Your privacy, your choice

We use essential cookies to make sure the site can function. We also use optional cookies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to the processing of your personal data - including transfers to third parties. Some third parties are outside of the European Economic Area, with varying standards of data protection.

See our privacy policy for more information on the use of your personal data.

for further information and to change your choices.

Skip to main content

Table 7 Circuits of the Th network a

From: A method for the generation of standardized qualitative dynamical systems of regulatory networks

1

IFNγ→IFNγR→JAK1→STAT1¬IL4→IL4R→STAT6¬IL18R→IRAK→

2

IFNγ→IFNγR→JAK1→STAT1¬IL4→IL4R→STAT6¬IL12R→STAT4→

3

IFNγ→IFNγR→JAK1→STAT1¬IL4→IL4R→STAT6→GATA3→IL10→IL10R→STAT3¬

4

IFNγ→IFNγR→JAK1→STAT1¬IL4→IL4R→STAT6→GATA3¬STAT4→

5

IFNγ→IFNγR→JAK1→STAT1¬IL4→IL4R→STAT6→GATA3¬Tbet→

6

IFNγ→IFNγR→JAK1→STAT1→SOCS1¬IL4R→STAT6¬IL18R→IRAK→

7

IFNγ→IFNγR→JAK1→STAT1→SOCS1¬IL4R→STAT6¬IL12R→STAT4→

8

IFNγ→IFNγR→JAK1→STAT1→SOCS1¬IL4R→STAT6→GATA3→IL10→IL10R→STAT3¬

9

IFNγ→IFNγR→JAK1→STAT1→SOCS1¬IL4R→STAT6→GATA3¬STAT4→

10

IFNγ→IFNγR→JAK1→STAT1→SOCS1¬IL4R→STAT6→GATA3¬Tbet→

11

IFNγ→IFNγR→JAK1→STAT1→Tbet→

12

IFNγ→IFNγR→JAK1→STAT1→Tbet→SOCS1¬IL4R→STAT6¬IL18R→IRAK→

13

IFNγ→IFNγR→JAK1→STAT1→Tbet→SOCS1¬IL4R→STAT6¬IL12R→STAT4→

14

IFNγ→IFNγR→JAK1→STAT1→Tbet→SOCS1¬IL4R→STAT6→GATA3→IL10→IL10R→STAT3¬

15

IFNγ→IFNγR→JAK1→STAT1→Tbet→SOCS1¬IL4R→STAT6→GATA3¬STAT4→

16

IFNγ→IFNγR→JAK1→STAT1→Tbet¬GATA3→IL4→IL4R→STAT6¬IL18R→IRAK→

17

IFNγ→IFNγR→JAK1→STAT1→Tbet¬GATA3→IL4→IL4R→STAT6¬IL12R→STAT4→

18

IFNγ→IFNγR→JAK1→STAT1→Tbet¬GATA3→IL10→IL10R→STAT3¬

19

IFNγ→IFNγR→JAK1→STAT1→Tbet¬GATA3¬STAT4→

20

IL4→IL4R→STAT6→GATA3→

21

IL4R→STAT6→GATA3¬ Tbet→SOCS1¬

22

Tbet→

23

Tbet¬GATA3¬

24

GATA3→

25

IL4→IL4R→STAT6→GATA3¬Tbet→SOCS1¬JAK1→STAT1¬

26

JAK1→STAT1→SOCS1¬

27

JAK1→STAT1→Tbet→ SOCS1¬

  1. a. If the circuit has zero or an even number of negative interactions, it is considered positive; otherwise the circuit is negative. Circuits 1–24 are positive, and circuits 25–27 are negative.