the case
in which only individuals of group 2 travel (r = 0), R∗ is very sensitive to variations in η,
spanning several orders of magnitudes when η ∈ [0, 1]. The parameter η characterises the
ratio of the social activity of individuals of group 2 (the only seeders in this case) to the
one of group 1, thus it determines the contacts that the individuals seeding the infection
in a non-infected subpopulation may establish with the population they encounter. Vary-
ing its corresponding value strongly affects the probability to observe a global outbreak.
On the other hand, when the traveling flux consists only of individuals of group 1, η plays
a less important role since its variation does not affect the contact pattern of the seeding
group, yielding only slight modifications on R∗. The approximate analytical solutions of
Eqs. (23) and (24) (dashed lines) well reproduce the results obtained numerically.
Panels C and D of Figure 3 summarise the impact of the socio-demographic parameters

α and η on the invasion condition for the two cases r = 0 and r = 1, respectively, and for
different values of R0. The curves represent the invasion threshold condition R∗(η,α) = 1,
with the invasion regions located above the curves of panel C, and to the left side of the
curves of panel D. If r = 0, the curve η(α) corresponding to the global invasion condi-
tion is an increasing function of α, indicating that if the fraction of individuals belonging
to group 2 is increased, the smaller need to be the associated social activity to reach the
outbreak invasion, given that they represent the seeders of the epidemic. If r = 1, the
functional relationship between η and α associated with the threshold condition displays
a richer behaviour (panel D). In the limits η → 0 and η → 1, we recover the homogenous
mixing regime where, for the two values of R0 considered in the figure, the epidemic is
not able to spread globally. If we move from these boundary values to intermediate values
of η, activating the social heterogeneities of the population in the model, we observe an
increase in R∗ until the invasion threshold is crossed, and global invasion is reached. Dif-
ferently from the case r = 0, if r = 1, i.e. only more active individuals (group 1) travel, the
condition R∗ = 1 is not an increasing fraction of α. For values of α smaller than a critical
value depending on R0, the system experiences invasion for an entire range of η values,[
ηc,min(α), ηc,max(α)

]
(panel D). The upper value of this range, ηc,max, becomes larger as
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Figure 3 R∗ for a proportionate social system. On the top R∗ as a function of η. Panel (A) shows the case
r = 0, α = 0.4 and R0 = 1.2. Panel (B) shows the case r = 1, α = 0.4 and R0 = 1.08. The continuous curves
represent the value as computed numerically, while the dashed curves represent the approximate solutions
for η → 0 and η → 1. On the bottom threshold condition R∗ = 1 in the α, η plane as obtained numerically
for different values for R0. Panels C and D consider the cases r = 0 and r = 1 respectively. For all the panels
μ = 0.5, and the mobility network is characterised by γ = 2.3 and w0 = 0.05. The coloured regions are the
one for which the invasion condition R∗ > 1 is satisfied. In panel D we also report the η range of values[
ηc,min(α), ηc,max(α)

]
for which invasion is obtained for a given value α.

the fraction of individuals in group 1 decreases, indicating that even if group 1 is relatively
smaller (α decreasing) and less active (η increasing), its exclusive dominance on mobility
is enough to ensure invasion. Proportionate mixing is then responsible to limit invasion
to η ≥ ηc,min(α), so that no invasion is obtained by further increasing the social activity
of travelers η < ηc,min(α).

Assortative mixing

Assortative mixing represents the case in which individuals interact preferentially within
their group, as it applies e.g. to individuals partitioned by age [6,47]. Assortativity is math-
ematically described by the parameter ε: when ε is below the value corresponding to the
proportionate mixing (Eq. (19)), the system can be said to be assortative. In the following
we consider the limit of high assortativity, i.e. the limit ε → 0. We consider moreover the
two limits in η, η → 0 and η → 1, as before. This allows us to recover the global invasion
parameter R∗ through series expansion, as detailed in the Additional file 1. The resulting
expressions in the two limits are:

R∗ � 2 (R0 − 1)2

R2
0

w0
μ

χ

(
r + ε2

α(1 − r)R2
0 − (1 − α)r R0 + 3(1 − α)r

α (1 − α)2

)
, (25)
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for the limit η → 0, and

R∗ � 2 (R0 − 1)2

R2
0

w0
μ

χ

(
1 − ε

α

R0 − 3
R0 − 1

+ (1 − η)(1 − r)
R0 − 3
R0 − 1

)
, (26)

for the limit η → 1.
Figure 4 reports on the results for the assortative mixing case. Panel A shows R∗ as a

function of ε for the two cases r = 0 and r = 1 and for two different values of η. As for
the proportionate mixing case, according to the type of traveling individuals two different
behaviours emerge. In the case r = 0 (continuous curves), R∗ is an increasing function
of ε and η. The parameter ε quantifies the chances of cross-group transmission. As such,
its increase results in a higher probability for individuals of group 1 to be infected by
imported cases, represented in this case exclusively by individuals of group 2. Being indi-
viduals of group 1 more socially active hence more important for the local spreading, an
increase in ε better ensures the occurrence of the outbreak at the local level following
importation, and is thus associated to an enhancement in the epidemic invasion poten-
tial. On the other hand, when only individuals of group 1 travel (r = 1, dashed lines in the
figure), R∗(ε) is a non monotonous function. Starting from small values of ε, the increase
in ε favours the global spread (i.e. R∗ increases) until a given value is reached, following
which a decrease in R∗ is observed. In this case, group 2 only acts in the local transmis-
sion dynamics as individuals of the group do not travel (r = 1). Individuals of group 1
are therefore responsible for the spatial dissemination of the disease and also for the local
transmission, being more socially active than the group 2 (η < 1). Our results indicate
that there exist an optimal value of the across-groupsmixing ε for the assortative case that
allows the system to maximise its pandemic potential. A larger number of contacts estab-
lished between group 1 with respect to the optimal one (i.e. smaller ε) would decrease in
invasion efficiency because fewer contacts would be directed to the great majority of the
population (α < 0.5), thus reducing the number of infections in the first group due to
interaction with group 2. An increasingly mixed population (i.e. larger ε) would reduce
the local spreading role of individuals of class 1 and therefore their capacity to seed other
subpopulations. The optimal value of ε clearly depends on all other parameters (η, α, R0).
In panels B and C of Figure 4 we show the comparison between the approximate ana-

lytical solution and the numerical one by reporting the absolute difference between the
corresponding results. The series expansion in Eq. (25) for the limit η → 0 yields a
quadratic dependence on ε as the first non-constant term, with η disappearing from the
first two terms of the equation. The approximated value of R∗ so obtained well approaches
the numerical results for the case η → 0 as shown in panel B where absolute differences
are of the order of magnitude of at most 10−4, and relative differences of at most ∼ 43%
in the displayed range. For the limit η → 1 we recover instead a linear dependence on
the two parameters ε and η. Panel C of Figure 4 shows an absolute difference in R∗ below
0.7 between the numerical value and the approximated one, corresponding to a relative
difference of ∼ 36%.

Proportionate vs. assortative mixing

We conclude this section with a comparison between the proportionate and the assor-
tative mixing cases. Figure 5 shows the value of R∗ as a function of η for the two cases,
proportionate and assortative with degree of across-groups mixing ε = 0.05, all the other
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Figure 4 R∗ for an assortative social system. (A) R∗ as a function of ε for the two cases r = 0 and r = 1 and
two values of η, 0.3 and 0.7. (B) Absolute difference between the approximate and the numerically computed
value of R∗ as a function of ε and η for the case η → 0. The grey area indicates the parameter region for
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γ = 2.3 and w0 = 0.05.
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Figure 5 Comparison between proportionate and assortative social system. R∗ as function of η for the
proportionate case and the assortative one with ε = 0.05. All the other parameters are kept the same in the
two curves: r = 0, α = 0.4, R0 = 1.2, μ = 0.5, γ = 2.3 and w0 = 0.05.

parameters being equal. Though displaying a qualitatively similar behaviour, the curve
obtained in the proportionate mixing case indicates that this specific contact framework
favours the global invasion of an emerging infection with respect to the assortative one.
Moreover, there exists a range of η values for which an epidemic spreading in a popula-
tion characterized by proportionate mixing would reach a pandemic dimension, whereas
the same epidemic would be contained at its source if the population mixes assortatively.
Such difference is attributed solely to the different mixing among the two groups.

Numerical simulations
The theoretical framework described so far is based on the combination of continu-
ous differential equations for the transmission dynamics within each subpopulation, with
mathematical tools of complex network theory for describing the spatial invasion of the
epidemic. In this section we validate the theoretical approach by presenting the com-
parison between the results recovered so far and the output of stochastic numerical
simulations, where all processes are simulated explicitly. The system evolves following a
stochastic microscopic dynamics where hosts are individually tracked and at each time
step it is possible to monitor several quantities, as for example the number of infectious
individuals within each subpopulation and for each group, or the number of subpopula-
tions reached by the disease. Given the stochastic nature of the dynamics, the experiment
can be repeated with different realisations of the noise, different underlying graphs and
different initial conditions.
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The mobility network consists of V = 104 subpopulations and is generated by the
uncorrelated configuration model [56] that allows building a network with a preassigned
degree distribution. In agreement with the analytical calculations we choose a power-
law degree distribution, P(k) ∝ k−γ with exponent γ = 2.3. Once the mobility network
is constructed, a number of inhabitants is assigned to each subpopulation according to
the degree of the node. Specifically, for each node l, we assume a power-law relation
between the population Nl and its degree kl, Nl = N̄

〈kφ〉k
φ

l , where the N̄ is the average
population of the nodes, set to 104, and 〈kφ〉 = ∑

k kφP(k). This relation was shown
to reproduce the behaviour of empirical systems, with an estimate for φ of approxi-
mately 3/4 [57]. Fluxes along each mobility link also follow a power-law relation with the
degrees of the connected nodes, as described in Section Spatial layer and mobility model,
wklkm = w0(klkm)θ , with θ = 0.5 and w0 = 0.05. With this definition, fluxes are sym-
metric and do not alter the occupancy number of each subpopulation, thus the system
is at equilibrium with respect to the mobility dynamics. The social layer is constructed
by dividing the population of each node into two groups according to the parameter α.
The contact parameters ε and η define then the contact matrix ruling the transmission
dynamics.
The dynamics proceeds in parallel and considers discrete time steps representing the

unitary time scale t of the process. The reaction and diffusion rates are therefore con-
verted into probabilities and at each time step the system is updated by implementing
the infection dynamics and the diffusion process. Infection transmission is a binomial
process that accounts for the heterogeneity of contacts. The force of infection acting on
an individual within the group i in the subpopulation l is calculated by combining the
contribution of the infectious individuals belonging to the two groups within the same
subpopulation, namely

λi = β

Nl
(Ci1I1 + Ci2I2) , (27)

where the transmission rate β corresponding to the chosen value for R0 is computed from
the largest eigenvalue of the next generation matrix – see Eq. (4). Recovery from the dis-
ease is also a binomial process, with every infectious individual having at each time step
a probability μ to enter in the recovered compartment. We set R0 = 1.2 and μ = 0.5.
The diffusion of individuals is implemented as a multinomial process by accounting the
heterogeneities in individual travel frequency given by Eq. (7). Throughout this numerical
exploration we always assumed that only individuals of group 2 travel, i.e. r = 0.
The epidemic is initialised by placing 5 infected individuals per each group within a

randomly chosen subpopulation and it is simulated until the extinction of the virus is
reached. The fraction of subpopulations reached by the disease D∞/V provides a clear
quantification of the invasion potential of the disease. We consider the two scenarios
introduced in the analytical treatment, the proportionate mixing case and the assortative
one, and we provide a comparison between the outcome of the numerical simulations and
the corresponding analytical results.
Panel A of Figure 6 considers the case of proportionate mixing and provides an explo-

ration of the space of parameters η and α. The heat map shows the average D∞/V ,
computed over 5,000 stochastic realisations for each point (η,α). The white line indicates
the global invasion threshold R∗(α, η) = 1 as computed by solving numerically Eq. (15),
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Figure 6 Comparison between numerical results and analytical estimates. (A) Invasion behaviour for
the proportionate mixing case. D∞/V as a function of α and η for the case r = 0. The colour code is
proportional to the average value of D∞/V as computed from 5000 stochastic runs. The white line
corresponds to the global invasion threshold R∗(α, η) = 1 computed solving numerically the analytical
equations. (B) Invasion behaviour for the assortative mixing case. D∞/V as a function of ε for η = 0.5 and
three different values of α, 0.1, 0.15, 0.2. The coloured arrows indicate for the three cases the critical values of
ε for which the condition R∗ = 1 is satisfied, as obtained by the analytical equations.
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in order to allow for a comparison between the analytical results and the simulations.
Notwithstanding finite-size and discrete effects considered in the numerical simulation,
and the several approximations used in the analytical treatment (degree-block, branching
ratio, and others), the heatmap shows a good agreement between results from simulations
and from the numerical solutions of the equations describing the threshold condition for
the system.
Panel B of Figure 6 focuses on the assortative mixing case. Here we show the average

fraction of infected subpopulations, D∞/V , as a function of the assortative parameter ε,
for three different values of α and for η = 0.5. All the curves present a transition between
local outbreak and global invasion in correspondence of a critical value of ε, above which
the fraction of infected subpopulation becomes an increasing function of ε. The increase
in α reduces the invasion potential of the disease. The threshold behaviour is in agreement
with the theoretical analysis (Eq. (15)), whose threshold results are reported in the plot
for comparison (coloured arrows).

Application to the 2009 H1N1 pandemic influenza
The modelling framework introduced so far can provide a prompt scenario analysis in
case of an emerging epidemic. Once estimates for the disease parameters are available,
the method allows for assessing the invasion potential of the disease for a specific country
or region for which data on social contacts and mobility are available. Here we pro-
vide as an example the study of the 2009 pandemic of A(H1N1) influenza in Europe
and Mexico [46]. The relevant partition of the population in this setting is the subdi-
vision in age classes, following the empirical evidence collected during the initial phase
of the epidemic. The analysis of early outbreak data indeed showed that the majority of
cases due to local transmission in the community was among children, whereas imported
cases – seeding the epidemic in non-infected areas – were mainly adults [43,44,46]. Each
age class was mainly responsible for one of the two mechanisms at play in the spread-
ing – local transmission (children), and spatial dissemination (adults). To explicitly study
the role of these two types of hosts on the conditions for global invasion, we consider
the generic multi-host metapopulation framework introduced here with an age parti-
tion that is parameterized with demographic and contact data. We consider a children
age class (group 1) of individuals below 18 years old and an adult age class (group 2)
of the remaining population. The fraction α of population of group 1 is obtained from
UN statistics [58]. The average for Europe is α = 0.197 and other values are reported
in Table 3. Contact parameters ε and η are estimated from the contact matrices recon-
structed from the large data-collection of the Polymod project for eight countries in
Europe [6,46]. The average estimates across the eight countries are ε = 0.097 and

Table 3 Values of parameters α, η and ε for three European countries [6], for the European
average [6,46], and for Mexico [59]

Country α η ε

Germany 0.183 0.746 0.098

Netherlands 0.221 0.833 0.094

Poland 0.212 0.972 0.100

Europe 0.197 0.795 0.097

Mexico 0.320 0.323 0.063
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η = 0.795, and additional estimates for specific countries are reported as examples in
Table 3. The European situation is also compared to the one of Mexico [59], seed country
of the pandemic, to explore the impact of very different social contexts on the epidemic
dynamics.
The values presented in the table describe an assortative system, where social activity

is heterogeneous among the two groups, with children having on average more contacts
than adults. Air-transportation statistics available for several airports yield an average of
7% of children occupancy [46], thus r = 7%. Finally we parametrize the mobility network
and the distribution of traveling fluxes by setting γ = 2.3 and w0 = 1 [2].
Epidemiological parameters were chosen among the estimates provided for the

A(H1N1) pandemic. Throughout the analysis we consider an infectious period of 2.5 days
[7] and three different estimates for R0: R0 =1.05 (corresponding to the estimate in [7] for
the reproductive number in Europe during summer 2009), R0 =1.20 (as estimated from
the outbreak data in Japan [60]), and R0 = 1.40 (as estimated from the early outbreak
data in Mexico [59]). We also consider a scenario in which a certain fraction of the adult
population has a pre-existing immunity to the virus accounting in this way for the sero-
logical evidence indicating that about 30 to 37% of the individuals aged ≥ 60 years had
an initial degree of immunity prior to exposure [61]. We assume that 33% of individu-
als aged ≥ 60 years are immune and completely protected against H1N1 pandemic virus
[46], and for each country we compute the corresponding fraction of the adult group with
pre-exposure immunity.
With all the parameters being informed by the data, we address the impact of the spe-

cific socio-demographic context on the invasion threshold by comparing three European
countries taken as examples (Germany, Netherlands and Poland), along with a compar-
ison Europe vs. Mexico. Figure 7 shows R∗ as a function of ε for the three countries
assuming R0 = 1.05. We consider the case r = 0 for Poland and Netherlands and we
compare the two cases r = 0 and r = 7% for Germany. The heterogeneities induced by
different values of α and η may impact significantly the invasion behaviour, as shown by
the great discrepancy among the two curves of Germany and Poland: an increase of η from
0.75 to 0.97 lowers the critical value of ε for which invasion is reached of more than one
order of magnitude. For ε values in this range, the same disease could thus lead to two dif-
ferent scenario (invasion or containment) if emerging in two different countries (Poland
or Germany, respectively). Given the values of ε obtained from data of the three countries
(Table 3), we obtain that even with very low estimates of the reproductive number, taking
into account the seasonal suppression of transmission during summer 2009 [7], all coun-
tries under study are predicted to experience a spatial propagation of the outbreak once
seeded, confirming the situation observed in reality.
The comparison between the case r = 0 and r = 7% for Germany allows us to quantify

the role of children as seeders of the epidemic in new locations in a data-driven situation.
They contribute to the increase of the invasion potential of the epidemic, thus lowering
the minimum value of the across-groups mixing for which the epidemic spatial spread is
possible. The effect is small but appreciable.
If we consider pre-existing immunity in the older age classes, we observe how differ-

ences in the population demographic profile across different regions of the world may
have a strong impact in the resulting suppression of the pandemic potential due to prior
immunity. Figure 8 shows the critical curves R∗ = 1 in the α, ε plane for Europe and
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Figure 7 R∗ as a function of ε for the three european countries analysed. For three cases we set r = 0. In
the case of Germany we compare the case r = 0 with r = 0.07 as estimated by empirical data.

Mexico. As expected, immunity reduces the parameter space leading to global invasion (in
each panel, above each critical curve) since a fraction of the population is now modelled
to be fully protected against the virus. For a given α, a larger mixing across age classes is
needed for the pathogen to spatially propagate in a population having pre-existing immu-
nity; similarly, a more assortative population would be able to contain the disease at the
source. It is interesting to note that the magnitude of this effect on the critical curve for
invasion is affected by the population profile. The effect is indeed smaller for Mexico than
for Europe, since the Mexican population has a smaller percentage of population in the ≥
60 class of age with respect to Europe and thus an overall smaller proportion of the
population who is fully protected by the pre-existing immunity.

Conclusions
This study presented a general theoretical framework to account for two different layers of
heterogeneity relevant for the propagation of epidemics in a spatially structured environ-
ment, namely contact structure and heterogenous travel behaviour. The model presents
a structure with two distinct scales – a social scale and a spatial one. Employing a sub-
division into two host classes, we provide a mathematical formulation of the model and
derive a semi-analytical solution of the invasion equation, encoding the conditions for the
global invasion of the epidemic. The system is characterized by a very rich space of pos-
sible solutions, depending on the demographic profile of the population, the pattern of
contacts across groups and their relative social activity, the travel attitude of each class,
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Figure 8 Threshold condition R∗ = 1 for Europe andMexico. Threshold condition R∗ = 1 as a function of
ε and α for Europe (bottom curves) and Mexico (top curves): comparison of the no-immunity case with the
case of pre-existing immunity. Here we consider: R0 = 1.2 in Europe and R0 = 1.4 in Mexico. All travellers are
adults (r = 0). The two lines red and blue correspond to pre-existing immunity and no-immunity. Global
epidemic invasion region is above each critical curve. The patterned grey area refers to the region of
parameter values that do not satisfy the consistency relation.

and the topological and traffic features of the mobility network. Two qualitatively differ-
ent scenarios are found. The increase of the across-group mixing and of the social activity
of the less active group (relative to themore active group) enhance the pandemic potential
of the infectious disease, if seeders are mostly found in the less active group. Reductions
of the number of contacts of individuals of the less active group is predicted to be the
most efficient strategy for reducing the pandemic potential. If instead traveling is dom-
inated by the most active class, the role of the contacts ratio between the two groups is
negligible for a given population partition, whereas there exist an optimal across-groups
mixing that maximizes the pandemic potential of the disease. Reductions or increases of
this quantity with respect to the optimal value would decrease the probability that the epi-
demic, once seeded in a given region, would reach a global dimension. Such findings call
for the need to develop further studies to identify appropriate intervention measures that
can act on these socio-demographic aspects, depending on the type of partition and of
population considered. Empirical data of contact patterns, demography and travel from
eight European countries and from Mexico, and of the 2009 H1N1 influenza pandemic
were used to parametrize our model in terms of two age classes of individuals – children
and adults – and explain the spatial spread of the disease following emergence (inMexico)
and international seeding (in Europe). Despite the need to address some limitations of the
model in future work (e.g. partition in more than two classes, and geographic dependence
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of population features), our approach offers a flexible theoretical framework – validated
on historical epidemics – that can promptly assess the pandemic potential of an emerging
infectious disease epidemic where a specific socio-demographic stratification is relevant
in the disease transmission among individuals.

Additional file

Additional file 1: Approximations and series expansion used for estimating the invasion threshold
parameter for a proportionate and an assortative social system.
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