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Abstract

The surgical inflammatory response can be a type of high-grade acute stress
response associated with an increasingly complex trophic functional system for using
oxygen. This systemic neuro-immune-endocrine response seems to induce the
re-expression of 2 extraembryonic-like functional axes, i.e. coelomic-amniotic and
trophoblastic-yolk-sac-related, within injured tissues and organs, thus favoring their
re-development. Accordingly, through the up-regulation of two systemic
inflammatory phenotypes, i.e. neurogenic and immune-related, a gestational-like
response using embryonic functions would be induced in the patient’s injured
tissues and organs, which would therefore result in their repair. Here we establish a
comparison between the pathophysiological mechanisms that are produced during
the inflammatory response and the physiological mechanisms that are expressed
during early embryonic development. In this way, surgical inflammation could be a
high-grade stress response whose pathophysiological mechanisms would be based
on the recapitulation of ontogenic and phylogenetic-related functions. Thus, the
ultimate objective of surgical inflammation, as a gestational process, is creating new
tissues/organs for repairing the injured ones. Since surgical inflammation and early
embryonic development share common production mechanisms, the factors that
hamper the wound healing reaction in surgical patients could be similar to those
that impair the gestational process.
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Introduction
Hans Selye described the stress response or General Adaptation Syndrome as a non-

specific response to any stressor that occurs in three stages: general alarm reaction,

resistance and exhaustion [1]. This syndrome was compared by Selye to other general

defense reactions, such as the inflammation syndrome, particularly when secondary to

surgical injury [1,2].

The considerable progress that has been made in discerning the cellular and molecu-

lar mechanisms of the stress-response [3-9] and the inflammatory response [10-15]

enables establishing close links between both types of defense reactions [16-21]. All

the new biochemical knowledge could also allow for a comprehensive interpretation of

the complex interactions between the nervous, immune and endocrine responses trig-

gered by a stressor during the evolution of both general reactions, and most especially

when related to surgery.
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Surgical inflammation
The inflammatory response related to surgery, either elective or anesthetized injury, or

trauma-related, i.e. accidental or anaesthetized injury, could be a surgical inflammation

[14]. Surgical inflammation usually associated with psychological stimuli occurs with

pathophysiological changes associated with the stress response [22], which is why the

stress response could have evolved from and is intricately linked to the surgical inflam-

matory response [16,22]. Thus, another appropriate name for this phenomenon is

trauma-induced inflammatory stress.

From a general point of view, surgical inflammation is a systemic response of the

body. Surgical-related inflammation varies in intensity, depending on the severity of the

injury suffered. The pathophysiological characteristics of this systemic response are

obvious in the cases of severe injury, as seen in polytraumatized patients [14,23-25]. In

the cases of mild injury, however, such as in skin wound healing, the systemic response

is imperceptible or subtle [22].

Severe injury induces a clear systemic inflammatory response in the body that

appears to develop through the expression of 3 successive and overlapping phenotypes:

the neurogenic, immune and endocrine [12,26] (Table 1). The mechanisms that control

the systemic surgical inflammatory response would be based on the increasing meta-

bolic ability of the body to use oxygen over the successive phases of its evolution

towards the tissue repair. The metabolic ability of each phenotype would in turn be

determined by the mechanisms used for cellular energy production [12,26].

The above-mentioned phenotypes, which characterize the evolution of the systemic

inflammatory response to the injury, have been represented as focused and integrated

within an interstitial circular space restricted by the different types of the endothelium

making up the microcirculatory system (Figure 1). This suggests that the systemic

endothelial dysfunction, in its broadest sense, not only affects the three principal types

of endothelium that are involved in the inflammatory response – the blood capillary,

lymphatic and venous-, but also produces an endothelial-type redistribution with the

progressive prominence of the venous and lymphatic endothelium at the expense of the

blood capillary endothelium. When the systemic endothelium functions normally, the

blood capillary endothelium would therefore recover its leading role mediating the ex-

change of oxygen, nutrients and waste products. Meanwhile, the inflammatory activity

mediated by the venous and lymphatic endothelium would be dramatically reduced

[26] (Figure 1). The molecular and cellular mediators of the host stress response to the

injury are therefore selected for passing through the heterogeneous endothelial barrier

that limits the interstitium, where the inflammatory battle will be fought.
The neurogenic inflammatory phenotype
The systemic inflammatory response begins with an immediate pathological neuromuscu-

lar response that includes sensitive impairments like stress sensation, inflammatory pain,

analgesia and motor alterations. In addition, skeletal muscle is also involved, i.e. the

fight-to-fight effect, behavior and withdrawal reflexes, the myocardium-tachycardia- and

the vascular smooth muscle with vasoconstriction and vasodilatation, which induces

systemic and local hemodynamic impairments, i.e. blood flow redistribution and

ischemia-reperfusion [25,26]. A common and basic pathogenic mechanism of this



Table 1 Surgical inflammation could be viewed as a high-degree stress response of the
patient composed of three overlapping successive phenotypes

INFLAMMATORY PHENOTYPES IN SURGICAL INFLAMMATION

NEUROGENIC IMMUNE ENDOCRINE

- Stress sensation - Bone marrow-related response - Epiblast-derived pluripotent
stem cells

- Inflammatory pain - Hematopoietic stem cell
activation

- Mesenchymal stem cell
activation

- Fight-to-flight effect - Signaling molecules: - Fibrocytes

- Analgesia * Chemokines -Endothelial progenitor cells

- Hypothalamic-pituitary-adrenal
cortical activation

* Toll-like receptors - Signaling molecules:

* Cytokines * Chemokines and their
receptors

- Sympatico-adrenal medullary
activation

- Leukocyte activation - Anabolic hormones

- Tachycardia - Bacterial translocation * Insulin

- Shock - Enzymatic stress * GH

- Ischemia-reperfusion - Acute phase response * IGF1

- Renin-angiotensin-aldosterone axis
activation

- Coagulaton/Complement system
activation

- CARS

- Resolution

- Hydroelectrolytic alterations - Coagulopathy * Lipoxin

- Interstitial edema - Dyslipidemia * Resolvins

- Increased lymph flow - SIRS/MODS * Protectins

- Hypoxia - Lymph node activation - Angiogenesis/vasculogenesis

- Anaerobic acidosis - Local stress response by
leukocytes

- Blood capillaries

- Hypothermia - Local cholesterol-derived
hormones

- Specialezed epithelium

- Hypercatabolism - Energetic stress

- Hypermetabolism - Oxidative phosphorylation

- Centralization of neuroendocrine
functions

- PTSD

CARS: Compensatory Anti-inflammatory Response Syndrome. SIRS/MODS: Systemic Inflammatory Response Syndrome/
Multiple Organ Dysfunction Syndrome. PTSD: Post-Traumatic Stress Disorder.

Aller et al. Theoretical Biology and Medical Modelling 2013, 10:6 Page 3 of 20
http://www.tbiomed.com/content/10/1/6
complex neuromuscular response would be sudden hydroelectrolytic alterations [26].

Consequently, there is increasing evidence that the systemic inflammatory response is ac-

tually associated with abnormal ion transport [27]. In this phase of surgical inflammation,

interstitial hydroelectrolytic alterations therefore stand out and nutrition by diffusion

predominates. The ischemia-reperfusion phenomenon, which causes oxidative and nitro-

sative stress, could be responsible for exudation and the progression of the interstitial

edema. While edema is being produced, the lymphatic circulation is activated [22,25].

Since the inflammatory interstitium is initially hypoxic and shows metabolic anaerobic

acidosis, mainly due to the accumulation of acidic by-products including lactate, the

hypoxic environment could represent an ideal stem cell niche [28,29] (Figure 2).

In the early evolutionary period of the neurogenic stress response, the hypothalamic-

pituitary-adrenocortical, sympathetic-adrenal medullary and renin-angiotensin-aldosterone

axes, with the secretion of catecholamines, glucocorticoids and mineralocorticoids in the

circulation, are activated [5,30-33]. Chromaffin vesicles in adrenal medullary chromaffin



Figure 1 Schematic representation of microcirculation. In a steady state, the arterial blood flow moves
through the capillaries, where it’s deoxygenated before reaching the post-capillary venule. The lymphatic
drainage from the interstitial space is reduced and there is a dynamic balance between the formation and
the elimination of the interstitial fluid (left). When inflammation is produced, the arterial blood flow can’t be
deoxygenated, firstly because the epithelium is necrosed and, secondly because the capillaries are also
necrosed and/or obstructed. Arterial blood flow bypass through metaarteriolas prevents the post-capillary
vein from being exposed to high oxygen levels. In addition, lymphatic flow gains an unusual prominence
(middle). The inflamed interstitium could be represented as surrounded by the different types of
endothelium that make up microcirculation, as an “endothelial egg”. The venous and lymphatic
endothelium acquire higher extension and functionality since the molecular and cellular exchange between
the inflamed interstitium and the rest of the body, that is the host, is produced through them. A: artery;
BCE: blood capillary endothelium; C: capillary; E: epithelium; HEVE: high endothelial venule endothelium; I:
interstitium; L: lymphatic; LE: lymphatic endothelium; Leu: leukocytes; MA: meta-arteriole; NE: necrosed
epithelium; PCVE: postcapillary venule endothelium; SC: stem cell.
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cells also store granins, which can function as prohormones giving rise to bioactive

peptides, some with potent antimicrobial activity [34]. Consequently, these substances are

selectively accumulated in the interstitial space of the tissues suffering from ischemia-

reperfusion because endothelial permeability is increased, especially in the post-capillary

venules [12,22,25]. The elevated central venous saturation of oxygen seen in many patients

with multiple organ dysfunction may therefore be driven by the hyperdynamic state with

shunting through the microcirculation and/or cellular dysoxia [35] (Figure 2).

The immune inflammatory phenotype
The immune phenotype is the intermediate phase of the systemic inflammatory response

to the stressor. In this phase, the tissues and epithelial organs, which have previously suf-

fered damage by ischemia-reperfusion, are infiltrated by inflammatory cells and bacteria.

This infiltration occurs in an edematous oxygen-poor environment [22,25]. Today, the in-

flammatory bone-marrow-related response is considered both a key and complementary

arm of the stress response [22]. The inflammatory activation of the bone marrow stem cell

niche indicates the stimulation of the hematopoietic stem cells (HSCs) and the mesenchy-

mal stem cells (MSCs), both multipotent stem cells, [36]. HSCs are the progenitors of all

blood and immune cells that infiltrate all the tissues and organs that have been previously

primed by oxidative and nitrosative stress. Inflammatory signaling molecules, including

interferons, tumor necrosis factor-alpha and toll-like receptors, appear to stimulate HSC

proliferation in the short term [37]. In turn, interferon-gamma mediates HSC stimulation



Figure 2 Surgical stressful inflammatory response. The host organism provides the inflamed interstitium
molecules and cells by up-regulating a neurogenic-related axis (NA), a bone marrow-related axis (BMA) and a gut-
liver axis (GLA). The molecular and cellular infiltration of the “endothelial egg” induces the development of a new
tissue or organ using inflammatory mechanisms. BCE: blood capillary endothelium; C: coagulation; E: epithelium; ESC:
endothelial precursor cell; F: fibroblast; HEVE: high endothelial venule endothelium; HSC: hemopoietic stem cell; LE:
lymphatic endothelium; Leu: leukocytes; M: microbiome; MSC: mesenchymal stem cell; PCVE: postcapillary venule
endothelium; SC: resident stem cell; SG: suprarenal gland.
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in response to chronic inflammation [38]. This immune phase represents enzymatic stress

with processes related to intracellular digestion, i.e. autophagy, phagocytosis and antigen

presentation, and extracellular digestion, i.e. fermentation, all of which favor tissue troph-

ism [12,26]. Macrophages and dendritic cells also take advantage of the lymphatic circula-

tion activation. Macrophages migrate within the lymphatic circulation until reaching the

lymph nodes where they activate lymphocytes [26,39] (Figure 2).

The cells that infiltrate the interstitium in the inflamed tissues and organs, thanks to the

open microcirculatory system, acquire metabolic characteristics that transform them into

tissues with great functional autonomy. Thus, monocytes, macrophages and lymphoid cells

express β- and α1-adrenoceptors and catecholamines [40-42]. Lymphocytes store and

synthesize serotonin [43] and immune cell-derived cholinergic activity can modulate inflam-

mation [44,45]. Furthermore, the pro-opiomelanocortin (POMC)-peptides found in leuko-

cytes, including adrenocorticotrophin (ACTH), exhibit the same structure of those present

in the pituitary [46,47]. POMC-derived peptides have a very ancient origin and an extremely

high level of conservation [48]. They also play a critical role in regulating energy balance

[49]. Maybe these are the reasons why the stress response axis can be retrieved by the

immunocytes participating in the inflamed interstitium of tissues and organs, where the

corticotropin-releasing hormone (CRH), ACTH-like and biogenic amines are present [47].

In this phase of the inflammatory response, the acute phase reaction becomes more

prominent and exhibits diverse pathophysiological changes such as pyrexia, leukocytosis
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and dramatic changes in the plasmatic concentrations of acute phase proteins [50,51].

Acute phase proteins are circulating biomarkers of inflammation and are defined as either

positive or negative, depending on whether they increase or decrease during the inflam-

matory response [50,52]. Negative acute phase proteins include albumin, transferrin and

retinol-binding protein [51]. Positive acute phase proteins are synthesized by hepatocytes

in response to IL-6 as part of the innate immune response [53]. Skeletal muscle proteoly-

sis is suggested as the main source for free amino acids for the hepatic acute phase re-

sponse [54]. Positive acute phase proteins include proteins of the coagulation-fibrinolysis

system (fibrinogen, prothrombin, factor VIII, von-Willebrand factor, complement factors,

plasminogen), protease inhibitors (alpha-1-antitrypsin, alpha-1-antichymotrypsin), trans-

port proteins (ceruloplasmin, hemopexin, haptoglobin) and lipid transport proteins

(serum amyloid A and serum amyloid P) [50,51]. However, C-reactive protein is the main

human acute phase protein and one of the most sensitive markers of inflammation, which

is why biochemical tests are frequently requested [50,55].

Trauma-induced coagulopathy is a biphasic process. Coagulopathy is initially related

to excessive hyperfibrinolysis, hyperfibrinogenolysis, hypothermia, acidosis and hypo-

metabolism. These changes affect the coagulation system and produce inappropriate

anticoagulation with hemorrhagic tendency [56]. Then, the acute post-traumatic stress

correlates with procoagulant changes, such as increased levels of fibrinogen, clotting

factors VII, VIII and XII and the von Willebrand factor [57]. Consequently, those

patients who develop sepsis can suffer disseminated intravascular coagulation, with

intravascular microcoagulation and subsequent consumption coagulopathy [56,58].

Adrenal medullary epinephrine secretion exhibits robust hepatic glycogenolysis that

rapidly elevates blood glucose concentrations, but also simultaneously stimulates lipolysis

[59]. The major alterations in lipid metabolism during the systemic inflammatory re-

sponse syndrome include increased lipolysis and fatty acid recycling, hypertriglyceridemia

and hepatic steatosis. Hypocholesterolemia, however, is common in patients with critical

illness and may be valuable for prognosis [58]. Serum amyloide A increases the ability of

HDL to serve as an acceptor for cellular cholesterol efflux, promoting the removal of ex-

cess cholesterol from macrophages as well as increasing the availability of cellular free

cholesterol [60]. It has been suggested that acute-phase serum amyloid A is part of a sys-

temic response to injury to recycle and reuse cholesterol from destroyed and damaged

cells. In this case, the recycling of cholesterol during serious injury could play an import-

ant survival role [61]. In fact, the predominance of the lipid metabolism with accumula-

tion of cholesterol in the inflamed tissue could be attributed to its role as a precursor

molecule of many hormones, including aldosterone, corticoids, progesterone, androgens

and strogen [62], and even vitamin D [63].

Major injury due to surgical or major trauma produces potentially severe immuno-

logical dysfunction resulting in the systemic inflammatory response syndrome (SIRS)

and early multiple organ dysfunction syndrome (MODS), mediated primarily by the in-

nate immune system [23-25,64]. This is followed by a compensatory anti-inflammatory

response syndrome (CARS) and late MODS, which are primarily mediated by the adap-

tive immune system [23,24,64]. Infection and sepsis may exhibit organ system dysfunc-

tion rather than its cause [65]. If so, gastrointestinal dysfunction and associated

microbiome dysfunction may cause bacterial intestinal translocation to colonize the

inflamed interstitium in the sickest patients with immunoparalysis [25,65].
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Hypercatabolism and hypermetabolism are both characteristic metabolic alterations of

SIRS after polytrauma [24]. This metabolic association could suggest that, during the

evolution of the immune response due to a severe injury, the body suffers a deconstruc-

tion process. The body would then obtain the substrates it needs to gestate new tissues

and organs for self-repair.
The endocrine inflammatory phenotype
Nutrition mediated by blood capillaries is established by angiogenesis. The new func-

tional properties of the microcirculation include the exchange of oxygen, nutrients and

waste products. This oxygen support induces oxidative metabolism. This is an efficient

method for extracting energy from blood molecules, which begins with the Krebs cycle

and ends with oxidative phosphorylation [12,25]. Oxygen and oxidative metabolism are

an excellent combination through which cells can obtain an abundant energy supply

for tissue and organ repair using specialized cells, although this combination also

produces energetic stress [25].

Little is known, however, about the capacity of eukaryotic cells to monitor the redox

state for supporting specialized functions [66]. Although NF-κB mainly triggers inflam-

mation, it also resolves it [67]. Clearly, the mechanisms that promote tissue structuring

and function restoration also include those involved in resolving inflammation [68]. In

endogenous pro-resolving lipid mediators, lipoxins, resolvins and protectins are the

most studied. In essence, pro-resolving factors return the pro-inflammatory phenotype

to its prior physiological state and therefore the microcirculatory functions of tissues

and organs return to homeostasis [69].

Inflammatory chemokines trigger the interstitial recruitment of leukocytes, but also act

as a signal for homing endothelial progenitor cells from the bone marrow to the sites of

angiogenesis [70]. A novel mechanism has been identified in vasculature development

known as vasculogenesis, or new vessel. These new vessels form from bone marrow

derived endothelial progenitor cells [71] rather than from the sprouting or elongation of

existing vessels [72,73]. During vasculogenesis or neovascularization, precursor cells from

adult bone marrow are mobilized into circulation in response to various signals, including

chemokines and their receptors. They are also homed to the source where they differenti-

ate into mature endothelial cells [74]. Although the major physiological role of circulating

endothelial progenitor cells in adults is to ultimately maintain vascular integrity, they also

home to and aid to revascularize ischemic inflammatory organs and tissues [71]. In repair,

however, mesodermal-derived cells, particularly fibrocytes derived from the bone marrow

stem cell niche, like MSC [75] or, alternatively epiblast-derived pluripotent stem cells that

survive beyond embryonic development in adult tissues as so-called “hibernating backup”

[76], play the leading role in the repair reaction. Fibrocytes can accelerate the recovery of

homeostasis by the injured organism through stimulating proliferation and vessel remod-

eling. The recruitment of mural mesenchymal derived cells, i.e. pericytes and vascular

smooth muscle cells, to nascent blood vessels, plays an important role in stabilizing and

maturing new vascular networks [72,73].

Nutrition mediated by mature blood capillaries is established through the expression

of this angiogenic and/or vasculogenic phenotype, which makes tissue and organ regen-

eration possible or, by default, their repair through fibrosis [22,25].
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In this convalescence phase, the hypercatabolic syndrome is progressively down-

regulated with the reduction of catabolic hormones and/or molecules, i.e. catecholamines,

pro-inflammatory cytokines, cortisol and glucagon and the increase of anabolic hormones,

i.e. insulin, growth hormones, insulin-like growth factor-1, or anabolic steroids, which are

supported by tissues and organs through the new vessel arrangement and morphology [77].

Since the above-mentioned neurogenic and immune phenotypes become autonomous

when expressed in the peripheral inflamed area, during the last endocrine phenotype

expression, the body regains control over the neoformed tissue. This progressive

centralization of the neuroendocrine functions, i.e. sympathetic and vagal nervous

system- and endocrine- hypothalamic-pituitary-organ-hormonal axes, could be related to

the progressive remodeling of the tissues and organs, controlled in turn by hemodynamic

and metabolic stimuli [78]. The failure to correctly centralize the neuroendocrine axes,

however, would cause a chronic dysregulation with dysfunctional impairment and patients

would suffer post-traumatic stress disorders in the long term [79,80].
The inflammatory interstitium behaves like an endothelial egg
The interstitium is considered as the space where the battle of inflammation develops.

In particular, during the surgical inflammatory response, the interstitial space increases

its size exceedingly as a consequence of the successive infiltration it suffers by mole-

cules, cells and bacteria. Since these molecular, cellular and bacterial inflammatory

mediators enter the interstitium through an endothelial pathway, the interstitial inflam-

matory space could be represented as an “endothelial egg”. Thus, this inflammatory

endothelial egg would get cellular and bacterial substrates through the postcapillary

venule endothelium, the high endothelial venule endothelium in the lymph nodes and,

in lesser degree, through the capillary endothelium. The lymphatic endothelium could

therefore be equivalent to an excretory system of the endothelial inflammatory egg

(Figure 3). Consequently, the successive phases of the inflammatory response, which ul-

timately would lead to the production of a new tissue formed by parenchyma and

stroma, would be produced in the interior of this hypothetical endothelial egg.

However, if harmful factors have an impact during the normal development of this

hypothetical inflammatory egg, formation of a tissue similar to a pre-existing one by re-

generation would be hindered, so the stromal component of the tissue would predominate

and fibrosis would be induced. The deficit or excess of the above-mentioned molecular,

cellular or bacterial mediator support also impairs the normal development of the inflam-

matory egg since it would prevent the development of a new tissue. Consequently, the

inflammatory response would be chronic and finally, healing would fail.

In surgical-related inflammation the interstitium is surrounded by a heterogenous endo-

thelium. The different types of microcirculatory vascular endothelium that surround the

inflammatory interstitium could function like an endothelial thermostat that autoregulates

bodily functions with the ability to return to normal in the short-term. However, when

the autoregulating ability of the interstitium is defective, an endothelial dysregulation

inducing a chronic inflammatory pathology would be produced [26]. If we focus on the

generic representation of the inflamed tissues and organs as an “endothelial egg”, several

hypothetical evolutive proposals could be considered during this egg development. The

different types of evolution could range between its normal development and hitching,



Figure 3 Schematic representation of normal tissue (left) and pathological (right) tissue when
surgical inflammatory stress is developed. Epithelial necrosis triggers an inflammatory response in the
interstitium that is restricted by an endothelial barrier made up of the different types of microcirculatory
endothelium. BCE: blood capillary endothelium; E: epithelium; HEVE: high endothelial venule endothelium; I:
interstitium; LE: lymphatic endothelium; M: microbiome; NE: necrosed epithelium; PCVE: post-capillary
venule endothelium.
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thanks to the influx of the mentioned inflammatory phenotypes induced by the host and

the defective development due to noxious factors, which would involve endothelial egg

development (intrinsic factors) and an effective response (by the host) to stress that

induces normal gestation (extrinsic factors) (Figure 3).
Recapitulated extraembryonic functions related to surgical inflammatory
phenotypes
Surgical-related inflammation could recapitulate ontogeny by re-expressing 2 hypothet-

ical extraembryonic trophic axes (amniotic and yolk sac or vitelline) in the interstitial

space of the injured tissue [22,78]. If so, surgical –related inflammation could represent

the postnatal debut of ancestral biochemical mechanisms that were used for normal

embryonic development. The re-expression of these ancient mechanisms is perhaps

hard to recognize, since they are anachronistic during postnatal life and are established

in a different environmental medium [22].

After fertilization, the first stage of embryogenesis is the zygote, which undergoes

cleavage by mitosis. When the morula stage is reached, the embryo establishes polarity.

The cells bind tightly to each other, forming a compact sphere (or blastocyst) with 2

different cell layers. The outermost layer becomes the trophoblast, giving rise to the

placenta. The inner cells become the inner cell mass, giving rise to the embryo and the

remaining structures, including the amnion, yolk sac, and allantoids [81]. The extraem-

bryonic coeloum or exocoelomic cavity surrounds the blastocyst, which is composed of

two structures, the amnion and the primary yolk sac. At the end of the fourth week of

gestation, the developing exocoelomic cavity splits the extraembryonic mesoderm into

two layers, the somatic mesoderm, lining the trophoblast, and the splanchnic meso-

derm, covering the secondary yolk sac and the embryo [82] (Figure 4). Coelomic fluid

results from an ultrafiltrate of maternal serum with the addition of specific placental

and secondary yolk sac by-products [82,83].

The hypothetical recapitulation of these initial phases of the embryonic development

during the early surgical inflammatory response would imply the expression of func-

tions similar to the extraembryonic coelom that surrounds the blastocyst. Accordingly,

the phenotype could be adopted by the inflamed interstitium that subsequently induces



Figure 4 Schematic representation of early embryonic development. During early embryo
development, the extraembryonic mesoderm and the exocoelomic cavity (EC) relate the trophoblast (T) to
the amnion and the secondary yolk sac (YS). The existence of two extra-embryonic axes, an exocoelomic-
amniotic axis and a trophoblastic-yolk sac axis could be proposed. This would enable the formation of the
intraembryonic mesenchymal since they are integrated. These extraembryonic functions are expressed by
the host organism when it suffers an injury and focuses on the injured tissue or organ. After these
functions are incorporated by the injured tissue or organ, this said tissue or organ acquires the embryonic
functional autonomy needed to successfully repair itself. A: amnion; EC: exocoelomic cavity; EM:
extraembryonic mesoderm; D: decidua; T: trophoblast; YS: secondary yolk sac.
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the accumulation of fluid with similar characteristics to coelomic fluid in an environ-

ment with low pH and oxygen [82-84]. In essence, interstitial edema with high levels of

proteins, in particular albumin, as well as electrolytes, metals, amino acids, antioxi-

dants, cytokines and cholesterol-derived hormones would be produced in the inflam-

matory exudate [82-88]. This initial interstitial pro-inflammatory edema secondary to

ischemia-reperfusion would play the leading role in the trophism of the injured tissue

[12,89]. Biological data and the anatomical location of the exocoelomic cavity also sug-

gest that it plays a major role as an essential nutritional pathway for the embryo and

early fetus before placental circulation is fully established [83].

The amnion is an embryonic functional axis with strong neural potential [90].

Amnion-derived multipotent progenitor cells secrete a unique combination of cyto-

kines and growth factors, called the “amnion-derived cellular cytokine solution”, which

establishes a connection between mesenchymal and epithelial cells during embryo de-

velopment [91]. The amniotic fluid surrounding the fetus may therefore be an exten-

sion of the extracellular space of the fetal tissues [92]. Furthermore, pluripotent stem

cells within the amniotic fluid could be a new source for stem cell research [93,94].

The amniotic-like phenotype could offer the stem cell a hypoxic and hydrated intersti-

tial axis [92] with cytokines and growth factors [91] favoring not only nutrition by dif-

fusion, but also transport, excretion and bacteriostatic and anti-inflammatory

protection [92,94] (Figure 4).

The wall of the secondary yolk sac in mammals is formed by an external mesothelial

layer facing the exocoelomic cavity, a vascular mesenchyme and an endodermal layer

facing the yolk sac cavity [82] (Figure 4). The formation of blood islands in the mesen-

chymal layer promotes the development of hematopoiesis and angiogenesis [95]. The

endothelial and blood progenitors of blood islands develop independently from the epi-

blast before they migrate to the extraembryonic yolk sac. Hemangioblasts found in

these blood islands could generate blood cells through intermediate progenitors called



Aller et al. Theoretical Biology and Medical Modelling 2013, 10:6 Page 11 of 20
http://www.tbiomed.com/content/10/1/6
hemogenic endothelial cells [96]. From the sixth week of gestation, the secondary yolk

sac appears as a cystic structure covered by numerous superficial small vessels [82].

The mesothelial and endodermal layers have absorptive functions and are active in

endocytosis/digestion [95,97]. In addition, the endodermal layer is the source of several

proteins including acute phase proteins, such as prealbumin, albumin, transferrin and

α1-antitrypsin [93], as well as α-fetoprotein, which is produced by both the adult and

fetal liver [82,96].

A major function of the yolk sac is carbohydrate, protein and lipid accumulation for

embryo nutrition (vitellum) [98]. The yolk sac therefore provides lipids and lipid-

soluble nutrients to embryos during the early phases of development [98]. Particularly,

the yolk sac endoderm is involved in the regulation of vascular integrity of developing

embryos [99]. During the 10th week of gestation, however, the yolk sac starts to degen-

erate and rapidly ceases to function [82]. The yolk sac-related phenotype could favor

the regulation of lipid metabolism genes [99], the hematopoietic-cell derived control

with recruitment of immune cells and the induction of an angiogenic switch [96] to en-

able new tissue immunological tolerance during the surgical inflammatory response. In

addition, through the synthesis and release of acute phase proteins, this extraembryonic

phenotype reduces oxidative, nitrosative and enzymatic stress and activates the

complement-coagulation system, regulates the lipid metabolism [50,51] and favors

phagocytosis [51], a specific form of endocytosis primarily associated with nutrition in

unicellular organisms i.e. phagotrophic nutrition, and with innate and adaptive immun-

ity in mammals [100].

During trophoblast differentiation, trophoblast cells also exhibit intense phagocytic

activity leading to events as diverse as engulfment and destruction of extracellular ma-

terial and the production of inflammatory mediators that may modulate both the im-

mune response [100] and trophoblast invasiveness [101,102].
The recapitulated amniotic-vitelline axes and the interstitial inflammatory
endothelial egg
The molecular and cellular contribution made by the above-mentioned extraembryonic

membranes, i.e. exocoelomic cavity, amnion, yolk sac and trophoblast to the intraem-

bryonic mesoderm, could be essential for embryo development and organogenesis [78].

Moreover, these primitive extraembryonic structures can be internalized by the embryo

at early developmental stages [103]. Consequently, the hypothesized re-expression of

these extraembryonic functions after injury during postnatal life could be a key process

needed to repair the injured organism [22,78].

In this way, both the amniotic and vitelline axes re-expressed during the interstitial

inflammation would contribute, to the “interstitial inflammatory endothelial egg”, those

molecules and cells that would be necessary during evolution of the wound healing re-

sponse to form a new tissue by regeneration and/or by scarring. Therefore, these two

axes act on the inflamed interstitium in a similar fashion as they act during embryonic

development, although in this case an embryo is not created, but the injured tissue is

repaired using similar mechanisms.

The representation of the inflamed interstitial tissue like a sphere whose surface is

covered by different types of endothelium -arterial capillary, venous and lymphatic-
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allows for a better understanding of the specific function of these endothelia in rela-

tionship with the embryo-like metabolism that is developed in this interstitium. The

type of substrates and cells or bacteria that the new developing tissue needs in each

evolutionary phase of inflammation could be modified by changing the venous incre-

tory phenotype and the metabolism waste products. This aim can be achieved by using

the different excretory functions of the lymphatic endothelium that surrounds the new

formed tissue (Figure 5).
Coupling the re-expressed extraembryonic phenotypes with postnatal
survival
The systemic surgical-related inflammatory response and, therefore trauma-induced

systemic inflammatory stress is a complex process involving systemic alterations related

to a stress response. The magnitude of this systemic response, however, could reflect

the demands required for tissue and organ repair. Here we have been trying to establish

similarities between the complex pathophysiological mechanisms developed in surgical

inflammation and the pluripotential extraembryonic pathways during embryo develop-

ment. During the evolution of the surgical inflammatory response, the re-expressed

extraembryonic functions target the injured tissues and this would condition the evolu-

tion of the repair response. Embryonic programs adapted to the severity of the injury

would be then be activated to begin repair. The recapitulation of the extraembryonic

coelomic and amniotic functions could be represented by initially activating the sys-

temic neurogenic axis, while the latter recapitulation of the trophoblast and yolk sac

functions would be carried out by activating a systemic bone-marrow-related axis.

The activation of the pathological systemic axes, i.e. neurogenic and bone marrow-

related, in the injured tissue could be completed in 2 steps. First, the upregulated amni-

otic phenotype would induce a sudden and early neurogenic response with systemic

cardiovascular, hemodynamic, and hydroelectrolytic alterations. In this early response,

cells that produce substances for export first synthesize and then store large amounts

of molecules, such as biogenic amines [22], in secretory vesicles ready for rapid release
Figure 5 Comparative representation between the embryo, with its extra-embryonic membranes
(left) and the inflamed tissue (right). Recapitulation of the extra-embryonic exocoelomic-amniotic (E-A)-
axis and trophoblastic-yolk sac-related (T-YS) axis within the inflamed tissue would allow the development
of a new tissue from the intra-embryonic mesoderm, as it occurs during embryonic development. BCE:
blood capillary endothelium; E: epithelium; EC: exocoelomic cavity; EM: extra-embryonicmesoderm; F:
fibroblast; HEVE: high endothelial venule endothelium; IM: intraembryonic mesenchyma; LE: lymphatic
endothelium; Leu: leukocyte; M: microbiome; MC: mast cell; MØ: Macrophage; PCVE: postcapillary venule
endothelium; YS: yolk sac.
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[104]. In turn, the upregulated systemic vitelline phenotype could mediate the inflam-

matory bone marrow response through a lipid metabolic switch linked to steroid and

acute phase response protein synthesis, respectively [22]. This slower response would

therefore be developed by steroidogenic cells that store very little steroid hormones, in

which case a rapid steroidogenic response would require immediate synthesis of new

steroids, such as cortisol. The increase of the acute-phase protein synthesis, i.e. innate

immunity, by the hepatocytes is linked with the acute phase response and follows the

upregulation of pro-inflammatory cytokines and chemokines [50,51].

Finally, the systemic pathological axes, i.e. neurogenic and bone-marrow related, are

focused and coupled in the interstitium of the injured tissues and organs. This intersti-

tial integration of both pathological axes in the injured tissues and organs could finally

induce a gastrulation-like process [78]. Gastrulation, which involves the de novo forma-

tion of reparative tissue, is based on the recapitulation of the intra-embryonic mesen-

chyme formation process [78,81]. In essence, the integration of both extraembryonic-

related phenotypes, coelomic-amniotic and trophoblast-vitelline, by the multipotent

mesenchymal stem/stromal cells [105-107] would support the functional and metabolic

heterogeneity needed to successively modulate their injured microenvironment during

the evolution of the surgical inflammatory response [105,107]. Therefore, the inter-

action of extraembryonic functional axes in the interstitium of the damaged tissue and

organs allows for the recapitulation of the mechanisms characteristic of gastrulation,

subsequently forming a mesenchyme similar to that present in the early development

phases [22,78].

Mesodermal-derived cells, particularly fibrocytes [108] or alternatively, epiblast-

derived pluripotent stem cells that survive beyond embryonic development in adult tis-

sues and known as the “hibernating backup” [109], play the leading role in the repair

reaction. Fibrocytes are bone marrow-derived mesenchymal progenitors that express

surface markers for leukocytes and mesenchymal cells [110]. In addition, fibrocytes can

accelerate wound healing by stimulating cell proliferation, reepithelialization, and

angiogenesis [111], although they can also be involved in inflammatory fibrotic pro-

cesses [112,113].
A phylogenetic point-of-view about surgical inflammation
Since it has been hypothesized that during the surgical-related inflammatory response,

extraembryonic axes i.e. coelomic-amniotic and trophoblastic-yolk sac-related, are sys-

temically re-expressed and converge into the interstitium of injured tissues and organs,

the final aim of this process could also be collaborating in some type of development

similar to embryonic development during the postnatal life [22].

The repair process could therefore have properties comparable to an embryo. One of

the main objectives of the upregulated extraembryonic axes could be collaborating in

the establishment of an open circulation in the injured tissues and organs during the

early phase of the inflammatory response. An open circulatory system could facilitate

interstitial fluid diffusion and concomitantly tissue nutrition when the blood circulation

loses its prominent role [22,114]. Animals have adapted their circulatory system during

phylogeny. Vertebrates have a closed circulatory system and a heart that drives blood

through closed blood vessels [115], whereas in invertebrates, like insects, the body fluid
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(hemolymph) is pumped by a dorsal heart through the tissues with no closed vessels

[116]. In the inflamed tissues and organs, the closed circulatory system could therefore

suffer a switch to acquire some of the characteristics of the open circulatory system

and possibly characteristics of the hemolymph [114]. The inflammatory exudates bathe

the cells of the injured tissues and organs thanks to the quick infiltration of the extracellu-

lar matrix [22]. Consequently, through the activation of the postcapillary venules and high

endothelial venules endothelia, extravasation of plasma and blood cells is produced during

the inflammatory response. An open pathway in the inflamed tissues and organs would

therefore be established through the associated simultaneous activation of the lymphatic

circulation [22,114]. Thanks to this new open microcirculatory system, where hemo-

lymphatic circulation becomes predominant, tissues and organs are provided with

molecules and cells coming from the upregulated extraembryonic coelomic-amniotic

(i.e. neurogenic-related axis) and the trophoblast-yolk sac (i.e. bone-marrow-related axis)

axes. Perhaps through the upregulation of ancestral phylogenetic mechanisms, the

plasma, the interstitial fluid and lymph compartments could become closely linked during

inflammation, thus favoring the continuous flow of fluid and cells from one compartment

to the next [22,114] (Figure 1).

The venous endothelium acquires trophoblastic properties since it becomes an inter-

mediary between the stressed host and the inflamed interstitium, playing the leading

role in the host trophism [100,101]. The inflammatory venous endothelium, functioning

like a trophoblastic barrier between the inflammatory interstitium and the injured or-

ganism, represents the site for the immunological recognition of damage and the

pathogen-associated-molecular patterns (DAMPs and PAMPs) through the innate im-

mune receptors, such as the Toll-like receptors (TLRs) and Nod-like receptors (NLRs)

[117]. In this way, the inflammasome, a multi-protein complex including a NLR, is acti-

vated in response to PAMP and DAMP signals, which mediate the processing of intra-

cellular pro-interleukin (IL)-1β and pro-IL-8 into their active secreted forms [117,118].

While DAMPs and PAMPs activate the inflammasomes, a variety of regulatory

mechanisms minimize changes caused by the inflammatory activity, such as molecular

chaperones and heat shock proteins [118].

Vertebrate cells contain cholesterol and although different tissues have characteristic

patterns of a cholesterol metabolism, the basic pattern is similar in all cells [119]. Dur-

ing inflammation, cholesterol esters may be transferred from high density lipoproteins

(HDL) to apolipoprotein E and apoliprotein B (apo B)-containing particles, such as

low-density lipoproteins and very low density lipoproteins (LDL/VLDL). The trapping

of apolipoproteins, particularly apo B containing particles, is an essential initiating

event for the development of vascular inflammation [120]. Furthermore, the small non-

coding RNA (microRNAs) could regulate the expression of key genes in cholesterol

metabolism during inflammation [119]. Today, it is accepted that inflammation and the

concomitant acute phase response induce marked changes in the lipoprotein profile

[121] and cholesterol metabolism [122]. The characteristics of the inflammatory acute

phase response and the associated cholesterol traffic have been compared with those

playing the lead role in the accumulation of yolk materials into oocytes during oogen-

esis and their mobilization during embryogenesis [114].

The hypothesized endothelial inflammatory egg would turn into a reservoir of nutri-

ents, including albumin. Bird embryos also consume egg white as a supplementary
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nutrient to yolk proteins [123]. Ovalbumin, ovotransferrin, trypsin inhibitor and other

egg white proteins are absorbed into the extraembryonic cavity, through the albumen

sac, then into the amniotic cavity and finally, reach the yolk sac through the vitello-

intestinal duct [123].

Both cholesterol acquisition and leukocytic infiltration by the inflamed tissue collabor-

ate to establish its new neuro-endocrine autonomy. Cholesterol is used locally to

synthesize glucocorticoids and mineralocorticoids, which could regulate microcirculatory

functions and immune cell activation. More evidence demonstrates the novo synthesis of

glucocorticoids and mineralocorticoids in primary lymphoid organs, skin, brain and intes-

tine [124]. Perhaps this ability of local corticosteroid synthesis is upregulated in the

inflamed tissue due to the metabolic and functional needs of the neoformed tissue [114].

The pro-inflammatory and anti-inflammatory functions of androgens and estrogens and

progesterone respectively, suggest that endogenous sex steroids may influence immune

functions [125,126]. Progesterone, for example, increases vascular permeability and local

accumulation of inflammatory cells. Clearly the role of progesterone in the inflammatory

response merits further investigation [125]. In addition, leukocytes in the inflamed inter-

stitium could develop neuroendocrine functions. Particularly, the pro-opiomelanocortin

(POMC)-derived peptides found in leukocytes exhibit the same structure as those present

in the pituitary [127]. Also, leukocyte-derived microparticles could harbor cytoplasmic

proteins as well as bioactive lipids in the inflamed interstitium [128].

Inflamed tissues and organs acquire a progressive neuro-immune-endocrine autonomy

through the previous recapitulation of extraembryonic functions. We have hypothesized

that the phylogenetic evolution of our body is written in the successive phases making up

the acute inflammatory response [129]. When the evolution of a severe traumatized

patient is favorable, the patient could therefore undergo dedifferentiation followed by a

process of differentiation (or specialization) representing a complete metamorphosis,

just as it occurs with insects [128]. This specialization would require the return of

oxidative metabolism and the development of a closed circulation, in which epithelial

regeneration and angiogenesis are mainly involved, as well as the centralization of the

neuro-immune-endocrine functions that are reduced to a symbolic presence in the

periphery [22].

Angiogenesis allows for nutrition mediated by blood capillaries. The new functional

properties of microcirculation include the exchange of oxygen, nutrients and waste pro-

ducts. This oxygen support induces oxidative metabolism, an efficient method for

extracting energy from blood substrates. Oxygen and oxidative metabolism are an ex-

cellent combination through which cells can obtain an abundant energy supply for

repairing tissues through specialized cells. This combination, however, produces ener-

getic stress [12,25]. Perhaps the persistence in the adult microcirculation of a hypoxic

venous territory, key for recapitulating those ancestral functions enabling development,

is our safe-conduit to pass without vital risk through a hyperoxigenated environment. If

so, then the maintenance of this microcirculatory hypoxic world in mammals has been

made at the expense of either diverting oxygen through meta-arterioles or consuming

and removing it through the specialized epithelia. In this case, our energetic way of life

would be no less than a system for scavenging toxins with the ultimate aim of achieving

the survival of our true pluripotential and ancestral gestation mechanisms. The return

to ancestral phylogenetic mechanisms of life during surgical inflammation therefore
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opens a splendid path for translational research, as it has been previously shown in

remodeling wound healing and inflammation in Drosophila [130].

The recapitulation of ontogenic and phylogenetic mechanisms during the inflamma-

tory response in the mammal is an old hypothesis dating back to the 19th Century

when Metchnikoff described macrophage functions [131]. He had already considered

that the phagocytes were mediators of physiological inflammation, i.e. developmental

conditions, ageing process and pathological inflammation. Therefore, Metchnikoff

recognized a long phylogenetic and ontogenic history of the phagocytes. In fact, he sug-

gested that the phagocyte functions were the same through evolution, but the context

is what changed or was different [131].

Since then, many authors have posed the close similarity between the mechanisms of

inflammation and other physiological processes, like animal regeneration [132-134] or

the regulation of animal development [135]. If this were true, then we could consider

the study of inflammatory mechanisms as a valuable tool for identifying the nature of

countless processes of individual development as well as the phenotypic changes that

occur during evolution [114,133].

Conclusions
Surgical-related inflammation could be considered a high-grade stress response asso-

ciated with an increasingly complex trophic functional system for using oxygen [131].

These mechanisms triggered by an acute stressor could be based on the recapitulation

of ontogenic and phylogenic-related functions. Thus, the injured organism suffers pro-

cesses of dedifferentiation, catabolism and autophagy mediated by the neuro-immune-

response to stress. Consequently, the different types of endothelium that make up the

microcirculation of the injured tissues and organs suffer a switch to turn into a func-

tional endothelial inflammatory egg, capable of re-expressing extraembryonic functions

to create a new tissue or organ.

It would be interesting to extrapolate this inflammatory response hypothesis to other

types of inflammatory responses, as for example, the cause behind deep venous throm-

bosis. In the past, this was a common complication during the post-traumatic or post-

operatory period [136], which today is prevented, to a great extent, using anticoagulant

prophylaxis. In essence, the mechanisms that regulate its production are also developed

at the endothelial level [137,138]. Thus, endothelial cells exposed to sustained hypox-

emia or hypoxic injury could “cry for help” perhaps by developing a model of evolution

that combines ischemia-reperfusion with hypercoagulability, leukocyte infiltration and

remodeling by fibrosis [138]. The pathophysiological mechanisms that characterize the

surgical inflammatory response could therefore be essential for the normal life of ani-

mals, such as invertebrates, far below mammals on the phylogenetic scale. In this paper,

we have described those arguments that seem to demonstrate the existence of a recap-

itulation of ontogenic and phylogenetic mechanisms during the evolution of the surgi-

cal inflammatory response with an intensity related to the intensity and severity of the

injury suffered by the body.
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