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Abstract
Background: Possible methods for distinguishing receptor binding models and analysing their
parameters are considered.

Results and Discussion: The conjugate gradients method is shown to be optimal for solving
problems of the kind considered. Convergence with experimental data is rapidly achieved with the
appropriate model but not with alternative models.

Conclusion: Lack of convergence using the conjugate gradients method can be taken to indicate
inconsistency between the receptor binding model and the experimental data. Thus, the conjugate
gradients method can be used to distinguish among receptor binding models.

Background
Most medicinal preparations and biologically active sub-
stances do not penetrate into cells and must therefore
exert their influence on intracellular processes by interac-
tion with specific protein molecules at the cell surface [1-
3], for which the name "receptors" is in common use.
Hormones and drugs that interact with receptors are
known as "ligands". Data from research in molecular biol-
ogy, and also results from indirect studies, have estab-
lished the following schemes of ligand-receptor
interaction [see [4-6] represented by the general models:

Non-cooperative interaction between ligand and receptor:

where R is the receptor molecule, L is the ligand molecule,
RL is the ligand-receptor complex, and k+1 and k-1 are

respectively the kinetic constants of formation and disso-
ciation of the complex.

Cooperative interaction between ligand and receptor
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Interaction of one ligand with N types of binding sites

Let us note that the ligand-receptor interaction can also
involve a combination of all three of these schemes. The
most frequently used method for studying ligand-receptor
interactions is the radioreceptor method [7], based on
measuring the amount of radioactively labelled ligand
bound in some defined manner to the appropriate recep-
tor. Thus, experimentally, direct measurements of ligand-
receptor complex concentration, [RL] are determined. The
investigator has to solve two basic interrelated problems
[6]:

1. discrimination among the ligand-receptor binding
models (1–3 or modifications thereof);

2. determination of parameters that adequately relate the
model to the experimental data.

From a pharmacological point of view, the most impor-
tant parameters are the following:

[R0] (initial receptor concentration), and

Kd = k-1/k+1 (dissociation constant) [7]

The concentration of receptors and the dissociation con-
stant can be changed. Modification of these parameter val-
ues can occur in many physiological and
pathophysiological situations. For instance, the receptor
concentration can reflect functional receptor modifica-
tions, and the dissociation constant can reflect genetic
alterations of the receptor [6].

To solve the two interrelated problems a series of graphic
methods can be deployed, of which the most frequently
used is the Scatchard method [7,8]. However, the applica-
tion of graphic methods in many cases is limited because
of experimental errors and/or receptor binding complex-
ity [9,10]. In particular, graphic methods are inapplicable
for definition of the cooperative binding parameters and
for analysis of non-equilibrium binding.

Regression methods can be found for the measurement of
ligand-receptor interaction constants [11]. As a matter of
fact, these procedures computerize the graphic methods.
Therefore, both regression methods and graphic methods
are of limited applicability. The present paper argues that
it is very difficult or impossible to discriminate reliably

among receptor binding models or to analyse the param-
eters by traditional analytical methods.

Materials and methods
Let us write the law of mass action for each ligand-receptor
interaction scheme as:

For the scheme (1)

But [R] = [R0] - [RL], [L] = [L0] - [RL].

So equation (4) can be rewritten:

This differential equation relates to the class of Rikkatty
equations. It can be solved analytically with the help of a
special substitution [12], but in all other cases the substi-
tutions [R] = [R0] - [RL], [L] = [L0] - [RL] do not generate
analytically soluble equations. Therefore, all equations of
this form were solved numerically using the Runge-Kutta
method [13,14].

The differential equations are as follows:

For scheme (2):

For scheme (3):

Numerical solution of equations (5–7) was carried out to
determine [RL]u. Random error assuming the normal dis-
tribution law was superimposed on the magnitude of
[RL]u, and was calculated at 5, 10, 20 or 100 points.

The magnitude [RT]m was calculated using parameters
other than [RL]u from models (1–3). These parameters
were applied to the determination of [RL]u by the follow-
ing functional minimization:

Φ = ([RL]u - [RL]m)2.  (8)

For functional minimization as per equation (8), New-
ton's method and its variants (the conjugate gradients
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method and coordinate descent method in various modi-
fications) were used [15-17]. The iteration procedure
stopped, when Φ/[RL]u was constant on the next iteration
step.

It is clear from the literature [6] that [R0] and Kd cannot be
<10-15 M or >10-5 M. Hence the iteration procedure could

be improved by re-scaling these parameters logarithmi-
cally, making 10-15 M equivalent to -1 on the new scale
and 10-5 M equivalent to 1.

Results and discussion
The functional (8) contour plots are shown in fig. 1. From
this figure, the degree of correlation between the parame-
ters [R0] Kd can be seen. Therefore the magnification of the
random error in evaluating the magnitude of [RL]u dis-
places the functional (8) global maximum from its true
values. In a sufficiently large neighbourhood of the global
maximum, the functional magnitude (8) is practically
invariant. However, this modification becomes more
essential for evaluating the ratio of the functional (8) to
basis vector of values [RL]u. Therefore this ratio was used
with the inhibiting criterion choice.

The Newton method converges only in the close neigh-
bourhood of the global maximum. However, modifica-
tions of the Newton method using second derivatives
allow convergence to the global maximum after 1–2 iter-
ations (fig. 1, line 1).

The conjugate gradients method converged after 2–3 iter-
ations (fig. 1, line 2). When magnification of the random
error in the evaluation of [RL]u was taken into account, the
convergence of the conjugate gradients method varied less
than that of the Newton method.

The coordinate descent method required an indetermi-
nately large number of iterations before satisfactory con-
vergence was reached. Use of the exhausting coordinate
descent method accelerated the convergence procedure,
but the number of iterative steps remained large (fig. 1,
line 3).

It can be shown that 5 points suffice to identify the param-
eters of model (1) using the conjugate gradients method,
whereas this method required >10 points for identifying
the parameters in a more complicated model. The New-
ton methods required >7 and 12 points respectively, and
the coordinate descent method required >10 and 18
points.

Functional (8) behaviour was analysed with respect to the
evaluation of [RL]m using an incorrect binding model. In
particular (see fig. 2), the functional (8) contour plot for
model (1) with the attempt to approximate the given
model by scheme (2). It follows from the figure that a dis-
cordant receptor binding model results in functional (8)
contour plot modification.

Thus, the modification of the functional (8) contour plot
from the type in fig. 1 to the type in fig. 2 can be used as
the criterion for choosing a receptor binding model. With

The functional (8) contour plotFigure 1
The functional (8) contour plot. The various methods of 
functional minimization are illustrated: a. The second deriva-
tive Newton method b. The conjugate gradients method c. 
The coordinate descent method

The functional (8) contour plot with an inadequate choice of receptor-binding modelFigure 2
The functional (8) contour plot with an inadequate choice of 
receptor-binding model.
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the right choice, the contour plot is similar to that repre-
sented in fig. 1. With the incorrect choice, the contour plot
is similar to that shown in fig. 2.

It appears that when an incorrect choice of the receptor
binding model has been made, the conjugate gradients
method does not lead to convergence, whereas in some
cases the Newton method converges to one of the local
minima. Therefore, lack of convergence using the conju-
gate gradients method suggests an incorrect choice of
receptor binding model.

Conclusion
Possible methods have been explored for discriminating
among models for receptor binding model and for defin-
ing the relevant parameters. The procedure devised allows
one to determine the receptor binding model and its
parameters, even when the application of graphical methods is
difficult or impossible. As seen here, lack of convergence in
the conjugate gradients method indicates that an incorrect
choice of model has been made. It is also shown that for
the defining the parameters of the correct model, 5–10
data points are sufficient.
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