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Abstract

Background: Mathematical modeling of virus dynamics has provided quantitative
insights into viral infections such as influenza, the simian immunodeficiency virus/
human immunodeficiency virus, hepatitis B, and hepatitis C. Through modeling, we
can estimate the half-life of infected cells, the exponential growth rate, and the basic
reproduction number (R0). To calculate R0 from virus load data, the death rate of
productively infected cells is required. This can be readily estimated from treatment
data collected during the chronic phase, but is difficult to determine from acute
infection data. Here, we propose two new models that can reliably estimate the
average life span of infected cells from acute-phase data, and apply both methods to
experimental data from humanized mice infected with HIV-1.

Methods: Both new models, called as the reduced quasi-steady state (RQS) model
and the piece-wise regression (PWR) model, are derived by simplification of a
standard model for the acute-phase dynamics of target cells, viruses and infected
cells. By having only a limited number of parameters, both models allow us to
reliably estimate the death rate of productively infected cells. Simulated datasets with
plausible parameter values are generated with the standard model to compare the
performance of the new models with that of the major previous model (i.e., the
simple exponential model). Finally, we fit models to time course data from HIV-1
infected humanized mice to estimate the several important parameters characterizing
their acute infection.

Results and conclusions: The new models provided much better estimates than the
previous model because they more precisely capture the de novo infection process.
Both models describe the acute phase of HIV-1 infected humanized mice reasonably
well, and we estimated an average death rate of infected cells of 0.61 and 0.61, an
average exponential growth rate of 0.69 and 0.76, and an average basic reproduction
number of 2.30 and 2.38 in the RQS model and the PWR model, respectively. These
estimates are fairly close to those obtained in humans.
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Background
In most viral infections, the initial exponential growth phase is followed by a second

exponential phase known as contraction. In hosts exposed to viruses such as influenza

and coronaviruses (the causative agents of severe acute respiratory syndrome), the

viral load continuously declines during the contraction phase [1,2]. In contrast, in

chronic viral infections, such as human immunodeficiency virus (HIV) and hepatitis C

virus (HCV) infections, contraction slows down such that the viral load approaches a

steady state, called the virological set point [3,4]. In both infection types, the expansion

and contraction of the viral load have been modeled as single exponential functions,

with parameters determined by linear regression of the log transformed data [3,5-7].

This simple approach is reasonable as long as the conditions, e.g., the availability of

target cells or the immune response, hardly change within each phase. Using this

approach, the initial growth rate, death rate of the infected cells, and the basic

reproduction number (i.e., R0) have been estimated, which has improved our under-

standing of particular virus infections, and has guided medical treatment [7-9]. For

example, once the basic reproduction number is estimated, the critical inhibition, 1–1/R0,

induced by vaccines, or by antiviral drugs, to prevent primary virus infection can be

calculated [6].

Knowledge of the death rate of infected cells is crucial for properly understanding

viral dynamics because the average life time is required for calculating the basic

reproduction number. In chronic viral infections such as HIV and HCV, the death rate

is estimated from large perturbations of the set point viral load data instigated by po-

tent anti-viral therapy [4,10-13]. Shortly after effective treatment, the decay rate of viral

load approaches the death rate of productively infected cells. However, estimating the

death rate of infected cells during the acute phase remains a challenging task, and, as a

consequence, it is difficult to accurately estimate the basic reproduction number from

viral load data during the early stages of viral infection. In addition to calculation of the

basic reproduction number, the death rate per se is useful for evaluating the efficacy of

vaccine-induced cellular immune responses during the acute phase of virus infection

[14-16]. Therefore, an improved method for estimating the death rate of infected cells

during this phase is urgently required.

In this study, we first generated simulated datasets with biologically plausible para-

meter values, using a population dynamics model of virus population. The time evolu-

tion of target cell densities and viral load were modeled during the acute phase. The

datasets describing acute infection were subsequently analyzed by two novel mathemat-

ical models to evaluate whether the new models could accurately estimate the known

parameters. Our proposed models properly described the artificial datasets and deli-

vered better estimates of the parameters and well calculated indices than conventional

models (i.e., simple exponential models). Our methods proved especially effective for

calculating the death rate of infected cells. We then applied our models to time course

data from a human hepatopoietic stem cell-transplanted humanized mouse model in-

fected with HIV type-1 (HIV-1) [17-20], to quantify the infection dynamics during the

acute phase. To our knowledge, this is the first report quantifying the dynamics of

acute HIV-1 infection in humanized mice. Finally, we discuss how our approach may

be combined with animal experiments. Like previous simple exponential models

[3,5-7], our approach is quite general and can be used in several infection models.
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Methods
Mathematical models describing the acute phase of virus infection

(I) Reduced quasi-steady state (RQS) model

The standard model for viral infection consists of three differential equations for target

cells, T(t), infected cells, I(t), and viral particles, V(t) [7-9]. Since during acute infection

the normal production and loss of target cells is much smaller than the loss due to viral

infection and/or its side effects [14-16], the standard model can be reduced to

T 0 tð Þ ¼ −βT tð ÞV tð Þ; ð1Þ
I 0 tð Þ ¼ βT tð ÞV tð Þ−δI tð Þ; ð2Þ
V 0 tð Þ ¼ pI tð Þ−cV tð Þ; ð3Þ

where the parameters β, δ, p and c represent the conventional rate constants for viral infec-

tion of target cells, the death rate of infected cells, the virus production rate in an infected

cell, and the clearance rate of virus particles, respectively. The initial expansion of viral load

in this model is well approximated by V(t) ≈V(0) exp (g0t) [3,5-7], with an exponential

growth rate, g0 (the Malthusian parameter), given by the positive root of the characteristic

equation g0
2 + (c + δ)g0 + cδ − pβT(0) = 0, i.e., g0 ¼ − cþ δð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c−δð Þ2 þ 4pβT 0ð Þ

q� �
=2.

This model can be simplified further by a quasi-steady state (QSS) approximation for

the viral particles [7,21-23]. Typical estimated half-lives of viruses (1/c) such as HIV,

HCV and hepatitis B virus are of the order of minutes (or hours), whereas those of

infected cells (1/δ) in vivo are of the order of days [4,5,7-13]. Since, the clearance rate

of viral particles, c, is typically much larger than the death rate, δ, of the infected cells,

we can make a QSS assumption, V′(t) = 0, and replace Eq. (3) by V(t) = pI(t)/c. Because

we fit viral loads, V(t), rather than the number of infected cells, I(t), we also substitute

I(t) = cV(t)/p into Eq. (2) to obtain

V 0 tð Þ ¼ rT tð ÞV tð Þ−δV tð Þ; ð4Þ

where r = pβ/c is the viral replication rate per target cell, and δ is the death rate of infected

cells. Eqs. (1) and (4) together form our first model, that we here call the “reduced quasi-

steady state” (RQS) model. The RQS model lumps the 8 parameters of the reduced stan-

dard model of Eqs. (1–3) into five parameters, i.e., β, r, δ, T(0), and V(0). Because there is

no production of target cells the infection will ultimately be cleared. The five parameters

together define several “observables”. First, the basic reproduction number is R0 = rT(0)/δ.

Second, the initial exponential growth rate is g0 ≈ rT(0) − δ ( when δ and g0≪ c, one can

directly calculate the same g0 from the characteristic equation). Third, the final level of

target cells is given by the epidemiological “final size equation” [24,25], as the solution of

f = exp [ − R0(1 − f )], where f = Tmin/T(0) is the fraction of surviving target cells.

(II) Piece wise targets (PWT) model

In the standard model, and its simplifications outlined above, the dynamics of the tar-

get cells are coupled to the density of viral particles because target cells disappear by

infection. Since target cell densities in the peripheral blood (PB) may also depend on

other factors, like inflammation, activation and redistribution, we next write a model

where the target cell dynamics are decoupled from the viral dynamics. Since, during

the acute phase of several virus infections, such as HIV, SIV and SHIV, the decrease in
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number of target cells in PB is preceded by an initial flat phase [14-20,26-28], we

propose a phenomenological model for the target cells consisting of an initial flat

phase, and a second phase of exponential loss (Figure 1). This basically implies that we

assume that target cells only become a limiting factor when their density starts to

decline. Thus, the dynamics of target cells is described as follows:

T tð Þ ¼ T 0ð Þ; for t < t�; ð5Þ

T tð Þ ¼ T 0ð Þ exp −Δ t−t�ð Þf g; for t > t�; ð6Þ

where the parameter Δ represents the daily rate of target cells loss following the initial

flat phase, and t* corresponds to the time at which the target cell densities begin to de-

crease. Eqs. (4–6) define our second model that we here call the “piece wise targets”

(PWT) model. The PWT model has six parameters, i.e., β, r, δ, T(0),V(0), Δ, and t*, and

because it shares Eq. (4) with the RQS model, it has the same definitions for the repli-

cation rate, r = pβ/c, the Malthusian parameter, g0 = rT(0) − δ, and the reproduction

number R0 = rT(0)/δ. In contrast to the partial depletion, f, in the RQS model, the tar-

get cells will ultimately be completely depleted, i.e., T(∞)→ 0, in the PWT model.
Figure 1 Schematic of the novel exponential model. The variables T(t), I(t) and V(t) denote the number
of target and infected cells per ml and the amount of viruses per ml, respectively, at time t. The parameter
Δ denotes the loss rate of target cells per day after the flat phase, β the rate constant for viral infection of
target cells, and c the clearance rate of virus particles. δ denotes the death rate and p the viral production
rate of infected cells. t* represents the time at which the target cells start declining with slope –Δ.
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Thanks to the decoupled dynamics of the target cells the PWT model can be solved

analytically:

V tð Þ ¼ V 0ð Þ exp g0t
� �

; for t < t�; ð7Þ

V tð Þ ¼ V t�ð Þ exp rT 0ð Þ 1− exp −Δ t−t�ð Þð Þ½ �
Δ

−δ t−t�ð Þ
� �

; for t > t�; ð8Þ

where the replication phase (Eq. (7)) is identical to the initial phase of the standard

model (see the remark above). Thus, at the price of one additional parameter, we can

generalize the depletion of target cells to mechanisms (e.g., inflammation, activation

and redistribution of target cells) other than infection only, and have a model with very

similar parameters characterizing the acute viral infection.

(III) Piece wise regression (PWR) model

As a control method, we additionally consider a classical method that has been widely

adopted in earlier literatures [3,5-7]. Previously acute infection data have been quanti-

fied using piece wise linear regression of the log transformed viral loads before and

after the peak in the viral load [3,5-7]. The ascending and descending slopes of the log

viral load roughly correspond to the exponential growth rate, g0, and the death rate, δ,

of infected cells, respectively [3,5-7]. Since g0 = rT(0) − δ and R0 = rT(0)/δ, these two

slopes suffice to estimate the basic reproduction number, R0 ≈ 1 + g0/δ, and knowing

the initial target cell density, T(0), the viral replication rate per target cell can be

estimated from the R0, i.e., r = δR0/T(0) [3,5-7]. Here we call this classical model as the

“piece wise regression” model (PWR). It has been realized before that the down-slope

will only reflect the death rate of infected cells, δ, if there is hardly any residual

infection of target cells during the contraction phase, i.e., if target cells are markedly

depleted [3,5-7].

Artificial data generated from a population dynamics model of virus infection

To estimate the accuracy of the parameters estimated by our two novel models, we cre-

ated simulated time course data of target cell densities and viral load during the acute

phase of viral infection (lasting approximately 21 days [14-20,26-28]) assuming bio-

logically plausible parameter values. The artificial datasets were generated with the re-

duced standard population dynamics model of viral infection, i.e., Eqs. (1–3), in which

the target cell dynamics are coupled to the viral dynamics by the infection term.

We added stochastic variation to the “data” generated by this model by adding

“observational” noise and/or by varying the parameter values. The log transformed data

were perturbed by adding a normally distributed noise variable with zero mean and

standard deviation σ (see Results). The datasets describing acute infection were sub-

sequently analyzed by the two novel RQS and PWT models, and by the previous PWR

model.

HIV-1 infection in humanized mice

The dynamics of HIV-1 infection during acute infection were quantified in a human

hepatopoietic stem cell-transplanted humanized mouse model (NOG-hCD34 mice)

[17-20]. Five humanized mice were infected with the CCR5-tropic HIV-1 (strain AD8)
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[29], and 100 μl of peripheral blood (PB) was routinely collected under anesthesia

through the retro-orbital venous plexus at 0, 3, 7, 14, and 21 days post-infection, as pre-

viously described [17-20]. The amount of viral RNA in 50 μl of plasma was quantified by

RT-PCR (Bio Medical Laboratories, Inc). To estimate target cell densities, the number of

memory CD4+ T cells was measured by hematometry and flow cytometry, as previously

described [17-20]. Briefly, the number of human leukocytes in 10 μl of peripheral blood

(PB) was measured in a Celltac α MEK-6450 hematology analyzer (Nihon Kohden, Co.),

and the percentage of memory CD4+ T cells in human CD45+ leukocytes (i.e., CD45+

CD3+ CD4+ CD45RA- cells) was quantified in a FACSCanto II (BD Biosciences) flow

cytometer. In the flow cytometry analyses, APC-conjugated anti-CD4 antibody (RPA-4;

Biolegend), APC-Cy7-conjugated anti-CD3 antibody (HIT3a; Biolegend), and PE-

conjugated anti-CD45 antibody (HI30; Biolegend) were used.

All protocols involving human subjects were reviewed and approved by the Kyoto

University institutional review board. Informed written consent from the human sub-

jects was obtained in this study.
Results
Coverage probability of the mathematical models

In the Methods section we formulate two novel mathematical models describing the

target cell densities and the viral load during acute infection. We created artificial data

with target cell densities and virus loads during acute infection using the reduced

standard model for viral infection (i.e., Eqs. (1–3)). The data was generated for one ml

of PB with “typical” values of the parameters for HIV-1, i.e., an infection rate β = 10−8

per cell per day, a virus production rate p = 4000 particles per day, a death rate of in-

fected cells δ = 0.7 per day, and a clearance rate of c = 23 per day [7-11]. We study

whether our simplified models can describe the in silico data, and whether their

(lumped) parameters are identifiable. The major biological observables of this model

are the initial viral growth rate, g0 ¼ − cþ δð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c−δð Þ2 þ 4pβT 0ð Þ

q� �
=2 , the viral

replication rate per target cell, r = pβ/c, the death rate of infected cells, δ, and the basic

reproduction number, R0 = rT(0)/δ.

First, we created in silico data with “observational” noise by adding proportional random

variation to each data point. Specifically, we drew random values from a Gaussian distri-

bution with a mean of one and a standard deviation σ = 0.2, and added these values to the

log transformed data. This seemed natural as we are also fitting the log transformed data,

and on a log scale this corresponds to the measurement error of about 60%. The gener-

ated datasets were fitted to the numerical solutions of the RQS model (Eqs. (1) and (4)),

the analytical solution of the PWT model (Eqs. (5–8)), and to the previous PWR model.

The sum of squared residuals was minimized using the FindMinimum package of Mathe-

matica 9.0, fitting the target cell and viral load data simultaneously. The typical behavior

of the models using these best-fit parameter estimates is depicted in Figure 2, together

with the simulated data. Other standard deviations of the parameters yielded similar re-

sults (results not shown). The two novel models reasonably describe the acute phase of

viral infection. Note that target cell densities are partially depleted in the RQS model, and

will ultimately approach “0” in the PWT model.



Figure 2 Fitting of artificial (simulated) data by the novel models. Artificial data were generated with
the “reduced standard” viral infection model of Eqs. (1–3). The novel RQS model (Eqs. (1) and (4)), the novel
PWT model (Eqs. (5–8)), and the previous PWR model were fitted to a total of 5 + 5 = 10 data points generated
from the numerical solution of the reduced standard model at the days. Noise was added by perturbing the
predicted log transformed value by a normally distributed error (with standard deviation σ = 0.2). The blue and
red symbols denote one representative simulated dataset, the dotted line the best fit of the RQS model, the
dashed line that of the PWT model, and the black solid lines show the ascending and descending slopes
obtained with the PWR model. The true parameters were: β = 10–8, p = 4000, δ = 0.7, c = 23 and the initial
values were T(0) = 1000000, I(0) = 0, and V(0) = 1000, corresponding an R0 = 2.48 and 90% target cell depletion
(i.e., f = 0.1).
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Second, we created different “patients” by randomly drawing the parameter

values from normal distributions centered at their typical values. Thus, the

infection rate, death rate of infected cells and virus production rate were assumed

to be normally distributed as βeN μβ; σ
2
β

� �
; δeN μδ ; σ

2
δ

� �
; and peN μp; σ

2
p

� �
; with

μβ ¼ 10−8; μδ ¼ 0:7; μp ¼ 4000; respectively. The standard deviations were set

as σβ ¼ 10−9; σδ ¼ 0:3; σp ¼ 400 . In this way, we obtained a distribution of the

basic reproduction number centered around the true value (R0 = 2.48). We then

randomly sampled one parameter set of β, δ, p from the distributions, and pro-

duced 200 different artificial datasets as explained above. Analyzing each dataset

with the same three models (RQS, PWT and PWR), we calculated 95% confidence

intervals (CI) for g0, r, δ and R0, and investigated whether the 95% CI successfully

contained the true values of g0, r, δ and R0 used to create the data set. This pro-

cedure was repeated for all 200 datasets, and Table 1 provides the frequency of

datasets for which the 95% CI successfully contained the true values of g0, r, δ and

R0, i.e., the coverage probability. Although the initial growth rate was well esti-

mated by the previous PWR model, the novel RQS and PWT models estimated the

viral replication rate, death rate of infected cells, and basic reproduction number
Table 1 The coverage probability of the PWR model, the RQS model, and the PWT model

Method r (viral replication
rate)

g0 (initial growth
rate)

δ (death
rate)

R0 (basic reproduction
number)

Linear regression with
the PWR model

0.25 0.87 0.12 0.25

Nonlinear fitting with
the RQS model

0.86 0.83 0.72 0.78

Nonlinear fitting with
the PWT model

0.31 0.58 0.19 0.33
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much more accurately than the PWR model. Thus, the novel models can more ac-

curately extract information from acute-phase viral infection data.
Sensitivity of parameter estimation to target cell depletion

At the beginning of the infection all models are identical as they all predict exponential

growth of the virus load. The models differ around the peak because the previous

PWR model assumes an exponential contraction after the peak, whereas the new

models allow the peak be formed by the loss of target cells (i.e., by the βT(t)V(t) term

in the RQS model, and by the exponential loss of target cells in the PWT model). In

both models this loss of target cells continues during the contraction phase. However,

if target cells were depleted rapidly such that there would be hardly any infection

of target cells during the contraction phase, this difference among the models would

vanish, and the contraction phase of the new models would also be dominated by the

death rate of infected cells.

The level to which the target cells become depleted in the reduced standard model

of viral infection (Eqs. (1–3)) can be computed with the epidemiological “final size

equation” [24,25] (see the Methods section). Using the same equation, Petravic et al.

[16] show that this final size of the target cell level provides a good description of the

nadir, Tmin, of the target cell density during an acute infection. Defining f = Tmin/T(0)

as the fraction of surviving target cells, we use the final size equation to compute dif-

ferent values of the infection rate β to vary the nadir of the target cells over the interval

f ∈ [0.001, 0.200]. Doing so we again created different cases, each with a different level

of target cell depletion. For simplicity this was done in the absence of noise (which

does not affect these results). Using the same approach as explained above we fit the

“data” generated by these cases with the 3 models (Figure 3).

As discussed previously [3,5-7], the PWR model (orange symbols) fails to correctly

estimate the death rate of infected cells in the presence of continued de novo infec-

tions, i.e., when many target cells survive; see Figure 3A (in which the dashed line

denotes the correct death rate at δ = 0.7).

Conversely, the two novel models (RQS: blue symbols and PWT: green symbols)

accurately estimate the death rate even if many target cells survive. Note that it is not

surprising that the RQS model provides better parameter estimates than the PWT model,

because the artificial data was generated by the reduced standard model (Eqs. (1–3)), from

which the RQS model was derived by a reasonable quasi-steady state assumption. The

parameters are accurately estimated by all methods when target cells are severely depleted

(i.e., when f approaches 0), reconfirming that the previous PWR model can accurately

quantify the infected cell death when the target cells are severely depleted. This, for

example, occurs in CXCR4-tropic simian–human immunodeficiency virus (SHIV) infec-

tions (which deplete naïve and memory CD4 T cells during the acute phase)

[14,16,26-28]. In cases where target cells are not as strongly depleted, the new models do

much better than the PWR model in estimating the death rate (Figure 3A), the viral repli-

cation rate (Figure 3B) and the basic reproduction number (Figure 3C). All models per-

form similarly on estimating the exponential growth rate (Figure 3D), because they all

assume (implicitly or explicitly) that the number of target cells remains constant during

the earliest phases of viral infections.



Figure 3 Sensitivity of parameter estimates on target cell depletion, determined by our novel
model. For varying values of surviving target cell fraction (0.1%–20%), noiseless artificial datasets were
generated, and fitted by our novel models and the simple exponential model to calculate (A) the death
rate of infected cells, (B) viral replication rate, (C) the basic reproduction number, and (D) the exponential
growth rate. The parameters are those used in Figure 2; only the infection rate β was altered to adjust the
target cell depletion. When the other parameters were altered, similar results were obtained (data not
shown). The blue, green and orange symbols plot the indices estimated by the RQS, PWT and PWR models,
respectively. The black dotted lines depict the true parameter values.
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Application to acute HIV-1 infection in a humanized mouse model

Having established that the novel models outperform the old one, they were fitted to

the 21-day time courses of viral loads and target cells observed in five virus-infected

humanized mice. From the parameters estimated with the individual mouse datasets

(see Table 2 for the RQS model and Table 3 for the PWT model), we obtained the simi-

lar g0 ranging from 0.43 to 1.07 and from 0.48 to 1.06 per day in the RQS and PWT

models, respectively. These estimates are not in disagreement with the replication rate

of HIV-1 in human patients, which has been estimated to be 1.01 ± 0.37 per day [6].

We estimate a death rate of HIV-1 infected cells in humanized mice as δ ranging from

0.30 to 0.76 and from 0.38 to 0.76 per day with the RQS model and the PWT model,

respectively (see Tables 2 and 3). Again, this result is in concordance with estimates of

viral death rate in treated HIV-1 infected patients [10,11]. We then determined the

basic reproduction number R0 of HIV-1 in humanized mice from the individual



Table 2 Estimated parameter values and quantities derived from humanized mouse
experiments by the novel RQS model

ID T(0) V(0) g0 r β δ R0

cells/ml RNA copies/ml day-1 (cell/ml)-1・day-1(×10-6) (virion /ml)-1・day-1(×10-6) day-1 —

1 274139 2461 0.467 4.46 0.10 0.76 1.62

2 489096 652.1 1.065 3.37 0.03 0.58 2.83

3 93238.7 717.1 0.856 12.4 1.24 0.30 3.88

4 15847.5 1233 0.429 74.1 0.57 0.75 1.58

5 130580 1506 0.652 10.1 0.06 0.67 1.97

Mean 200580 1313 0.694 20.9 0.40 0.61 2.38
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estimates of T(0), r and δ, obtaining R0 ranging from 1.58 to 3.88 and from 1.77 to 3.26

in the RQS and PWT models, respectively (see Tables 2 and 3). Since the mean of R0

corresponds to a predicted target cell nadir of f = 0.12 in the RQS model, the simple

exponential model is not expected to perform equally well on this data (see Figure 3).

The estimated parameter values of each individual mouse are given in Tables 2 and 3.

Using the best-fit parameter estimates the behavior of RQS and PWT models is

depicted together with the individual data in Figures 4A and B, respectively, which

confirms that both models reasonably describe the acute phase of HIV-1 infection in

humanized mice.

Discussion
We here propose two novel models to quantify the most important parameters charac-

terizing acute viral infections. Both models are major improvements over the previous

simple exponential model [3,5-7] because that model has difficulties estimating the

death rate of infected cells when target cells are not depleted after the viral load peak

(see Figure 3). The novel models use the observed target cell densities when estimating

the parameter values, and by using simulated data we have demonstrated that the new

models typically outperform the previous model. Applying the new models to data ob-

tained in humanized mice estimates that the rates at which the virus expands, and at

which infected cells die, resemble those measured in humans.

The efficacy of vaccines eliciting cytotoxic immune responses [14-16] could be quan-

tified by our new approach by comparing the estimated death rate of infected cells
Table 3 Estimated parameter values and quantities derived from humanized mouse
experiments by the novel PWT model

ID T(0) V(0) g0 r t* Δ δ R0

cells/ml RNA copies/ml day-1 (cell/ml)-1・day-1(×10-6) day day-1 day-1 —

1 282809 2325 0.48 3.91 8.7 0.07 0.62 1.77

2 308636 589.7 1.06 5.86 5.8 0.13 0.75 2.42

3 79882.2 693.9 0.87 15.7 3.6 0.15 0.38 3.26

4 19465.0 1013 0.50 53.9 5.6 0.07 0.55 1.90

5 143159 774.8 0.87 11.4 5.1 0.08 0.76 2.14

Mean 166790 1079 0.76 18.2 5.8 0.10 0.61 2.30



Figure 4 Dynamics of HIV-1 infections in humanized mice. The number of memory CD4+ T cells per ml
of PB (left) and the viral RNA load per ml of plasma (light) in 5 humanized mice infected with HIV-1 are plotted
as functions of time. The symbols denote experimental time course data and the dashed lines display the best
fit of the RQS (Panel (A)) and PWT (Panel (B)) models to the data from each individual mouse.
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between normal and vaccinated individuals during acute infection. Additionally, by

comparing the death rates estimated during acute infection with those estimated by

perturbations with antiviral drugs during the chronic phase [4,10-13], we might be able

to compare the impact of cellular immunity during both phases of an infection. Both

examples illustrate that the new models can markedly improve our understanding of

viral infection dynamics in vivo.

Our novel approach overcomes the difficulty the previous PWR model had with

estimating the death rate of infected cells in situations where target are not severely

depleted. Additionally, the choice between the two different models that we propose

here can be made on the final densities of the target cells. If the number of target cells

reaches a nadir during acute infection, the RQS model seems most appropriate. If the

target cells continue to decrease the PWT model should be better.

Thus, whenever one has sufficient time course data from an acute infection, the new

models should allow one to estimate the death rate of infected cells, and hence the R0,
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with reasonable accuracy. Indeed, in animal experiments using rhesus macaques

[14-16,26-28], ferrets [30], and mice [17-20,31-34], both target cell densities and viral

loads have been measured during the acute phase of viral infection. For example, the

number of uninfected (and infected) cells in the lungs or respiratory tracts of ma-

caques, ferrets and mice that were experimentally infected with influenza could be

measured [30,31,34]. Using the CXCR4-tropic SHIV/macaque model, both target cell

densities (naïve and memory CD4 T cells) and viral loads from PB have been measured

[14,16,26-28]. The target cells of simian immunodeficiency virus (SIV), or CCR5-tropic

SHIV infection (memory CD4 T cells expressing CCR5), have been measured from

gastrointestinal mucosa samples [15]. Thus there are several infection models that can

be analyzed with our new models.

Conclusion
In this paper, we developed novel mathematical approaches to estimating parameters

from acute viral infection data. We demonstrated that the new models outperform the

previous model using simulated data. We quantified the dynamics of acute-phase HIV-1

infections by measuring their time course data in a humanized mouse model. Interestingly

we find that the rates at which the virus expands, and at which infected cells die, are simi-

lar to those in humans.
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