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Abstract

Background: The pathology of the Benign Paroxysmal Positional Vertigo (BPPV) is
detected by a clinician through maneuvers consisting of a series of consecutive head
turns that trigger the symptoms of vertigo in patient. A statistical model based on a
new maneuver has been developed in order to calculate the volume of endolymph
displaced after the maneuver.

Methods: A simplification of the Navier-Stokes problem from the fluids theory has
been used to construct the model. In addition, the same cubic splines that are
commonly used in kinematic control of robots were used to obtain an appropriate
description of the different maneuvers. Then experimental designs were computed to
obtain an optimal estimate of the model.

Results: D-optimal and c-optimal designs of experiments have been calculated. These
experiments consist of a series of specific head turns of duration �t and angle α that
should be performed by the clinician on the patient. The experimental designs
obtained indicate the duration and angle of the maneuver to be performed as well as
the corresponding proportion of replicates. Thus, in the D-optimal design for 100
experiments, the maneuver consisting of a positive 30◦ pitch from the upright position,
followed by a positive 30◦ roll, both with a duration of one and a half seconds is
repeated 47 times. Then the maneuver with 60◦/60◦ pitch/roll during half a second is
repeated 16 times and themaneuver 90◦/90◦ pitch/roll during half a second is repeated
37 times. Other designs with significant differences are computed and compared.

Conclusions: A biomechanical model was derived to provide a quantitative basis for
the detection of BPPV. The robustness study for the D-optimal design, with respect to
the choice of the nominal values of the parameters, shows high efficiencies for small
variations and provides a guide to the researcher. Furthermore, c-optimal designs give
valuable assistance to check how efficient the D-optimal design is for the estimation of
each of the parameters. The experimental designs provided in this paper allow the
physician to validate the model. The authors of the paper have held consultations with
an ENT consultant in order to align the outline more closely to practical scenarios.
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Background
Introduction

First described by Bárány [1], Benign Paroxysmal Positional Vertigo (BPPV) is the most
common vestibular disorder leading to vertigo. These vestibular symptoms are precipi-
tated when the orientation of the head or body is changed relative to gravity, provoking
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brief periods (2-3 minutes) of vertigo, imbalance, and nausea. These changes can occur
during daily activities such as lying down in bed or reaching up to retrieve an object from a
high shelf. Benign Paroxysmal Positional Vertigo is commonly called top-shelf vertigo [2].
Contrary to what is widely believed, this type of vertigo is caused by a disorder in an

organ of the inner ear, called the semicircular canal, which regulates balance. Figure 1
illustrates the three canals and how they are arranged in a similar way to the three carte-
sian axes. Each canal is filled with a fluid called endolymph and contains motion sensors
within the fluids. At the base of each canal, the bony region of the canal has a dilated sac
at one end called the ampulla. Within the ampulla is a mound of hair cells and supporting
cells called crista ampullaris. These hair cells are composed of many cilia and are embed-
ded in a gelatinous structure called cupula. As the head rotates, the duct moves, but the
endolymph lags behind. This deflects the cupula and bends the cilia within. The bend-
ing of these cilia alters an electric signal that is transmitted to the brain, which sends this
information to the eyes, provoking the corresponding vestibular movement which helps
us keep our balance.
When does BPPV occur? Semicircular canals are identified as the origin of BPPV.

There, calcium carbonate particles (CaCO3) called otoliths, which are normally affixed
to the canal walls, are detached by the aforementioned head or body changes. This extra
mass floating in the endolymph causes an abnormal movement of the cupula, since these
particles displacemore volume of endolymph than usual. The brainmisinterprets this dis-
placement and sends erroneous information to the eyes, provoking a characteristic ocular
nystagmus and the subsequent vertigo.
Dix and Hallpike [3] were pioneers in developing maneuvers which led to the detec-

tion of BPPV. These maneuvers consist of a series of consecutive head turns that trigger
ocular responses in the patient, on the basis of which clinicians can determine whether a
patient suffers from BPPV or not. Rabbit [4] developed a model which calculates the vol-
ume of endolymph displaced when the Dix and Hallpike maneuver is put into practice.
In this model, a mathematical approximation consisting of a curve crossing the different
angular positions was used. This is a theoretical model never validated with real data as
far as the authors know. In this paper, the model is particularized to a specific real situ-
ation and an experimental plan is produced. In our case, a maneuver composed of two
consecutive turns has been developed: a positive pitch (turning the head back) from the
upright position, followed by a positive roll (turning the head right), as these are the most
common two head movements that trigger the above-mentioned nystagmus. In order to

Figure 1 Semicircular canals and ampulla. Layout of the semicircular canals and ampula, both located in
the inner ear.



Campos-Barreiro and López-Fidalgo Theoretical Biology andMedical Modelling 2013, 10:21 Page 3 of 14
http://www.tbiomed.com/content/10/1/21

reflect a more realistic situation, a cubic interpolation between points has been carried
out. Another advantage of carrying out the cubic interpolation with respect to Rabbit’s
model, is to obtain an analytical expression of the curve. This will permit us to design sta-
tistical experiments aimed at deriving an optimal estimation of the unknown parameters
of the model.

Optimal experimental design

One of the main aims of Statistics consists of modeling the behaviour of any stochastic
process or particular system. In order to carry this out, a mathematical model is always
needed to explain the results obtained once the process has occurred, and predict accu-
rately the future behaviour of that process or system. The mathematical models used in
real situations depend on unknown parameters. In order to describe the way in which the
results are expected to vary, we need to estimate these parameters with optimal accuracy.
For that purpose, the Design of Experiments is used to help us design how to change the
inputs of processes in order to observe and identify the reasons of the changes observed
in the response y, which is usually expressed as follows,

y = η(z, θ) + ε, (1)

where z represents the set of observations to collect and θ the unknown parameters of the
model. The error ε follows a Gaussian distribution with mean 0 and constant variance σ 2,
that is

E(y) = η(z, θ) and var(y) = σ 2.

The problem of determining which set of observations to collect is what will define
the design. It is common to say that the input variables are controlled by the researcher,
while the unknown parameters are determined by nature. Optimal Design of Experiments
theory allows us to find the best design in the sense of obtaining an optimal estimate of
the parameters of the model. Next, basic concepts of this theory will be briefly presented
as well as the two main criteria to obtain this optimal estimation. Following that, we will
explain how themodel for themaneuver has been constructed and finally, optimal designs
for this model are calculated both for discrete and continuous design space.
An exact experimental design of size N consists of a set of N observations collected at

points z1, . . . , zN , in a given compact space χ . Some of these N points may be repeated,
meaning that several observations are taken at the same value of z. This number of obser-
vations is usually predetermined by experimental cost constraints. A convenient way to
understand designs is to treat them as a collection of different points of χ , together with
the proportion of the N observations to be allocated at each different point. This sug-
gests the idea of extending the definition of a design to any probability measure ξ on χ

(approximate design), that is

ξ =
{
z1 z2 · · · zk
p1 p2 · · · pk

}
, with

k∑
i=1

pi = 1. (2)

The collection of weights, pi = ξ(zi), provide a probability measure on χ supported
on the points z1, . . . , zk . Thus, an experiment will be replicated about Npi times on value
zi. Kiefer [5] pioneered this approach, and its many advantages are well documented in
designmonographs, see Silvey [6] for example. This approach has been applied to optimal
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treatment allocation [7], optimal estimation of kinetic parameters of the Michaelis-
Menten model [8] and the Arrhenius equation [9]. In what follows, the approximate
design approach is adopted without loss of generality, restricting the attention to designs
with a finite set of support points. For convenience, the design is described using a two-
row matrix, with the support points displayed in the first row and their corresponding
proportions of observations in the second row (2).
Let θT be the unknown parameter vector, and let

f (z) = ∂η(z, θ)/∂θ , (3)

be evaluated at the nominal value of the parameter θ (0). This nominal value usually rep-
resents the best guess for the parameters θ at the beginning of the experiment and it is
necessary to proceed as one would with a non-linear model [10]. Assuming model errors
follow a normal distribution and apart from an unimportant multiplicative constant, the
Information Matrix of a design ξ is given by

M(ξ , θ) =
∑
i

ξ(zi) f (zi)f T(zi),

where pi = ξ(zi) is the proportion of observations to be taken at point zi (see e.g.[10]). The
covariance matrix of the least squares and maximum likelihood estimator θ̂ is asymptoti-
cally proportional to the inverse of this matrix [6]. The use of this matrix is very important
when it comes to designing the experiment in an optimal way.
The objective to be achieved is to find a design which gives the best estimation of the

parameters (or linear functions of them), usually by using the least squares method or
maximum-likelihood estimation method. Through what it is defined as criteria�, we will
be able to measure the accuracy of the design and to compare different designs of the
same model.
The design criteria used in this work for estimating the model parameters are D-

optimality and c-optimality [11]. The D-optimality criterion minimizes the volume of the
confidence ellipsoid of the parameters and is given by �D[M(ξ , θ)]= detM(ξ , θ)−1/m,
where m is the number of parameters in the model. The D-optimal design will be that
which minimizes the function �D[M(ξ , θ)]. The c-optimality criteria is used to estimate
a linear combination of the parameters, say cTθ ; it is the variance of this estimate which
is �c[M(ξ , θ)]= cTM−1(ξ , θ) c. It is known that these criteria are all convex and nonin-
creasing functions of the designs and so, designs with small criterion values are desirable
[6]. A design that minimizes one of these functions � over all the designs on χ is called a
�-optimal design, or more specifically, a D- or a c-optimal design, respectively.
An advantage of working with approximate designs is that the optimality of a particular

design can be checked mathematically. Since the criteria are convex, standard convex
analysis arguments using directional derivatives when � is differentiable [6], show that a
design ξ∗ is �-optimal, if and only if, it satisfies (Equivalence Theorem)

f T(z)∇�(ξ∗)f (z) − tr
[∇�(ξ∗)M(ξ∗, θ)

] ≥ 0, z ∈ χ , (4)

where �(ξ∗) is �[M(ξ∗, θ)] for short and ∇�(ξ∗) denotes the gradient of �(ξ∗). The
equality is reached at the support points of ξ∗. When � = �D, that is, the D-optimality
criterion, ∇�(ξ∗) = M−1(ξ∗, θ) and tr [∇�(ξ∗)M(ξ∗, θ)] = m, where m is the number
of parameters. Therefore, the inequality (4) becomes

−f T(z)M−1(ξ∗, θ)f (z) + m ≥ 0, z ∈ χ .
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The function f T(z)M−1(ξ∗, θ)f (z) is known as the generalized variance. This important
theorem provides methods for constructing optimal designs [11,12].

Derivation of amodel for themaneuver
The model to be derived will be used to predict the endolymph volume displacement in
response to a maneuver composed by two consecutive turns: a positive pitch (turning
the head back) from the upright position followed by a positive roll (turning the head
right). The standard definitions are used for head rotations: pitch rotates about an axis
out the ear (y-axis), roll rotates about an axis out the eye (x-axis) and yaw rotates about an
axis pointing out the top of the head (z-axis). We are only concerned with the horizontal
canal since usually the particles are located inside that area [13]. Therefore, considering
Q(�t,α, θ) to be the volume of endolymph displaced after the first turn, where �t and α

are the variables which represent duration and angle of each turn, respectively, our model
is formulated as follows,

y = Q(�t,α, θ) + ε, �t ∈[ 0.5, 1.5] , α ∈[π/6,π/2] . (5)

The error ε follows a Gaussian distribution with mean 0 and constant variance σ 2, that
is

E(y) = Q(�t,α, θ) and var(y) = σ 2.

The forces acting on the endolymph due to the viscous interaction with a free-floating
particle inside the canal are the interaction drag force F between the particle and
endolymph and the gravity force �g acting on the particle. After considering the forces
mentioned, as well as the simplifications corresponding to the fluid, the Navier-Stokes
equations must be applied with the corresponding boundary and initial conditions [14].
Thus, the equations which relate the volume flow rate of endolymph to the pressure and
inertial forces at time t are⎧⎪⎨

⎪⎩
θ1

∂

∂t
Q(t,α, θ) + θ2Q(t,α, θ) = Fi + Fn ,

Q(0,α, θ) = 0.
(6)

The unknown parameters, θT = (θ1, θ2), are related to the damping and stiffness of the
canal, respectively. The right side of the first equation is represented by two forces. The
inertial forcing due to the angular acceleration of the head-fixed system relative to the
inertial frame (ground-fixed system) is

Fi =
∫ ln

0
ρ ( �̈�(t) ∧ �R(s)) �ds,

where �̈�(t) ∧ �R(s) stands for the tangential acceleration, �̈�(t) being the angular acceler-
ation of the head relative to the ground-fixed inertial frame resolved into the head-fixed
frame and �R(s) the vector running from the head-fixed coordinate system’s origin to the
centerline of the canal. The parameterization of �R(s) is made with respect to the arc length
s (also called natural parameter). The head-fixed coordinate system was defined when
the subject was in the upright position prior to movement of the head. The constant ρ

stands for the density of the canal and ln is the length covered by the otolith.
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The second term, Fn, is the result of the interaction drag forces due to the particle
moving relative to the fluid,

Fn = As N
Ae

⎡
⎢⎣4
3
a(ρs − ρe)(�g − �̈�(t) ∧ �R(s)) · �n + 6

a
μ

⎛
⎜⎝ξ̇ −

∂

∂t
Q(t,α, θ)

Ae − As

⎞
⎟⎠
⎤
⎥⎦ .

In this equation, �g is the gravitational acceleration, �n is the unit normal tangent vector
to the canal centerline and ξ̇ is the velocity of the particle. The constantsAs,N,Ae, a, ρs, ρe
and μe, stand for frontal area of the particle, number of particles which are floating inside
the canal, cross-sectional area of the canal, radius of the particle, density of the particle,
density of the endolymph and endolymph viscosity, respectively.
The manner in which the maneuver has been carried out was established by the clini-

cian. The angle of turn in each time t is represented by �(t). The movements of the head
determine the magnitude and direction of the vectors ��(t) and �g. It is important to note
that themodel equations refer to the non-inertial system, therefore, the linear and angular
acceleration must be resolved into this system. This is done by using

�̈�(t) = M(t) �̈�I(t),

where �̈�I(t) is the angular acceleration referred to the inertial system (for example the
clinician who makes the maneuvers) and M(t) a rotation matrix. Since these maneuvers
consist of a pitch (y-axis) followed by a roll movement (x-axis), the vector ��I for the pitch
is (0,�(t), 0)T and for the roll it is (�(t), 0, 0)T .
The rotation matrix for the first turn is

M1(t) =
⎛
⎜⎝

cos�(t) 0 sin�(t)
0 1 0

− sin�(t) 0 cos�(t)

⎞
⎟⎠ t ≤ �t.

and for the second turn,

M2(t) =
⎛
⎜⎝

1 0 0
0 cos�(t) − sin�(t)
0 sin�(t) cos�(t)

⎞
⎟⎠
⎛
⎜⎝

cosα 0 sinα

0 1 0
− sinα 0 cosα

⎞
⎟⎠ �t < t ≤ 2�t.

Once boundary conditions for the angles are imposed, �(t) is written as follows,

�(t) =

⎧⎪⎨
⎪⎩

�1(t) = 3α
�t2

t2 − 2α
�t3

t3, t ≤ �t,

�2(t) = 5α − 12α
�t

t + 9α
�t2

t2 − 2α
�t3

t3, �t < t ≤ 2�t.

In order to obtain the expressions for the forcing terms Fi and Fn, we assume that the
geometry of the posterior canal is described by a circle of radius r. Therefore,

Fi = ∫ ln
0 ρ ( �̈�(t) ∧ �R(s)) �ds = ρ r �̈2(t) sin�2(t) ln =

= ρ r ln sin(5α − 12α
�t

t + 9α
�t2

t2 − 2α
�t3

t3)
(
18α
�t2

− 12α
�t3

t
)
,

and

Fn = a2N
b2

[
4
3
a(ρs − ρe)

(−r sinα sin�2(t) �̈2(t) − g cos(ξ/r)
)+ 6μ ξ̇

a

]

+ aN 6μe
π b2 (b2 − a2)

Q̇ ,
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Table 1 Physical parameters

Parameter Value

As : Frontal area of the particle 3.14 × 10−4 cm2

ρ : density of the canal 1.0 g cm−3

ρs : density of the particle 2.7 g cm−3

ρe : density of the endolymph 1.0 g cm−3

μe : viscosity of the endolymph 8.5 × 10−3 dyn s−1 cm−1

g: gravitational acceleration 981 cm s−2

where As = πa2, Ae = πb2, b stands for the radius of the cross-sectional area of the canal
and ξ̇ = 0.02 cm/s [2].
After imposing the initial condition, the solution of equations (6) is written as

Q(t,α, θ) = exp{−θ2 t/c(θ1, t)}
c(θ1, t)

∫ t

0
exp{θ2 s/c(θ1, s)}F(s,α)ds,

where F(t,α) = Fi + Fn and c(θ1, t) = aN 6μe
π b2 (b2 − a2)

Q̇ + θ1.

Optimal experimental designs
Optimal designs for the model given in (5) with nominal values of the parameters θ

(0)
1 =

0.85 and θ
(0)
2 = 0.2 (obtained from [15]) are calculated. It is assumed that six particles are

detached from the canal wall [16]. On the other hand, it is known that As/Ae ≈ 10−4 and
that, approximately, the values of r and ln are 0.1 cm and 0.5 cm, respectively [17]. The
values used for the constants are listed in Table 1. Figure 2 shows the plot of the function
given by the above mentioned Q(�t,α, θ). This is plotted as a function of �t and α for
the given nominal values.
The Information Matrix is expressed as

M(ξ , θ) =
∑

�t,α∈χ

ξ(z) f (�t,α, θ)f T(�t,α, θ),

Figure 2 Plot of the function model. Plot of the function given by the response Q(�t,α, θ). This is plotted
as a function of �t and α for the given nominal values θ

(0)
1 = 0.85 and θ

(0)
2 = 0.2.
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where

f T(�t,α, θ) = (
f1(�t,α, θ), f2(�t,α, θ)

) =
(

∂Q(�t,α, θ)

∂θ1
,
∂Q(�t,α, θ)

∂θ2

)
.

The two components are written as

f1(�t,α, θ) =
(

∂

∂t
exp{−θ2 �t/c(θ1,�t)}

c(θ1,�t)

)
·
∫ �t

0
exp{θ2 s/c(θ1, s)}F(s,α)ds +

1
c(θ1,�t)

exp{−θ2 �t/c(θ1,�t)}
c(θ1,�t)

∫ �t

0
− θ2 s
c2(θ1, s)

exp{θ2 s/c(θ1, s)}F(s,α)ds.

and

f2(�t,α, θ) = −�t exp{−θ2 �t/c(θ1,�t)}
c2(θ1,�t)

∫ �t

0
exp{θ2 s/c(θ1, s)}F(s,α)ds +

1
c(θ1,�t)

exp{−θ2 �t/c(θ1,�t)}
∫ �t

0

s
c(θ1, s)

exp{θ2 s/c(θ1, s)}F(s,α)ds.

D-optimal design for a discrete design space

D-optimal designs for model (5) are obtained in order to estimate simultane-
ously the parameters, θ1 and θ2. Points (α,�t) are taken from the design space
[ 0.5, 1.5]×[π/6,π/2]. Since it is more realistic to ask the clinician to carry out themaneu-
vers for typical values of angles and times, a finite design space is being considered, that
is,

�t ∈ {0.5 , 1 , 1.5} and

α ∈ {π/6 , π/4 , π/3 , 5π/12 , π/2} = {30◦ , 45◦ , 60◦ , 75◦ , 90◦}.
Taking this finite set into consideration and maximizing the determinant of the

Information Matrix, the optimal design is

ξ∗
1 =

{
( 1.5 , π/6 ) ( 0.5 , π/4 ) ( 0.5 , π/2 )

0.47 0.16 0.37

}
.

Table 2 shows that all the values of the generalized variance are smaller than the number
of parameters, and therefore the design obtained satisfies numerically the Equivalence
Theorem. The design indicates the duration and angle of the maneuvers to be carried
out, but not how many observations the sample will have. That will be determined by the
researcher through other means (for instance, the budget). The weights will give us the
proportion of different maneuvers to be performed. For instance, if the sample contains
N = 100 observations, the clinician will have to repeat the maneuver consisting of a
positive 90◦ pitch from the upright position followed by a positive 90◦ roll, both with a
duration of half a second, 37 times.

Table 2 Values of the generalized variance

π/6 π/4 π/3 5π/12 π/2

0.5 1.96 2 1.24 1.53 2

1 1.93 1.34 0.19 0.45 0.4

1.5 2 1.38 0.06 0.29 0.24
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Sensitivity analysis of the D-optimal design

The goodness of any design ξ is measured by its efficiency. We will see how efficient the
D-optimal design ξ∗

1 is by checking the value of

effθ (ξ∗
1 ) = �D[M(ξ∗

θ
, θ)]

�D[M(ξ∗
1 , θ)]

= [ detM(ξ∗
θ
, θ)]−1/m

[ detM(ξ∗
1 , θ(0))]−1/m

, (7)

where ξ∗
θ
is the D-optimal design calculated for a possible real value of the parameter θ .

This efficiency shows how robust the design is with respect to the true (unknown) value
of the parameters. To check the robustness of a design, we want to check how the quality
of the estimation would be affected by a wrong choice of the nominal value. The efficiency
can sometimes be multiplied by 100 and be reported in percentage terms. If, for instance,
we take as nominal value θ(0) = 0.5, the true value being θ = 0.6 and the efficiency
being 50%, then the design ξ∗

θ(0) would need to double the total number of observations
to perform as well as the optimal design calculated with the true value θ = 0.6. Thus,
our design would not be very robust. Table 3 illustrates the sensitivity of the D-optimal
design with respect to the choice of the parameters θ1 (horizontal values) and θ2 (vertical
values), i.e, how robust the design is with respect to the true values of those parameters.
As can be observed, small variations of the nominal values does not affect the quality of
the estimation much.

D-optimal design for a continuous design space

If instead of the finite set

χ = {π/6 , π/4 , π/3 , 5π/12 , π/2} × {0.5 , 1 , 1.5},
we would have chosen a continuous design space χ =[ 0.5, 1.5]×[π/6,π/2], the D-
optimal design obtained would have been

ξ∗
2 =

{
( 1.5 , 0.55 ) ( 0.5 , 0.72 ) ( 0.5 , π/2 )

0.47 0.16 0.37

}
.

As can be observed, the results would have been very similar to ξ1, having an efficiency
of around 95%. But in practice, the clinician cannot carry out any turns that are smaller
than 15° or shorter than half a second. Figure 3 shows how the generalized variance func-
tion for a continuous design space satisfies the Equivalence Theorem, that is, for all the
values of �t and α within the space design, the values of the generalized variance must be
lower or equal to the number of parameters to estimate. At the points of the design, the
value of the function must be equal to the number of parameters.

c-optimal design for a discrete design space

If we are interested in estimating a linear combination of the parameters, say cTθ , then we
use the c-optimality criterion. An elegant way for finding an optimal design that estimates

Table 3 Values of the efficiency

0.1 0.7 0.85 0.9 2

0.015 37 % 98% 98% 78% 28%

0.2 35% 97% 100% 80% 31%

0.9 29% 84% 90% 80% 30

The generalized variance for the design ξ∗
2 verifies the Equivalence Theorem.
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Figure 3 Plot of the generalized variance. Plot of the generalized variance for the design obtained. This
design will be D-optimal to estimate both parameters θ1 and θ2, if and only if, it verifies the Equivalence
Theorem. That is, for all the values of �t and α within the space design, the values of the generalized variance
must be lower than or equal to than the number of parameters to estimate. In the points of the design, the
value of the function must be equal to the number of parameters.

a linear combination of the parameters was given by Elfving [18]. This method is nicely
illustrated and explained, e.g. by Chernoff [19], Kitsos [20] or Wiley[10].
For a given regression problem with regression function f (�t,α, θ), the method first

defines the Elfving’s set given by set G, the convex hull of {f (�t,α, θ (0)) ∪ −f (�t,α, θ(0))},
θ(0) being a nominal value for the parameter θ . This means that the set G is the smallest
convex set containing {f (�t,α, θ(0)) ∪ −f (�t,α, θ(0))}. The point of intersection of the
straight line defined by the vector c with the boundary of the Elfving’s set determines the
c-optimal design, ξ∗, as a convex combination of the vertices of G. These vertices provide
the support points of the optimal design. The weights in the convex combinations are the
weights of the optimal design. Furthermore, �c(ξ∗) = cTM−1(ξ , θ) c = (‖c‖ / ‖c∗ ‖)2,
where c∗ is the vector defined by the cut point of the straight line defined by c with the
boundary of G.
Considering the same finite set as before, the interest is again in estimating one param-

eter, but now both of them are unknown. Elfving’s set is displayed in Figure 4. In order
to estimate the parameter θ1, let cT = (1, 0). The straight line defined by this vector cuts
the boundary of the Elfving’s set at point (x∗, 0) and it defines the cθ1 -optimal design to
estimate the parameter θ1. This point is expressed as a convex combination of the points
−f (�t1,α1) = −f (0.5, 5π/12) and −f (�t2,α2) = −f (0.5,π/2) with weights p1 = 0.86
and p2 = 0.14, respectively. Therefore, the optimal design is

ξ∗
3 =

{
( 0.5 , 5π/12 ) ( 0.5 , π/2 )

0.86 0.14

}
.

On the other hand, to estimate the parameter θ2, let cT = (0, 1). The straight line defined
by this vector cuts the boundary of the Elfving’s set at point (0, y∗), and it defines the
cθ2 -optimal design to estimate the parameter θ2. This point is expressed as a convex com-
bination of points f (�t1,α1) and −f (�t4,α4) = −f (1.5,π/6) with weights p1 = 0.3 and
p2 = 0.7, respectively. Therefore, the optimal design is

ξ∗
4 =

{
( 0.5 , 5π/12 ) ( 1.5 , π/6 )

0.3 0.7

}
.
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Figure 4 Elfving’s set for a discrete design space. Plot of the Elfving’s set for a discrete design space. This is
used to find the c-optimal design to estimate a linear combination of the parameters.

Finally, to obtain the c-optimal design for the estimation of θ1 + θ2 we use cT = (1, 1)
to define the point c∗. This point is expressed as a convex combination of the points
−f (�t4,α4) = −f (1.5, 5π/12) and −f (�t3,α3) = −f (1,π/6) with weights p1 = 0.8 and
p2 = 0.2, respectively. So the c-optimal design is now

ξ∗
5 =

{
( 1.5 , 5π/12 ) ( 1 , π/6 )

0.8 0.2

}
.

One important aspect is to check the efficiency of the D-optimal design (ξ∗
D ) with

respect to the c-optimal design (ξ∗
c ). The formula of the efficiency,

effc(ξ∗
D ) = cTM−1(ξ∗

c , θ(0))c
cTM−1(ξ∗

D , θ(0))c
, (8)

provides a way to see how good the D-optimal design is at estimating each of the parame-
ters. In the case of θ1, the D-optimal design ξ∗

1 and c-optimal design ξ∗
3 are compared and

the efficiency is around 75%, while for θ2, ξ∗
1 and ξ∗

4 are compared, having an efficiency of
around 85%. These results show the D-optimal design is more efficient for estimating θ2
than for estimating θ1, that is, with this design, the test power for testing {H0 : θ2 = 0}
will be greater that the test power for {H0 : θ1 = 0}.

c-optimal design for a continuous design space

For a continuous design space, the Elfving’s set obtained is shown in Figure 5 by plot-
ting the convex hull of the surface {f (�t,α, θ (0)) ∪ −f (�t,α, θ(0))}. In this case t ∈
[ 0.5, 1.5]×[π/6,π/2]. With the help of the method proposed by López-Fidalgo and
Rodríguez-Díaz [21], we will calculate the c-optimal design to estimate the parameters θ1,
θ2 and an example of a linear combination of them, θ1 + θ2.
The straight line defined by the vector cT = (1, 0) cuts the Elfving’s set at point (x∗, 0) =

(0.144 , 0) and it defines the cθ1 -optimal design to estimate the parameter θ1. This point
is expressed as a convex combination of −f (�t2,α2) = −f (0.49, 1.29) and −f (�t3,α3) =
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Figure 5 Elfving’s set for a continuous design space. Plot of the Elfving’s set for a continuous design space.

−f (0.5, 1.57) with weights p1 = 0.8 and p2 = 0.2, respectively. Therefore, the optimal
design is

ξ∗
6 =

{
( 0.49 , 73.9◦ ) ( 0.5 , 89◦ )

0.8 0.2

}
.

The straight line defined by vector cT = (0, 1) cuts the boundary of the Elfving’s set at
point (0, y∗) = (0 , 0.057) and it defines the cθ2 -optimal design to estimate the parame-
ter θ2. This point is expressed as a convex combination of −f (�t1,α1) = −f (1.5, 0.49)
and −f (�t2,α2) = −f (0.49, 1.29) with weights p1 = 0.75 and p2 = 0.25, respectively.
Therefore, the optimal design is

ξ∗
7 =

{
( 0.49 , 73.9◦ ) ( 1.5 , 28◦ )

0.75 0.25

}
.

The efficiency of the D-optimal design for estimating the parameter θ1 is around 75%,
while for θ2, it is around 90%. Finally, to obtain the c-optimal design for the estimation of
θ1 + θ2, vector cT = (1, 1) is considered. In this case, the straight line defines the point
c∗ = (0.084, 0.084) = −f (1.3, 0.6), so the c-optimal design is supported at one point:

ξ∗
8 =

{
(1.3 , 34◦)

1

}
.

As we can observe, the results obtained are quite similar to the case concerning the
discrete design space, except for the estimation of θ1 + θ2, where for the continuous case
the c-optimal design is only supported at one point, although in both cases the angle
of turn is similar. If the number of support points in a c-optimal design is less than the
number of parameters, this design allows the computation of the maximum likelihood
estimate of this linear combination. But, in this case, not all the parameters are identifiable
individually, that is, some of them cannot be estimated.

Discussion
The present biomechanical model was derived to provide a quantitative basis for the
detection of BPPV. This model is based on amaneuver consisting of two consecutive head
turns. These are the most common head movements leading to vertigo symptoms. We
would like to remark that although the model can only be applied for this specific maneu-
ver, it could be extended to other types. The experiment, that is, the duration and angle of
the head movements to be applied to the patients should be based on the design provided
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by the D-optimal design since it helps us estimate the parameters simultaneously, mini-
mizing the confidence ellipsoid. The c-optimal design is used either for estimating linear
combinations of the parameters, or for estimating the parameters separately. But in this
case, it also provides valuable assistance to check how efficient the D-optimal design is
for the estimation of each of the parameters. This is an interesting check of the sensitiv-
ity since a D-optimal design could be quite efficient for estimating a particular parameter
but quite inefficient for estimating another one.
The covariance matrix of the estimates is asymptotically proportional to the inverse of

the Fisher Information Matrix. Theoretically, the application of the maneuvers which are
specified in the design, along with their corresponding proportions, will assure that an
objective function of the covariance matrix of the estimators

�
θ̂

=
(

var θ̂1 cov (θ̂1, θ̂2)
cov (θ̂1, θ̂2) var θ̂2

)
∝ M−1(ξ , θ),

will be minimized. Symbol ∝ stands for “asymptotically proportional” in this case.
Finally, we would like to point out that, as far as the authors know, the models found in

the published works describing this sort of maneuvers have not been validated with data
yet. The clinicians hold that the extra volume of endolymph displaced by the otoliths are
directly related to the eye movements provoked in the patient under vertigo symptoms.
Therefore, in some way, to validate the model, response y should be measured through
some variable related to eye movement.
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