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Abstract

Background: Energy homeostasis ensures the functionality of the entire organism.
The human brain as a missing link in the global regulation of the complex whole
body energy metabolism is subject to recent investigation. The goal of this study is
to gain insight into the influence of neuronal brain activity on cerebral and
peripheral energy metabolism. In particular, the tight link between brain energy
supply and metabolic responses of the organism is of interest. We aim to identifying
regulatory elements of the human brain in the whole body energy homeostasis.

Methods: First, we introduce a general mathematical model describing the human
whole body energy metabolism. It takes into account the two central roles of the
brain in terms of energy metabolism. The brain is considered as energy consumer as
well as regulatory instance. Secondly, we validate our mathematical model by
experimental data. Cerebral high-energy phosphate content and peripheral glucose
metabolism are measured in healthy men upon neuronal activation induced by
transcranial direct current stimulation versus sham stimulation. By parameter
estimation we identify model parameters that provide insight into underlying
neurophysiological processes. Identified parameters reveal effects of neuronal activity
on regulatory mechanisms of systemic glucose metabolism.

Results: Our examinations support the view that the brain increases its glucose
supply upon neuronal activation. The results indicate that the brain supplies itself
with energy according to its needs, and preeminence of cerebral energy supply is
reflected. This mechanism ensures balanced cerebral energy homeostasis.

Conclusions: The hypothesis of the central role of the brain in whole body energy
homeostasis as active controller is supported.

Keywords: Energy metabolism, Physiological modeling, Dynamical system, Energy
homeostasis, Neuronal brain activity
Background
Regulation of the energy metabolism is crucial to ensure functionality of the human or-

ganism. However, the interactions of numerous energy metabolites and neuroendo-

crine mechanisms in the complex regulation are still not completely understood.

So far, there exist various theoretical approaches to explain the regulation of the human

energy metabolism. Two traditional concepts are called the glucostatic theory [1] and the

lipostatic theory [2], in which blood glucose or lipids, respectively, are the regulated quan-

tities. The decisive role of the brain in the global regulation of the complex whole body

energy homeostasis is subject to current research activities. Studies suggest a priority of
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cerebral energy supply, while all organs in the organism compete for available energy re-

sources [3-7].

The “Selfish Brain Theory” provides a new approach to explain the regulation of the

human whole body energy metabolism [8,9]. This theory includes regulatory mechanisms

of both the glucostatic and the lipostatic theory and extends them by the administrative

position of the brain. The brain is not an isolated organ within the organism but, right to

the contrary, the superordinate administrative instance within the hierarchy of all organis-

mic processes. Concomitantly, the brain is a heavy energy consumer with an uptake of up

to 20% of total glucose on daily average [10]. According to the Selfish Brain Theory, the

brain has two principal mechanisms to provide itself with sufficient energy, on the one

hand, the regulation of external food intake and on the other hand, the allocation of in-

trinsic energy resources from the body periphery. Under conditions of low cerebral energy

levels, glucose transport across the blood brain barrier seems elevated as indicated by in-

creased levels of the cerebral high-energy phosphate content [5]. Accordingly, the energy

transport into peripheral stores is suppressed. With low blood insulin concentrations, glu-

cose is allocated to the brain since glucose transport across the blood brain barrier, in con-

trast to peripheral organs and tissues, is mainly insulin-independent.

Hence, identifying control mechanisms of the brain energy homeostasis is a major

goal in obtaining a systemic understanding of the human overall energy metabolism

and thereby providing insight into pathological regulation [8]. This motivates the inves-

tigation of the tight link between neuronal brain activity and systemic metabolic

responses of the organism.

In the present study, we aim to gain specific information about the regulatory ele-

ments of the human brain in the systemic energy homeostasis. Therefore, we combine

mathematical modeling and experimental data. In our novel approach, the integrative

behavior of the human whole body energy metabolism is mathematically modeled in a

compact dynamical system [11,12]. This model takes into account the central roles of

the brain with respect to the systemic energy homeostasis. That is, the brain is consid-

ered as regulatory instance and as energy consumer. Energy fluxes and their control

signals, such as glucose fluxes and hormonal signals, are integrated in the dynamical

system. The peripheral hormone insulin is regarded not only as local signal but also as

key feedback signal to the brain [13-15]. Hence, in the mathematical model we integrate

the competition for energy between brain and body periphery. There exist numerous

mathematical models of human glucose metabolism, e.g., [16-22]. However, in our novel

approach we formulate the cerebral energy content in terms of high-energy phosphate

levels comprising energy metabolites that emerge from several energy supplying substrates

such as glucose and lactate. The novelty of our approach lies in combining a brain cen-

tered mathematical model with experimental data of an euglycemic-hyperinsulinemic

clamp to reveal systemic information of the brain energy metabolism. Our approach

includes a new parameter estimation method to unfold major features of the energy

regulation.

A close relation between brain energy homeostasis and systemic glucose metabolism

has been suggested several times, e.g., [7,23,24]. In an experimental study [25], the close

link between neuronal brain activity and subsequent metabolic responses of the human

organism was for the first time investigated in a human in vivo approach. In order to

clarify underlying mechanisms in the context of this experimental study, we solve the
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inverse problem and identify model parameters of the dynamical system. Thereby, we

aim to gain specific information about the relationship between neuronal brain activity,

cerebral energy homeostasis, and peripheral metabolism.

In the following Material and methods section, we describe the experimental study in

Experimental study section and introduce the mathematical model in Brain-centered

energy metabolism model section. Parameter estimation methods are presented in

Parameter identification section and Parameter identification setup section. Results of

the parameter identification are investigated in Results section. We close with a discussion

and a brief outlook in Conclusions section.
Material and methods
Experimental study

The goal of our experimental study is to investigate the close link between neuronal

brain activity and subsequent metabolic responses of the human organism at a systemic

level. In [25], the methods and results of the experimental study are described in detail.

The study design is depicted in Figure 1.

In a randomized sham-controlled crossover design, a homogeneous group of 15

healthy young male volunteers with a body mass index of 23.2 ± 0.38 kg/m2 is exam-

ined. Neuronal brain activity is stimulated by transcranial direct current stimulation

(tDCS) during the time interval t ∈ [125, 145] (minutes). Transcranial stimulation of the

brain causes transient effects on motor cortical excitability outlasting the stimulation

period [26]. Sham stimulation serves as control condition. For sham stimulation, elec-

trodes are placed at the same site without current stimulation. TDCS-induced effects on

cerebral energy metabolism and systemic glucose regulation are measured. The study is

carried out in accordance with the Declaration of Helsinki (2000) of the World Medical

Association and has been approved by the ethics committee of the University of Lübeck.

Each participant gave written informed consent.
31Phosphorus magnetic resonance spectroscopy (31P-MRS) allows performing non-

invasive in vivo measurements of brain metabolites that are centrally involved in the

energy metabolism. Phosphate metabolites such as adenosinetriphosphate (ATP), i.e.,

the sum of α-, β-, and γ-ATP, as well as phosphocreatine are measured in the cortex

reflecting the overall high-energy phosphate turnover [27]. Here, the ratio of ATP and

inorganic phosphate (Pi) is evaluated as an indicator of the intracellular energy status
Figure 1 Design of the experimental study. Blood samples and 31phosphorus magnetic resonance
spectra (MRS) were regularly taken under steady state conditions of an euglycemic hyperinsulinemic clamp
(EHC) to monitor cerebral and peripheral energy metabolism. Transcranial direct current stimulation (tDCS)
or sham stimulation, respectively, were induced to affect neuronal brain activity.
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[25,28]. 31P-MR spectra are measured at times t = 115, 160, 205, 215, 225, 235, 245,

385 (minutes).

During euglycemic-hyperinsulinemic clamping, an insulin infusion at the predetermined

fixed dosage of 1.5 mU (kg min)−1 and a variable glucose infusion are administered in

order to reach stable plasma glucose concentrations between 4.5 and 5.5 mmol/l. Under

steady-state conditions of euglycemia, the glucose infusion rate equals glucose uptake by

all tissues in the body [29] and is therefore a measure of glucose tolerance. To monitor

the peripheral glucose metabolism, blood samples of glucose and insulin are regularly

taken at times t = 0, 110, 155, 210, 220, 230, 240, 300, 340, 380 (minutes).

While blood glucose and insulin concentrations do not differ between conditions,

overall cerebral high-energy phosphate measurements display a biphasic course upon

tDCS as compared with the sham condition, see [25] and Figure 2. An initial energetic

drop in the ATP/Pi ratio upon tDCS is observed. Subsequent 31P-MR spectra reveal a

rapid increase above the control condition followed by a return of the ATP/Pi ratio to

baseline levels. Glucose infusion rates show the same biphasic response to tDCS

indicating that transcranial stimulation improves systemic glucose tolerance [29-31].

Measurements of the hypothalamus-pituitary-adrenal (HPA) hormonal system reveal

decreasing concentrations of circulating stress hormones such as cortisol upon tDCS

(compare [25]).

The experimental data demonstrate that transcranial brain stimulation not only

evokes alterations in local neuronal processes but also clearly influences brain energy
Figure 2 Experimental data. Effects of transcranial direct current stimulation (red) on cerebral ATP/Pi, blood
glucose, and insulin during a hyperinsulinemic-euglycemic glucose clamp condition as compared with the
sham stimulation (black). The top right figure shows relative changes of cerebral ATP/Pi in proportion to
matched sham condition values. Data show a biphasic course with an initial drop by trend followed by a rise.
The gray background indicates the stimulation interval. Data represent mean values +/- standard error of mean
(Figure reproduced from [25]).
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homeostasis and peripheral metabolic systems regulated by the brain [25]. Hence, manipu-

lating brain activity by tDCS affects peripheral metabolic regulation such as the glucose me-

tabolism and related neuroendocrine mediators. Effects of tDCS on cerebral ATP/Pi, blood

glucose, and insulin as compared with the sham stimulation are shown in Figure 2.

Nevertheless, the mechanisms underlying these experimental observations remain un-

known. Concerning the specific mechanisms by which neuronal excitation, via a drop in high-

energy phosphate content, improves glucose tolerance, one can only speculate at this point.

The objective of the following mathematical analysis is to gain insight into physiological

mechanisms underlying the effects of brain stimulation on cerebral and peripheral energy

metabolism. In order to clarify the underlying mechanisms in this context, we combine

experimental data with the mathematical model introduced in the following subsection.

Brain-centered energy metabolism model

Physiological processes may be described by systems of ordinary differential equations,

dy
dt

t; pð Þ ¼ f t; y; pð Þ with y 0ð Þ ¼ y0; ð1Þ

where y : R� Rm→Rn and f : R� Rn � Rm→Rn are time-depending functions with

t∈[0,T]. Here, y0 denotes the initial conditions. We collect unknown model parameters

to be estimated in the vector p = (p1,…, pm)
⊤. In the following, given parameters

regarded as constant are assembled in a vector c.

A collection of mathematical models of this kind describing interactions of main

components of the human glucose metabolism can found in the book of Chee and

Fernando [17]. Most of these models are based on the glucostatic or lipostatic theory.

Exemplarily, one could mention the well-known Minimal Model [32], the Ackerman

Model [14], or more recently models published in [19,21]. Additionally, mathematical

models developed in the context of the Selfish Brain Theory can be found in the review

paper by Chung and Göbel [33].

Here, we regard a mathematical model of the human whole body energy metabolism

considering the brain not only as energy consumer but more importantly as a super-

ordinate controller, compare [12]. The model includes energy metabolites in separated

compartments, energy fluxes between these compartments, and signals directing energy

fluxes within the organism, see Figure 3.

The brain-centered model of the energy metabolism is given by the system of four or-

dinary differential equations,

dA
dt

¼ p1
G
A
−p4;

dG
dt

¼ −p1
G
A
−c1GI þ p2

R
G
þ Gext;

dI
dt

¼ p3A−c2I þ Iext;

dR
dt

¼ c1GI−p2
R
G
−p5:

ð2Þ

Cerebral energy content, i.e., high-energy phosphates in the brain, is denoted by A.
Furthermore, G is the blood glucose concentration, and R specifies energy resources in



Figure 3 Illustration of the brain centered energy model (2). Energy fluxes between compartments
(solid) and control signals directing energy fluxes within the organism (dashed).
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the body, which comprise available energy reserves foremost in liver, muscle, and fat

tissue. Note, various types of energy, such as fat, glycogen, and glucose, are combined

in the energy resources compartment. In addition to energy metabolites, the model

contains the control signal, identified as blood insulin concentration.

Conceptually, our model bases on conservation of energy. In general, stimulatory

influences are modeled as proportional relations and inversely proportional relations

describe prohibitive influences. The glucose flux from the blood into the brain crossing

the blood brain barrier is proportional to intensified by a factor p1 [M s−1]. This factor

quantifies the glucose flux rate from the blood into the brain across the blood brain

barrier. Suppose the cerebral energy content A is low, the facilitated diffusion process

from the blood compartment into the brain via the passive glucose transporter GLUT1

is accelerated. Contrary, high levels of A inhibit this flux. This can be seen as “energy

on demand” of the brain. This concept has been published in [12]. Glucose G needs to

be available in the blood compartment to reach the brain.

Our model combines energy resources and metabolites, such as glycogen, glucose

and lactate, in the compartment G. The energy flux from the resources into the blood

compartment, which is composed of several sub-mechanisms, is proportional to the

energy resources R and anti-proportional to the actual blood glucose concentration G

with a flux rate with a factor p2 [M s−1], i.e., p2R / G. This flux includes endogenous

glucose production by the liver amongst others.

The hormone insulin acts not only as local response to the blood glucose concentration.

Moreover, it is regarded as central feedback signal of the brain with an insulin secretion

factor p3 [s−1]. Notice that with low cerebral energy, ventromedial hypothalamic centers

inhibit pancreatic insulin secretion [34-36]. Being an anorexigenic hormone, peripherally

secreted insulin is a key feedback signal to the brain reducing food intake and systemic

glucose uptake [13,15]. Energy consumption of the brain and energy consumption by the

periphery are denoted by p4 [M s−1] and by p5 [M s−1].

Insulin-dependent glucose uptake from the blood into the energy resources com-

partment is modeled by c1GI with a parameter c1 [(M s)−1]. This flux mainly comprises

glucose uptake into the peripheral stores, i.e., muscle and fat tissue. To accelerate this

flux, glucose and insulin need to be available in the blood at the same time in order to

activate glucose uptake via the insulin-dependent glucose transporter GLUT4.



Göbel et al. Theoretical Biology and Medical Modelling 2013, 10:50 Page 7 of 19
http://www.tbiomed.com/content/10/1/50
Degradation of insulin is supposed to be of first order with the insulin degradation

rate c2 [s−1]. External glucose infusion is denoted by Gext(t) [M s−1], insulin infusion is

Iext(t) [M s−1].

To meet the simplified notation from Equation (1) we collect the state variables

y = (A, G, I, R)⊤ and the parameters p = (p1,…, p5)
⊤. The constants c = (c1, c2)

⊤ and

time-dependent external infusions Gext, Iext are not explicitly shown in (1). Notice that

all parameters, constants, and states are non-negative. Model properties he been in-

vestigated in detail and it has been shown that the model realistically reproduces

qualitative and quantitative behavior of the whole body energy metabolism even for a

large class of physiological interventions (see [11,12] for details).

To accommodate the characteristics of the experimental study, the dynamical system

(2) slightly differs from the model introduced in [12]. First, glucose and insulin infusions

are administered. Secondly, ingestion of food is neglected since no food intake occurs

during the examinations.

Parameter identification

In the following, we introduce the general technique to estimate the model parameters

p. The solution y of the dynamical system (2) varies with respect to the model parame-

ters p. In order to validate and implement model predictions, the mathematical model

needs to be compared to experimental data. Here, we analyze the model behavior in

identifying the unknown model parameters p = (p1,…, p5)
⊤ of our dynamical system in

Brain-centered energy metabolism model section using experimental data presented in

Experimental study section.

In general, parameter identification problems for ordinary differential equations can

be stated as follows

min
p;y0ð Þ

1
2
∥σ−2 y τ; pð Þ−dð Þ∥2

2 þ S λ; pð Þ

subject to
dy
dt

¼ f t; y; pð Þ and y τ1ð Þ ¼ y0:
ð3Þ

Equation (3) states a classical constrained optimization problem, where constraints
are given by an initial value problem [37]. With ∥·∥2 denoting the Euclidian norm, we

minimize the distance between the model solution at the times τ = (τ1,…, τk)
⊤, where

the data are measured and given data d ¼ d1;…; dkð Þ⊤∈Rk ; the minimization is

constrained by the validity of the mathematical model. With σ2∈R denote the variance

of the data assumed to be independent and identically distributed. The term S(λ,p) is a

convex regularization inducing prior knowledge on the parameters for which we will

provide details later. For convenience, we assume the model function f to be continuously

differentiable. Note that the optimization problem (3) corresponds to the maximum likeli-

hood estimator including a prior and is a standard formulation of a parameter identifica-

tion problem [38]. Note that estimator (3) infers that the errors are independently and

identically normal distributed.

We seek to find p̂∈Rm minimizing Equation (3). The optimization problem (3) can

only be targeted by numerical optimization methods. Problem (3) is a typical inverse

problem since data and model are given and we aim to identify the model parameters.

This inverse problem is well known to experimentalists and various methods have
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been established to solve such type of parameter estimation problems. Most com-

monly used are single and multiple shooting methods. Both methods face certain

advantages and disadvantages. Single shooting methods are easy to implement but are not

robust to initial guesses of the model parameters and optimization algorithms are likely to

fail or to find “non-optimal” local minimizer. Multiple shooting methods are by far more

robust and are shown to face better convergence. However, multiple shooting methods

solve constrained optimization problems, which dramatically increase the algorithmic

complexity [37,39].

Here, we follow an approach similar to methods proposed by Ramsay et al. [40],

Chung and Haber [41], or Poyton et al. [39]. Equation (3) can be restated as

min
p;y0ð Þ

1
2
∥σ−2 y τ; pð Þ−dð Þ∥2

2 þ S λ; pð Þ

subject to
dy
dt

−f t; y; pð Þ
����

����
2

¼ 0 and y τ1ð Þ ¼ y0:
ð4Þ

The equivalence of optimization problem (3) and (4) stays true for any appropriate

integral norm ∙ (here we choose the L2 –norm). Constrained optimization problems

such as (4) are commonly approximated by performing a Lagrangian relaxation [38].

We get:

min
p;y0ð Þ

1
2
∥σ−2 y τ; pð Þ−dð Þ∥2

2 þ
α

2
dy
dt

−f t; y; pð Þ
����

����
2

þ S λ; pð Þ

subject to y τ1ð Þ ¼ y0;

ð5Þ

with the Lagrangian multiplier a ≥ 0. Notice that for increasing a unconstrained

optimization problem (5) becomes optimization problem (4). Next, we choose a

standard discretize-then-optimize approach to solve problem (5), numerically. We

let u ¼ u1;…; ukð Þ⊤∈Rk be a approximation of y at the data points τ1,…, τk and Dt be

a finite differences operator approximating dy / dt at τ1,…, τk, then we can restate

the optimization problem (5) as the discretized and unconstrained optimization

problem.

min
p;uð Þ

Φ p; uð Þ ¼ 1
2
∥σ−2 u−dð Þ∥2

2 þ
α

2
∥Dt u−f τ; u; pð Þ∥2

2 þ S λ; pð Þ: ð6Þ

Notice that we can neglect the remaining constraint in (5) since y0 = u1 is already
included in the search parameters and is therefore always fulfilled. Equation (6)

describes the general parameter estimation framework. This optimization problem has

the advantages that it is robust and the unconstrained nature allows to use fast

gradient-based methods, for details see [40,41]. Notice that if the data points τ1,…, τk
are t dense, one may want to utilize a spline function s with knots τ and coefficients q

at dense points ξ ¼ ξ1;…; ξ lð Þ⊤ to capture the dynamic of the differential equation.

Then Equation (6) reads

min
p;qð Þ

Φ p; qð Þ ¼ 1
2
∥σ−2 s τ; qð Þ−dð Þ∥2

2 þ
α

2
∥s0 ξ; qð Þ−f ξ; s ξ; qð Þ; pð Þ∥2

2 þ S λ; pð Þ: ð7Þ
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One further choice to make is choosing the regularization term S(λ,p). A most com-

mon choice for the regularization term is

S λ; pð Þ ¼ λ

2

X pi−�pi

�pi

� �2

;

where �p∈Rm is a given parameter representing physiological parameter values and λ ≥ 0.
With this we have established a parameter estimation method to tackle the model of

Brain-centered energy metabolism model section.

Parameter identification setup

Next, we present the parameter estimation setup for the model in Section 2.2 with the

given data from Section 2.1. As derived in Section 2.2, all parameters of our model (2)

have a physiological interpretation. Since insulin is at hyperphysiological levels in our

experimental examination we will consider the dependent parameters c1 and c2 to be

constant. Flakoll PJ, Wentzel LS, Rice DE, Hill JO and Abumrad NN [42] quantify the

insulin-dependent whole body glucose uptake corresponding to c1 ≈ 0.06 (pM min)−1.

Information about insulin clearance is given by [43] resulting in c2 ≈ 1.4 min−1. This

yields the fixed parameter values c = (c1, c2) = (0.06, 1.4)⊤.

For the parameter �p ¼ �p1;…; �p5ð Þ⊤; we choose physiologically relevant parameter

values gathered from the literature. We use �p1≈0:15 mM/min for glucose transport rate

across the blood brain barrier [44]. Baron AD and Clark MG [45] specify the glucose flux

between peripheral stores and blood with �p2≈0:6 mM/min. For the insulin secretion rate,

we choose �p3≈20 min−1, see [46]. The work by Flakoll PJ, Wentzel LS, Rice DE, Hill JO

and Abumrad NN [42] provides the maximal rate of glucose utilization. This grants an

insight into the peripheral energy consumption �p5≈0:7 mM/min and cerebral energy

consumption �p4≈0:175 mM/min since the brain uses up to 20% of total body glucose

[10]. Hence, we choose the regularization value �p ¼ 0:15; 0:6; 20; 0:175; 0:7ð Þ⊤.
In order to establish global convergence, we choose a Monte Carlo sampling technique

of the initial guess p0. We pick 500 randomly chosen normally distributed samples with

mean �p . For each sample we calculate the minimizer and choose the overall minimizer �p

to be the minimizer of the objective function Φ, see Equation (4).

To solve the optimization problem (4) numerically we use a Gauss-Newton

method with Armijo line search, see [38]. The regularization parameters a and λ are

set to a = 5 10−3 and λ = 10−7 for our numerical investigations. By empirical observations

these values lead to a good balance between under- and overfitting.

Results
Model validation

The goal of this section is to show that parameter values of our dynamical system (2)

can be chosen such that the resulting mathematical model is able to approximate the

experimental measurements of the study described in Section 2.1. To validate the

mathematical model, we first identify the model parameters by mean values of the ex-

perimental data for cerebral ATP/Pi, blood glucose, and insulin concentration in the

sham stimulation condition. Note, for the energy resources compartment no experi-

mental data are available, and we arbitrarily set R = 50 [mmol/l]. We let the



Göbel et al. Theoretical Biology and Medical Modelling 2013, 10:50 Page 10 of 19
http://www.tbiomed.com/content/10/1/50
corresponding variance σ2 = 1000 be fairly high, which allows the optimization method

to pick adequately different values for R without contributing much to the function Φ.

Thereby, we obtain the minimizer p̂ ¼ 0:0049; 0:0683; 11:3768; 0:0025; 0:8331ð Þ⊤ with

objective function value Φ = 6.7611 10−5 for the placebo group.

In order to test the accuracy of the estimation, we calculate the distance between data

and calculated model by the relative mean squared error

θ pð Þ ¼ 1
K

XK
k¼1

yk−dk

dk

� �2

; ð8Þ

where K is the number of data points. The vector d contains the experimental data of

cerebral high-energy phosphates, blood glucose, and insulin concentrations, (experimental

data and model prediction are shown in Figure 4). The vector y specifies the respective so-

lution of the dynamical system (2) evaluated at the data time points in the interval [110,

385] min. We obtain the relative mean squared error θ p̂ð Þ ¼ 7.6012 · 10−3.

The parameter estimates for the mean data from the tDCS intervention read

p̂ ¼ 0:0092; 0:0474; 10:8068; 0:0006; 0:8507ð Þ⊤ , with Φ = 2.0410 10−4 and θ p̂ð Þ ¼
9.6891 · 10−3 and are illustrated in Figure 5.

Since we conduct parameter identification with 500 random initial values p0 as well

as the values Φ and θ are small, it is likely that the estimated values p̂ are the global

minimum. Therefore, the model parameters can be chosen such that the mathematical

curves closely approximate the data. Note that the estimated parameter values p̂ stay

not too far from the initial guesses �p , taken from the literature [4,17,39,40]. However,

uncertainties in the data may amplify uncertainties in the estimated parameters.

With the estimated parameter values p̂ we solve the forward problem. Figures 4 and

5 show the model curves y = (A,G, I, R)⊤ compared with experimental data for sham

and tDCS interventions. The model predictions closely approximate the measurements.

Ideally a glycemic-hyperinsulinemic clamp generates constant blood glucose and

plasma insulin levels. Constant glucose and insulin levels by themselves do not contrib-

ute much insight to the parameter estimation. However, the glucose and insulin fluxes

Gext and Iext are recorded and are included in the parameter estimation. Note that

blood glucose predictions are slightly unsteady due to the external glucose infusion.

To validate the mathematical model, we perform a sensitivity analysis. The results of

the sensitivity analysis for the two central parameters p1 and p4 are illustrated in

Figures 6 and 7, respectively. We find that model predictions of cerebral ATP A, blood

glucose G, and insulin I are sensitive to changes in these parameters. Modifying model

parameters p2, p3, p5 and initial values y0 also affects the predicted profiles, indicating

their sensitivity to changes in these parameters as well (analysis not shown). Energy

resources R are sensitively affected mainly by variations in peripheral energy consump-

tion p5.

Effects of tDCS on underlying physiological mechanisms

While Section 3.2 considers the population of placebo and tDCS data, we next investi-

gate each individual data set using the same settings as before. We identify the parame-

ters p̂1;…; p̂5 for each volunteer participating in the experimental study separately.
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Figure 4 Experimental data (error bars) versus mathematical model (solid lines) for the mean sham stimulation data. Error bars show
mean values and respective standard errors of the mean of cerebral ATP/Pi, blood glucose, and insulin levels. For energy resources, no
experimental data are available. Solid lines represent model predictions with the estimated parameter values p̂ ¼
0:0040; 0:0683; 11:3768; 0:0025; 0:8331ð Þ⊤ with objective function Φ = 6.7611 · 10−5 and relative mean squared error θ p̂ð Þ ¼ 7.6012 · 10−3.
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Figure 5 Experimental data (error bars) versus mathematical model (solid lines) for the mean tDCS stimulation data. Error bars show mean
values and respective standard errors of the mean of cerebral ATP/Pi, blood glucose, and insulin levels. For energy resources, no experimental data are
available. Solid lines represent model predictions with the estimated parameter values p̂ ¼ 0:0092; 0:0474; 10:8068; 0:0006; 0:8507ð Þ⊤ with objective
function value with Φ = 2.0410 · 10−4 and relative mean squared error θ p̂ð Þ ¼ 9.6891 · 10−3.
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Figure 6 Effects of parameter modifications on model predictions of cerebral ATP, blood glucose, and
insulin concentrations as well as on energy resources. Stepwise increase in cerebral glucose uptake p1 by
150, 200, and 250% leads to marked elevations of predicted brain ATP and blood insulin as well as reduced
blood glucose profiles. Hence, the predictions are very sensitive to changes in this parameter.
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Thereby, we are able to identify reasonable parameter values for each subject. Box-

and-whisker diagrams of the estimated parameter values are shown in Figure 8.

We statistically investigate the effects of tDCS on estimated parameter values. Each

model parameter has a physiological interpretation. Thereby, our examinations provide

insight into underlying physiological mechanisms that are not measurable in the experi-

mental study.

We identify outliers p̂i below quartile Q1 and above quartile Q3 by p̂i < Q1−1:5
Q3−Q1ð Þ and p̂i > Q1 þ 1:5 Q3−Q1ð Þ, respectively (see red plus in Figure 8). Individuals

with extreme outliers are plotted individually. Mean values and standard deviations of

the estimated parameters p̂ are listed in Table 1.

In order to investigate the effects of tDCS on underlying physiological mechanisms in

the systemic energy metabolism, we compare mean estimated parameter values for tDCS

and sham stimulation. Identified parameter ratios between tDCS and sham condition are

shown and statistically significant values are highlighted in Table 2. Each ratio reflects the

effect of tDCS on the respective physiological process described by the model parameter.

To test if mean estimated parameter values upon tDCS and sham stimulation significantly

differ, we conduct an analysis of variance, a two sample F-test. Hereby, a P-value < 0.1 was

considered significant.

Glucose flux p̂1 across the blood brain barrier as well as cerebral energy consump-

tion p̂4 significantly increase upon tDCS compared with sham stimulation. In contrast,

the energy flux p̂2 from peripheral tissue into the blood significantly decreases in the



Figure 7 Modifying cerebral energy consumption p4 affects the predicted profiles of cerebral ATP,
blood glucose, and insulin concentrations in a sensitive manner.
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stimulation condition. Insulin production rate p̂3 slightly decreases, and peripheral energy

consumption p̂5 does not vary significantly between different experimental conditions.

The physiological interpretation of the obtained ratios reads as follows: TDCS excites

cortical neurons. Our results verify that this leads to significantly increased cerebral

energy consumption p̂4 . Accordingly, our results reflect an increase in cerebral glucose

uptake p̂1 from the blood into the brain crossing the blood brain barrier in response to

excitation-induced energy consumption. This mechanism assures an adequate energy

supply of the brain.

Moreover, we analyze cerebral energy supply on demand. Therefore, we calculate the

ratio of energy flux p̂1 across the blood brain barrier to cerebral energy consumption

p̂4. This yields p̂1=p̂4 ≈ 14.37 for tDCS compared to p̂1=p̂4 ≈ 1.95 for sham stimulation

and the ratios significantly differ (P-value < 0.01). Our result reflects that the allocation

mechanism of the brain is distinctly enhanced by transcranial stimulation. This reveals

beneficial effects of neuronal activation on cerebral energy homeostasis and glucose

metabolism.

Insulin production rate p̂3 is reduced upon tDCS. This reduction may be seen as

enhanced allocation mechanism as well. With low blood insulin concentrations less

energy is transported into the peripheral stores via the insulin-dependent glucose

transporter GLUT4. Hence, available glucose can be transported into the brain via the

insulin-independent transporter GLUT1.

Our results are in line with the hypothesis that the brain supplies itself with glucose in

dependence of its own needs [3,9]. The allocation mechanism of the brain is activated
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Table 1 Mean estimated parameter values and respective standard errors of mean

sham tDCS

p̂1 0.0555 ± 0.0709 0.1362 ± 0.1752

p̂2 0.0785 ± 0.0463 0.0583 ± 0.0559

p̂3 11.6895 ± 3.5051 10.4485 ± 2.2179

p̂4 0.0320 ± 0.0380 0.0722 ± 0.0896

p̂5 0.7983 ± 0.1320 0.8018 ± 0.2702
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with low high-energy phosphate content in the brain and the available energy is allocated

to the brain.

Our findings explain the experimentally observed biphasic effect of tDCS on cerebral

energy content, compare [25]. Neuronal excitation increases cerebral energy consumption

p̂4 leading to a drop in high-energy phosphate content in the brain. Our results reveal a

significant increase in glucose transport rate p̂1 across the blood brain barrier upon tDCS.

Furthermore, cerebral energy supply on demand p̂1=p̂4 is enhanced. These observations

explain the subsequent rise of cerebral high-energy phosphates above basal levels. The in-

crease in cerebral glucose uptake in response to excitation-induced energy consumption

thereby provides a conceivable explanation for the experimental observations. The alloca-

tion mechanism of the brain ensures cerebral energy supply.

Additionally, we find a significant decrease in energy flux p̂2 from peripheral tissue

into the blood. This result is in line with the experimental measurements revealing sup-

pression of the HPA system. Stress hormones such as cortisol induce gluconeogenesis

mainly in the liver and thereby enhance the glucose flux from the resources into the

blood. Reduced peripheral glucose release in conjunction with increased cerebral glucose

uptake provides explanations for improved glucose tolerance.

Peripheral energy consumption p̂5 remains almost identical since the subjects are not

physically active during examinations and therefore, the result meets the expectations.

The obtained results are physiologically reasonable. Our investigations provide evidence

for the experimentally observed changes in cerebral and peripheral energy metabolism

upon tDCS. The results shed light on underlying physiological processes that are not

measurable within the scope of a human experimental approach.
Conclusions
For the first time, the relationship between neuronal brain activity and systemic energy

metabolism was investigated in the experimental study [25] discussed and presented in

Experimental study section. In the present study, collected experimental data are com-

bined with the mathematical model [12] of the human whole body energy metabolism

described in Brain-centered energy metabolism model section. Thereby, we predicted

physiological relations and gained information about underlying physiological
Table 2 Ratios of mean estimated parameter values for tDCS compared with sham
condition

^p1
^p2

^p3
^p4

^p5

tDCS/sham 2.45a 0.74b 0.89 2.26c 1.00
aSignificance, P = 0.04, bSignificance, P = 0.08, and cSignificance, P = 0.03. Statistical analyses were performed by analysis
of variance to identify main effects in experimental condition comparisons.
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mechanisms. Additional validation of the model estimates on independent data is desir-

able and subject to further investigations.

Modeling approaches, especially in physiological applications, feature limitations in

their compactness and in validity of the model functions. Energy homeostasis com-

prises a tremendous number of metabolites and complex physiological interrelations

that are sufficiently relevant to be considered in the model equations. Moreover, most

of these mechanisms are not yet sufficiently quantified to be used in mathematical

models. To account for these limitations, we restricted our mathematical model to

only include widely accepted and fundamental physiological relations. We showed that

the whole-body energy metabolism can be realistically modeled and experimental data are

reasonably predicted. Therefore, limited but relevant conclusions can be drawn from our

findings. Nevertheless, in future work we aim to include further model refinements.

We are able to identify parameter values, for which our mathematical model repro-

duces experimentally acquired data, see Section 3.1. Our results verify the presented

physiological mechanisms and validate the mathematical model. We for the first time

developed a mathematical model predicting experimental data of cerebral and periph-

eral metabolites at the same time.

As mentioned above, the parameters of our mathematical model have a physiological

interpretation. Analyzing the identified model parameters thus allow to draw conclu-

sions about physiological mechanisms underlying the experimental data, see Effects of

tDCS on underlying physiological mechanisms section. Thereby, we are able to explain

effects in the experimental observations.

We experimentally observe a decrease followed by an increase in cerebral high-energy

phosphates upon tDCS due to neuronal activation. However, underlying physiological

mechanisms explaining this experimental findings remain unknown at this point. By the

validity of our parameter estimation method we can draw the following conclusions:

Firstly, cerebral energy consumption significantly increases upon tDCS compared with

sham stimulation. This explains the initial drop in brain energy level. Secondly, our find-

ings reflect a significant increase in glucose transport rate across the blood brain barrier.

Thirdly, we observe an improvement of the allocation mechanism upon stimulation,

which is expressed by an increase in the ratio p̂1=p̂4 . Enhanced glucose uptake from the

blood into the brain causes rising cerebral high-energy phosphates. Our findings support

the hypothesis that the brain supplies itself with sufficient energy according to its needs

[3]. Thereby, they support central aspects of the Selfish Brain Theory [9]. Fourthly, our

findings elucidate effects of tDCS on peripheral energy metabolism, namely on glucose

tolerance. Therefore, the present study gives information about effects of neuronal brain

activity on systemic energy homeostasis in healthy humans.

In forthcoming investigations, we plan to investigate pathological conditions caused

by deregulations in the energy metabolism such as obesity and diabetes mellitus. We

want to identify model parameters of pathologic states thereby shedding light on defects

causing metabolic diseases.
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